140 research outputs found
Punctuated equilibria and 1/f noise in a biological coevolution model with individual-based dynamics
We present a study by linear stability analysis and large-scale Monte Carlo
simulations of a simple model of biological coevolution. Selection is provided
through a reproduction probability that contains quenched, random interspecies
interactions, while genetic variation is provided through a low mutation rate.
Both selection and mutation act on individual organisms. Consistent with some
current theories of macroevolutionary dynamics, the model displays
intermittent, statistically self-similar behavior with punctuated equilibria.
The probability density for the lifetimes of ecological communities is well
approximated by a power law with exponent near -2, and the corresponding power
spectral densities show 1/f noise (flicker noise) over several decades. The
long-lived communities (quasi-steady states) consist of a relatively small
number of mutualistically interacting species, and they are surrounded by a
``protection zone'' of closely related genotypes that have a very low
probability of invading the resident community. The extent of the protection
zone affects the stability of the community in a way analogous to the height of
the free-energy barrier surrounding a metastable state in a physical system.
Measures of biological diversity are on average stationary with no discernible
trends, even over our very long simulation runs of approximately 3.4x10^7
generations.Comment: 20 pages RevTex. Minor revisions consistent with published versio
Self-optimization, community stability, and fluctuations in two individual-based models of biological coevolution
We compare and contrast the long-time dynamical properties of two
individual-based models of biological coevolution. Selection occurs via
multispecies, stochastic population dynamics with reproduction probabilities
that depend nonlinearly on the population densities of all species resident in
the community. New species are introduced through mutation. Both models are
amenable to exact linear stability analysis, and we compare the analytic
results with large-scale kinetic Monte Carlo simulations, obtaining the
population size as a function of an average interspecies interaction strength.
Over time, the models self-optimize through mutation and selection to
approximately maximize a community fitness function, subject only to
constraints internal to the particular model. If the interspecies interactions
are randomly distributed on an interval including positive values, the system
evolves toward self-sustaining, mutualistic communities. In contrast, for the
predator-prey case the matrix of interactions is antisymmetric, and a nonzero
population size must be sustained by an external resource. Time series of the
diversity and population size for both models show approximate 1/f noise and
power-law distributions for the lifetimes of communities and species. For the
mutualistic model, these two lifetime distributions have the same exponent,
while their exponents are different for the predator-prey model. The difference
is probably due to greater resilience toward mass extinctions in the food-web
like communities produced by the predator-prey model.Comment: 26 pages, 12 figures. Discussion of early-time dynamics added. J.
Math. Biol., in pres
Magnetoelectric ordering of BiFeO3 from the perspective of crystal chemistry
In this paper we examine the role of crystal chemistry factors in creating
conditions for formation of magnetoelectric ordering in BiFeO3. It is generally
accepted that the main reason of the ferroelectric distortion in BiFeO3 is
concerned with a stereochemical activity of the Bi lone pair. However, the lone
pair is stereochemically active in the paraelectric orthorhombic beta-phase as
well. We demonstrate that a crucial role in emerging of phase transitions of
the metal-insulator, paraelectric-ferroelectric and magnetic disorder-order
types belongs to the change of the degree of the lone pair stereochemical
activity - its consecutive increase with the temperature decrease. Using the
structural data, we calculated the sign and strength of magnetic couplings in
BiFeO3 in the range from 945 C down to 25 C and found the couplings, which
undergo the antiferromagnetic-ferromagnetic transition with the temperature
decrease and give rise to the antiferromagnetic ordering and its delay in
regard to temperature, as compared to the ferroelectric ordering. We discuss
the reasons of emerging of the spatially modulated spin structure and its
suppression by doping with La3+.Comment: 18 pages, 5 figures, 3 table
Pathological response and tumour bed histopathological features correlate with survival following neoadjuvant immunotherapy in stage III melanoma
Background: Guidelines for pathological evaluation of neoadjuvant specimens and pathological response categories have been developed by the International Neoadjuvant Melanoma Consortium (INMC). As part of the Optimal Neo-adjuvant Combination Scheme of Ipilimumab and Nivolumab (OpACIN-neo) clinical trial of neoadjuvant combination anti-programmed cell death protein 1/anti-cytotoxic T-Iymphocyte-associated protein 4 immunotherapy for stage III melanoma, we sought to determine interobserver reproducibility of INMC histopathological assessment principles, identify specific tumour bed histopathological features of immunotherapeutic response that correlated with recurrence and relapse-free survival (RFS) and evaluate proposed INMC pathological response categories for predicting recurrence and RFS.Patients and methods: Clinicopathological characteristics of lymph node dissection specimens of 83 patients enrolled in the OpACIN-neo clinical trial were evaluated. Two methods of assessing histological features of immunotherapeutic response were evaluated: the previously described immune-related pathologic response (irPR) score and our novel immunotherapeutic response score (ITRS). For a subset of cases (n = 29), cellular composition of the tumour bed was analysed by flow cytometry.Results: There was strong interobserver reproducibility in assessment of pathological response (kappa = 0.879) and percentage residual viable melanoma (intraclass correlation coefficient = 0.965). The immunotherapeutic response subtype with high fibrosis had the strongest association with lack of recurrence (P = 0.008) and prolonged RFS (P = 0.019). Amongst patients with criteria for pathological non-response (pNR, >50% viable tumour), all who recurred had >= 70% viable melanoma. Higher ITRS and irPR scores correlated with lack of recurrence in the entire cohort (P = 0.002 and P = 70% viable melanoma and incorporating additional criteria of <10% fibrosis subtype of response may identify those at highest risk of recurrence, but requires validation.Analysis and support of clinical decision makin
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
Relationship of edge localized mode burst times with divertor flux loop signal phase in JET
A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM
Spatial and seasonal variation of microphytoplankton community and the correlation with environmental parameters in a hypereutrophic tropical estuary - Maranhão - Brazil
O estuário do rio Bacanga apresenta um comportamento hidrodinâmico com fluxo de marés limitado por uma barragem. Ele é considerado como um ambiente hipereutrófico que recebe diariamente altas cargas de esgoto doméstico sem tratamento. Este trabalho teve como objetivo avaliar a variação espaço-sazonal da comunidade fitoplanctônica e suas relações com parâmetros ambientais. Amostragens bimestrais foram realizadas em seis pontos fixos entre 2012 e 2013, obtendo valores dos parâmetros físico-químicos e biológicos (clorofila a, composição e abundância do fitoplâncton) para realização das análises estatísticas. Os resultados indicam que a comunidade fitoplanctônica é representada por diatomáceas, sendo Skeletonema costatum a espécie dominante responsável por pulsos de florações em abril e junho de 2012. O predomínio dessa espécie está relacionado aos elevados teores de silicato, pH e turbidez da água. Outros eventos de florações como da Euglena gracilis e Chlamydomonas sp. foram registrados em fevereiro de 2013, quando os teores de fósforo total estiveram elevados e as taxas de oxigênio dissolvido foram superiores. Os dinoflagelados, cianobactérias e a diatomácea Thallassiosira sp. apresentaram ampla distribuição no período de estiagem e estão altamente correlacionados com a salinidade, transparência da água e nutrientes. Desta forma, a distribuição da comunidade fitoplanctônica é mais definida sazonalmente que espacialmenteThe Bacanga River Estuary has a hydrodynamic behavior and its tidal flow is limited by a dam. It is considered as a hypertrophic environment that receives daily high loads of domestic sewage without treatment. This study aimed to evaluate the spatial and temporal variation of phytoplankton community and its relationship with environmental parameters. Bi-monthly sampling campaigns were carried out at six fixed sites between 2012 and 2013. Physical-chemical and biological parameters were collected (chlorophyll a, phytoplankton composition and abundance) to perform the statistical correlations. The results indicate that phytoplankton community is mostly represented by diatoms, with Skeletonema costatum being the dominant species responsible for bloom in April and June of 2012. The dominance of this species is related to the high silicate concentrations, pH and turbidity. Other blooms events as well as the Euglena gracilis and Chlamydomonas sp. were recorded in February 2013, when the total phosphorus concentrations were high and the dissolved oxygen concentrations were higher. Dinoflagellates, cyanobacteria and diatom Thallassiosira sp. were widely distributed in the dry period and highly correlated with salinity, water transparency and nutrients. Hence, the distribution of phytoplankton community is more defined seasonally, rather than spatially
Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures
Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo
- …