561 research outputs found

    Observations on the distribution of meroplankton during an upwelling event

    Get PDF
    The distribution of the larvae of benthic invertebrates was investigated relative to hydrographic structures as a test of the hypothesi\u27s that larvae behave as if they are passive particles. Observations of larval and oceanographic distributions were made off Duck, North Carolina, USA in August 1994. Conditions were characterized by wind-driven coastal upwelling;flow was generally offshore near the surface and onshore below the pycnocline. Within 5 km of the shore the pycnocline was bent upward by the upwelling and it intersected the surface along most of the transects. In zooplankton samples, 20 taxa of larvae were counted (10 bivalve veligers, nine gastropod veligers and one polychaete larvae). Using cluster analysis, larvae were separated into groups with similar Patterns of distribution and similar affinities to water properties. The larvae in Cluster 3 did not display a consistent distribution pattern beyond that they tended to be found in warmer surface waters. An earlier paper described the distribution of larvae in the same location during a downwelling event [A. Shanks et al. (2002) J. Plankton Res., 24, 391-416]. Two of the clusters identified during this previous study were quite similar in composition to Clusters 1 and 2 in this study. In both studies, Cluster 1 larvae were found below the pycnocline, but during the upwelling event they were transported shoreward with the advection of the subpycnocline waters by the upwelling circulation. Within 5 km of the shore, Cluster 1 larvae were found at depths shallower than the base of the pycnocline and were often found in patches of high larval concentration. The patches were located where the waters were upwelling. Cluster 2 larvae were found within 5 km of the shore in both studies and tended to be highly concentrated in convergences or divergences. Larvae in Cluster 1 generally appeared to be dispersing as passive particles, except within the zone of upwelling where they may have been swimming against the upwelling flow leading to higher larval concentrations. Cluster 2 larvae appeared to be consistently concentrated in areas of vertical currents, suggesting that they may be attempting to maintain a Preferred depth in the face of the vertical flow which would lead to high larval concentration and nearshore larval distributions despite extensive cross-she ( movement of water. Despite their slow swimming speeds, the larvae in Clusters 1 and 2 were not swept offshore by the upwelling event

    Chemical defense in a scyphomedusa

    Get PDF
    The scyphozoan Stomolophus meleagris, when disturbed (held in a container), discharges a sticky mucus. Toxins released into the mucus and water kill some fish and crustaceans and can immediately alter fish behavior, but did not affect a crab predator of S. meleagris. The mucus contains discharged and undischarged nematocysts. The toxins in the mucus are probably associated with these nematocysts. In the field, S. meleagris subjected to a simulated small predator bite released clouds of nematocysts which drove off small fish (potential predators), but did not drive off the associated predacious crabs. These 2 behaviors appear to be forms of chemical defense. Two other species of scyphozoans and a ctenophore species also discharge mucus when disturbed. Chemical defenses may be common amongst gelatinous zooplankton

    Demonstration of the onshore transport of larval invertebrates by the shoreward movement of an upwelling front

    Get PDF
    Upwelling winds off North Carolina set up upwelling fronts. As the wind forcing relaxed following such a coastal upwelling event, we observed the upwelling front move onshore. The low-density surface water moved shoreward over the upwelled water, forming a convergence zone at the-front. This shoreward-moving front concentrated and transported larvae. Larval sergestid shrimp, spionid polychaete larvae, and the veligers of Odostomia sp. and Bittium sp, were concentrated on the seaward side of the moving convergence. Blue crab megalopae were concentrated at the surface immediately seaward of the front. These data demonstrate that a relaxing upwelling front can transport high concentrations of larvae shoreward over the inner shelf. This may be an important mechanism promoting the shoreward migration of larval invertebrates and fish

    Potential therapeutic applications of microbial surface-activecompounds

    Get PDF
    Numerous investigations of microbial surface-active compounds or biosurfactants over the past two decades have led to the discovery of many interesting physicochemical and biological properties including antimicrobial, anti-biofilm and therapeutic among many other pharmaceutical and medical applications. Microbial control and inhibition strategies involving the use of antibiotics are becoming continually challenged due to the emergence of resistant strains mostly embedded within biofilm formations that are difficult to eradicate. Different aspects of antimicrobial and anti-biofilm control are becoming issues of increasing importance in clinical, hygiene, therapeutic and other applications. Biosurfactants research has resulted in increasing interest into their ability to inhibit microbial activity and disperse microbial biofilms in addition to being mostly nontoxic and stable at extremes conditions. Some biosurfactants are now in use in clinical, food and environmental fields, whilst others remain under investigation and development. The dispersal properties of biosurfactants have been shown to rival that of conventional inhibitory agents against bacterial, fungal and yeast biofilms as well as viral membrane structures. This presents them as potential candidates for future uses in new generations of antimicrobial agents or as adjuvants to other antibiotics and use as preservatives for microbial suppression and eradication strategies

    Artemether-lumefantrine versus artemisinin-naphthoquine in Papua New Guinean children with uncomplicated malaria: A six months post-treatment follow-up study

    Get PDF
    Background: In a recent trial of artemisinin-naphthoquine (artemisinin-NQ) and artemether-lumefantrine (AM-LM) therapy in young children from Papua New Guinea (PNG), there were no treatment failures in artemisinin-NQ-treated children with Plasmodium falciparum or Plasmodium vivax compared with 2.2% and 30.0%, respectively, in AM-LM-treated children during 42 days of follow-up. To determine whether, consistent with the long elimination half-life of NQ, this difference in efficacy would be more durable, clinical episodes of malaria were assessed in a subset of trial patients followed for six months post-treatment. Methods: For children completing trial procedures and who were assessable at six months, all within-trial and subsequent clinical malaria episodes were ascertained, the latter by clinic attendances and/or review of hand-held health records. Presentations with non-malarial illness were also recorded. Differences between allocated treatments for pre-specified endpoints were determined using Kaplan-Meier survival analysis. Results: Of 247 children who were followed to Day 42, 176 (71.3%) were included in the present sub-study, 87 allocated to AM-LM and 89 to artemisinin-NQ. Twenty children in the AM-LM group (32.8%) had a first episode of clinical malaria within six months compared with 10 (16.4%) in the artemisinin-NQ group (P=0.033, log rank test). The median (interquartile range) time to first episode of clinical malaria was 64 (50-146) vs 116 (77-130) days, respectively (P=0.20). There were no between-group differences in the incidence of first presentation with non-malarial illness (P=0.31). Conclusions: The greater effectiveness of artemisinin-NQ over conventional AM-LM extends to at least six months post-treatment for clinical malaria but not non-malarial illness. Trial registration: Australian New Zealand Clinical Trials Registry ACTRN12610000913077

    Interspecific Variation in Life History Relates to Antipredator Decisions by Marine Mesopredators on Temperate Reefs

    Get PDF
    As upper-level predatory fishes become overfished, mesopredators rise to become the new β€˜top’ predators of over-exploited marine communities. To gain insight into ensuing mechanisms that might alter indirect species interactions, we examined how behavioural responses to an upper-level predatory fish might differ between mesopredator species with different life histories. In rocky reefs of the northeast Pacific Ocean, adult lingcod (Ophiodon elongatus) are upper-level predators that use a sit-and-wait hunting mode. Reef mesopredators that are prey to adult lingcod include kelp greenling (Hexagrammos decagrammus), younger lingcod, copper rockfish (Sebastes caurinus) and quillback rockfish (S. maliger). Across these mesopredators species, longevity and age at maturity increases and, consequently, the annual proportion of lifetime reproductive output decreases in the order just listed. Therefore, we hypothesized that the level of risk taken to acquire resources would vary interspecifically in that same order. During field experiments we manipulated predation risk with a model adult lingcod and used fixed video cameras to quantify interactions between mesopredators and tethered prey (Pandalus shrimps). We predicted that the probabilities of inspecting and attacking tethered prey would rank from highest to lowest and the timing of these behaviours would rank from earliest to latest as follows: kelp greenling, lingcod, copper rockfish, and quillback rockfish. We also predicted that responses to the model lingcod, such as avoidance of interactions with tethered prey, would rank from weakest to strongest in the same order. Results were consistent with our predictions suggesting that, despite occupying similar trophic levels, longer-lived mesopredators with late maturity have stronger antipredator responses and therefore experience lower foraging rates in the presence of predators than mesopredators with faster life histories. The corollary is that the fishery removal of top predators, which relaxes predation risk, could potentially lead to stronger increases in foraging rates for mesopredators with slower life histories

    Kocuria kristinae infection associated with acute cholecystitis

    Get PDF
    BACKGROUND: Kocuria, previously classified into the genus of Micrococcus, is commonly found on human skin. Two species, K. rosea and K. kristinae, are etiologically associated with catheter-related bacteremia. CASE PRESENTATION: We describe the first case of K. kristinae infection associated with acute cholecystitis. The microorganism was isolated from the bile of a 56-year old Chinese man who underwent laparoscopic cholecystectomy. He developed post-operative fever that resolved readily after levofloxacin treatment. CONCLUSION: Our report of K. kristinae infection associated with acute cholecystitis expands the clinical spectrum of infections caused by this group of bacteria. With increasing number of recent reports describing the association between Kocuria spp. and infectious diseases, the significance of their isolation from clinical specimens cannot be underestimated. A complete picture of infections related to Kocuria spp. will have to await the documentation of more clinical cases

    Model-Derived Dispersal Pathways from Multiple Source Populations Explain Variability of Invertebrate Larval Supply

    Get PDF
    Background: Predicting the spatial and temporal patterns of marine larval dispersal and supply is a challenging task due to the small size of the larvae and the variability of oceanographic processes. Addressing this problem requires the use of novel approaches capable of capturing the inherent variability in the mechanisms involved. Methodology/Principal Findings: In this study we test whether dispersal and connectivity patterns generated from a biophysical model of larval dispersal of the crab Carcinus maenas, along the west coast of the Iberian Peninsula, can predict the highly variable daily pattern of wind-driven larval supply to an estuary observed during the peak reproductive season (March–June) in 2006 and 2007. Cross-correlations between observed and predicted supply were significant (p,0.05) and strong, ranging from 0.34 to 0.81 at time lags of 26 to+5 d. Importantly, the model correctly predicted observed cross-shelf distributions (Pearson r = 0.82, p,0.001, and r = 0.79, p,0.01, in 2006 and 2007) and indicated that all supply events were comprised of larvae that had been retained within the inner shelf; larvae transported to the outer shelf and beyond never recruited. Estimated average dispersal distances ranged from 57 to 198 km and were only marginally affected by mortality. Conclusions/Significance: The high degree of predicted demographic connectivity over relatively large geographic scales is consistent with the lack of genetic structuring in C. maenas along the Iberian Peninsula. These findings indicate that the dynamic nature of larval dispersal can be captured by mechanistic biophysical models, which can be used to provid

    Microbial Activities and Dissolved Organic Matter Dynamics in Oil-Contaminated Surface Seawater from the Deepwater Horizon Oil Spill Site

    Get PDF
    The Deepwater Horizon oil spill triggered a complex cascade of microbial responses that reshaped the dynamics of heterotrophic carbon degradation and the turnover of dissolved organic carbon (DOC) in oil contaminated waters. Our results from 21-day laboratory incubations in rotating glass bottles (roller bottles) demonstrate that microbial dynamics and carbon flux in oil-contaminated surface water sampled near the spill site two weeks after the onset of the blowout were greatly affected by activities of microbes associated with macroscopic oil aggregates. Roller bottles with oil-amended water showed rapid formation of oil aggregates that were similar in size and appearance compared to oil aggregates observed in surface waters near the spill site. Oil aggregates that formed in roller bottles were densely colonized by heterotrophic bacteria, exhibiting high rates of enzymatic activity (lipase hydrolysis) indicative of oil degradation. Ambient waters surrounding aggregates also showed enhanced microbial activities not directly associated with primary oil-degradation (Ξ²-glucosidase; peptidase), as well as a twofold increase in DOC. Concurrent changes in fluorescence properties of colored dissolved organic matter (CDOM) suggest an increase in oil-derived, aromatic hydrocarbons in the DOC pool. Thus our data indicate that oil aggregates mediate, by two distinct mechanisms, the transfer of hydrocarbons to the deep sea: a microbially-derived flux of oil-derived DOC from sinking oil aggregates into the ambient water column, and rapid sedimentation of the oil aggregates themselves, serving as vehicles for oily particulate matter as well as oil aggregate-associated microbial communities
    • …
    corecore