1,184 research outputs found

    Effect of disorder with long-range correlation on transport in graphene nanoribbon

    Full text link
    Transport in disordered armchair graphene nanoribbons (AGR) with long-range correlation between quantum wire contact is investigated by transfer matrix combined with Landauer's formula. Metal-insulator transition is induced by disorder in neutral AGR. Thereinto, the conductance is one conductance quantum for metallic phase and exponentially decays otherwise when the length of AGR is infinity and far longer than its width. Similar to the case of long-range disorder, the conductance of neutral AGR first increases and then decreases while the conductance of doped AGR monotonically decreases, as the disorder strength increases. In the presence of strong disorder, the conductivity depends monotonically and non-monotonically on the aspect ratio for heavily doped and slightly doped AGR respectively.Comment: 6 pages, 8 figures; J. Phys: Condensed Matter (May 2012

    Dynamic response of a quantum wire structure

    Get PDF
    Version of RecordPublishe

    Dynamic response of a double barrier system : the effect of contacts

    Get PDF
    Author name used in this publication: W. K. ChowVersion of RecordPublishe

    Transport through a quantum wire with a side quantum-dot array

    Get PDF
    A noninteracting quantum-dot array side-coupled to a quantum wire is studied. Transport through the quantum wire is investigated by using a noninteracting Anderson tunneling Hamiltonian. The conductance at zero temperature develops an oscillating band with resonances and antiresonances due to constructive and destructive interference in the ballistic channel, respectively. Moreover, we have found an odd-even parity in the system, whose conductance vanishes for an odd number of quantum dots while becomes 2e2/h2e^2/h for an even number. We established an explicit relation between this odd-even parity, and the positions of the resonances and antiresonances of the conductivity with the spectrum of the isolated QD arrayComment: 5 pages, 4 figures, submitted to PR

    Spatio-temporal changes of snowmelt in Greenland ice sheet based on SSM/I (SSMIS) data (1988-2016)

    Get PDF
    359-365The snowmelt of the Greenland ice sheets is of great significance to the study of global climate change. This paper is based on the 19.35 GHz horizontal polarization data and 37.00 GHz vertical polarization data of the Special Sensor Microwave/ Imager Sounder (SSMIS) and Special Sensor Microwave/ Image (SSM/I) carried by National Defense Meteorological Satellite Program (DMSP) from 1988 to 2016, by cross-polarization ratio (XPGR) algorithm (threshold value is -0.0158). The inter-annual trends of snowmelt area, annual average snowmelt onset, end date and duration in Greenland were studied. The results showed that the maximum snowmelt area was 2,080,000 km2 in 2012, and the minimum was 1,115,000 km2 in 1992. From 1988 to 2016, the snowmelt area of the Greenland ice sheets was increased by 2.8×105 km2, with a growth rate of 9.66×103 km2/year. In the annual average change rate, there were earlier snowmelt onset date (0.16 days earlier each year), longer snowmelt duration (0.36 days longer each year) and later snowmelt end date (0.06 days later each year), and the snowmelt area was in the marginal region. The snowmelt area of the southern margin is the largest, and there are obvious regional differences. The snowmelt of Greenland ice sheets changes greatly and shows a periodic change rule in the annual mean snowmelt variation

    Robust Delay-Dependent Load Frequency Control of Wind Power System Based on a Novel Reconstructed Model

    Get PDF
    IEEE This article presents a novel reconstructed model for the delayed load frequency control (LFC) schemes considering wind power, which aims to improve the computational efficiency for PID controllers while retaining their dynamic performance. Via fully exploiting system states influenced by time delays directly, this novel reconstructed method is proposed with a controller isolated. Hence, when the PID controllers are unknown, the stability criterion based on this model can resolve controller gains with less time consumed. For given PID gains, this model can be employed to establish criteria for stability analysis, which can realize the tradeoff between the calculation accuracy and efficiency. The case study is first based on a two-area traditional LFC system to validate the merits of a novel reconstructed model, including accurately estimating the influence of time delay on system frequency stability with increased computational capability. Then, under traditional and deregulated environments, case studies are carried out on the two-area and three-area schemes, respectively. Through the novel reconstructed model, the efficiency of obtaining controller parameters is highly improved while their robustness against the random wind power, tie-line power changes, inertial reductions, and time delays remains almost unchanged

    Transcatheter Intraarterial Perfusion MRI Approaches to Differentiate Reversibly Electroporated Penumbra From Irreversibly Electroporated Zones in Rabbit Liver

    Get PDF
    RATIONALE AND OBJECTIVES: To investigate whether transcatheter intraarterial perfusion (TRIP) magnetic resonance imaging (MRI) can differentiate reversible electroporation (RE) zones from irreversible electroporation (IRE) zones immediately after IRE procedure in the rabbit liver. MATERIALS AND METHODS: All studies were approved by the institutional animal care and use committee and performed in accordance with institutional guidelines. A total of 13 healthy New Zealand White rabbits were used. After selective catheterization of the hepatic artery under X-ray fluoroscopy, we acquired TRIP-MRI at 20 minutes post-IRE using 3 mL of 5% intraarterial gadopentetate dimeglumine. Semi-quantitative (peak enhancement, PE; time to peak, TTP; wash-in slope, WIS; areas under the time-intensity curve, AUT, over 30, 60, 90, 120, 150, and 180 seconds after the initiation of enhancement) and quantitative (Ktrans, ve, and vp) TRIP-MRI parameters were calculated. The relationships between TRIP-MRI parameters and histological measurements and the differential ability of TRIP-MRI parameters was assessed. RESULTS: PE, AUT60, AUT90, AUT120, AUT150, AUT180, Ktrans, and ve were significantly higher in RE zones than in IRE zones (all P < 0.05), and AUC for these parameters ranged from 0.91(95% CI, 0.80, 1.00) to 0.99 (95% CI, 0.98, 1.00). There was no significant difference in AUC between any two parameters (Z, 0-1.47; P, 0.14-1.00). Hepatocyte apoptosis strongly correlated with PE, AUT60, AUT90, AUT120, AUT150, AUT180, Ktrans, and vp (the absolute value r, 0.6-0.7, all P < 0.0001). CONCLUSION: AUT150 or AUT180 could be a potential imaging biomarker to differentiate RE from IRE zones, and TRIP-MRI permits to differentiate RE from IRE zones immediately after IRE procedure in the rabbit liver

    Prophylactic dendritic cell vaccination controls pancreatic cancer growth in a mouse model

    Get PDF
    PURPOSE: Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths with high recurrence after surgery due to a paucity of effective post-surgical adjuvant treatments. DC vaccines can activate multiple anti-tumor immune responses but have not been explored for post-surgery PDAC recurrence. Intraperitoneal (IP) delivery may allow increased DC vaccine dosage and migration to lymph nodes. Here, we investigated the role of prophylactic DC vaccination controlling PDAC tumor growth with IP delivery as an administration route for DC vaccination. METHODS: DC vaccines were generated using ex vivo differentiation and maturation of bone marrow-derived precursors. Twenty mice were divided into four groups (n = 5) and treated with DC vaccines, unpulsed mature DCs, Panc02 lysates or no treatment. After tumor induction, mice underwent three magnetic resonance imaging scans to track tumor growth. Apparent diffusion coefficient (ADC), a quantitative magnetic resonance imaging measurement of tumor microstructure, was calculated. Survival was tracked. Tumor tissue was collected after death and stained with hematoxylin and eosin, Masson's trichrome, terminal deoxynucleotidyl transferase dUTP nick end labeling and anti-CD8 stains for histology. RESULTS: DC-vaccinated mice demonstrated stronger anti-tumor cytotoxicity compared with control groups on lactate dehydrogenase assay. DC vaccine mice also demonstrated decreased tumor volume, prolonged survival and increased ΔADC compared with control groups. On histology, the DC vaccine group had increased apoptosis, increased CD8+ T cells and decreased collagen. ΔADC negatively correlated with % collagen in tumor tissues. DISCUSSION: Prophylactic DC vaccination may inhibit PDAC tumor growth during recurrence and prolong survival. ΔADC may be a potential imaging biomarker that correlates with tumor histological features
    corecore