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Dynamic response of a double barrier system: The effect of contacts
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We study the dynamical response of a double-barrier conductor with two contacts to investigate the contact
effect on ac conduction in the system. We have presented the calculation of various physical quantities such as
the distributions of internal potential and charge density, capacitance and low-frequency ac conductance. We
show that the characteristic potentials would tend to unity~zero! in the reservoirs. When the system is far away
from resonance, the charge distribution exists only around the barrier regions as a response to the applied
voltage, and hence the contacts almost have no effect on the results. In the case of small transmission
probability, we find a considerable amount of charge distribution surrounding the double-barrier conductor. As
for the resonant case or near the resonance, our results show that the charge distribution displays large
fluctuations outside the conductor, but almost no charge distribution within the conductor. In this case, the
effect of contacts on the charge and potential distributions is considerable. Moreover, we find that qualitatively
the presence of contacts does not change the main features of the emittance without contacts. But the contact
effect on the capacitance is significant when the chemical potential is very close to resonant energy: there is a
sharp capacitance peak at resonance that does not exist in the case without contacts.

DOI: 10.1103/PhysRevB.68.075316 PACS number~s!: 73.21.2b, 73.63.2b, 72.10.2d
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I. INTRODUCTION

The transport properties of mesoscopic conductor syst
have been studied extensively, both theoretically and exp
mentally. One of these studied systems is the o
dimensional device connected to wide reservoirs involv
the electron-electron (e-e) interaction which is of fundamen
tal importance.1,2 The contacts play an important role in th
conductance3–7 due to its significant interaction with
conductors.8 The effect ofe-e interaction on quantum trans
port in quantum wire~QW! was investigated using th
Luttinger-Liquid model, which explains the renormalizatio
of charge-wave density and gives the standard dc con
tance stepse2/h.1,3–5,9 For the ac case, the ac response
strongly sensitive to the distribution of potential inside t
sample.10–14 Büttiker et al. have discussed extensively th
current conservation and gauge invariance for ac transpo
the presence ofe-e interaction.14–17 They formulated the
theory of ac conductance in the regime of linear response
low frequency based on both continuous and discrete inte
potential models. There were further works on the ac tra
port in QW with contacts. Blanteret al.adopted the random
phase approximation to calculate the ac admittance in
presence ofe-e interaction.18 Sablikov et al. used the
Hartree-Fock approximation for electron wave functions
investigate the internal potential and electron-density dis
butions in QW.8 Also, Sablikov and Shchamkhalova studie
the one-dimensionale-e interaction using the Bosonizatio
technique.19 They obtained different ac~low frequencies!
transport properties such as electron-density distribution
quantum wire impedance compared to that of the Lutting
Liquid model with short-range interaction.

On the other hand, the double-barrier-resonant-tunne
nanostructures~DBRTNS! also have attracted great resear
interest because of their many potential device applicatio
0163-1829/2003/68~7!/075316~7!/$20.00 68 0753
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and their significance in the study of the physics of confin
structures. Bu¨ttiker et al. applied their theory of ac transpo
~in the regime of linear response and low frequency! to
DBRTNS based on the discrete potential model.15 A detailed
analysis for a larger range of frequencies and for a nonlin
case associated with mesoscopic conductors can also be
by Büttiker and Christen.20 Moreover, Zhaoet al.21 used the
continues potential model to study the internal potential a
charge-density distributions in DBRTNS. Shangguanet al.
followed up to investigate in detail the ac emittance and
electrochemical potential, taking into account also the te
perature effect.22 They found that for very low temperature
the charge accumulation is very small in the resonant ca
and in the cases of zero transmission probability; and
cases in which the transmission probability is large but l
than one~near resonance!, the charge accumulation is larg

However, so far the effect of contacts~ reservoirs! on ac
transport in DBRTNS has not yet been investigated qua
tatively. In this paper, we consider the DBRTNS with co
tacts as a whole system and study how the wide cont
affect the ac transport properties such as internal poten
charge accumulation, ac emittance, and so on. The left
right contacts we consider are identical and two dimensio
~2D!, and the DBRTNS is one dimensional. We use the
perbolic tangent function to represent the 2D contacts in s
a way that the transverse dimension of the contacts va
slowly with distance. Thus, the transverse energy levels
slowly varying functions of distance in the transition regio
from the contacts to the double barrier. In this case, we
sume, as a good approximation, that there is no coup
between all the transverse channels in the scattering pro
of charge carriers. Hence, each charge carrier will be all
way in a single channel throughout the scattering proc
without being scattered into the other channels. This appr
mation much simplifies the calculation of scattering wa
©2003 The American Physical Society16-1
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functions and scattering matrix. The internal potential, g
erned by a 3D Poisson equation, is assumed to be 1D.
means, it is only a function of the distance in the longitudin
direction. So we can integrate the Poisson equation over
transverse direction and the equation will involve the va
able cross-sectional area~due to the different cross-section
areas of the contacts and wire!.

II. MODEL AND THEORY

The model of the double barrier with reservoirs that
consider in this paper is a two-dimensional–on
dimensional–two-dimensional system~see Fig. 1!. In the
center of this system is a conductor of double-barrier str
ture. We assume that the width of the system as a functio
x is

w~x!5a1
W2a

2 F tanhS 2
2~x1Lc0!

Lc
D11G for x,0,

w~x!5a1
W2a

2 F tanhS 2~x2Lc0!

Lc
D11G for x.0.

Here,a and W are the widths of 1D portion and reservoi
~2D!, respectively.Lc describes the size of the transition r
gions between the reservoirs and 1D portion, and 2Lco is
equal to the distance between the centers of the left and
transition regions. Furthermore, we useb for the barrier
width and 2c for the well width. We will investigate the
linear response of the system to a time-dependent exte
voltage. When the voltage is applied to the two reservo
besides the process in which electrons are injected into
1D transverse channels and then undergo scattering by
contacts and double barrier, we have to consider the pile
charge and the induced internal electrostatic potential in

FIG. 1. Schematic view of a double-barrier structure with tw
reservoirs. TheV is a imagined volume, and it is assumed that
electric-field line penetrates the surface ofV.
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system, which affect the transport of the electrons in
systems. To proceed, we imagine a volumeV ~the dashed-
line box in Fig. 1!, which encloses the entire conductor a
parts of the reservoirs and is large enough to include all
varying distributions of the potential and charges. Th
means that all the electric-field lines come from and end
the charges insideV.

In order to calculate the dynamics response of the dou
barrier system, according to Bu¨ttiker’s theory, we have to
calculate the injectivitydna(r )/dE and the local density of
states~LDOS! dn(r )/dE5(adna(r )/dE ~Refs. 10,14,15!
for the system~here a51 or L for the left contact anda
52 orR for the right contact. Because our interest is electr
transport in the longitudinal direction~the x direction, say!.
We will assume that the potential and charge-density dis
butions are one dimensional. Accordingly, we will only ca
culate the injectivitydna(x)/dE5*dna(r )/dEdy and the
density of statesdn(x)/dE5*dn(r )/dEdy. To do this, we
first calculate the electron wave function of the incomi
scattering state~from the left!. In the reservoirs, the wave
functions read

C l
L~x,y!5~eikl

xx1s11,le
2 ikl

xx!f l
W~y! for x!2Lco2Lc ,

~1!

C l
R~x,y!5s21,le

ikl
xxf l

W~y! for x@Lco1Lc , ~2!

wheref l
W(y) are the transverse eigenfunctions of the res

voirs, kl
x5@2m* E/\2( lp/W)2#1/2 are the wave number

defined in thex direction,m* is the effective mass of elec
trons, andE is the energy of the electron. In the transitio
regions between 1D and 2D portions, we plot vertical lines
divide the regions into a series of narrow layers~see Fig. 1!.
In the narrow layers labeled byi 51,2,3, . . . , thewave func-
tions can be expressed as

C l
( i )~x,y!5(

l 8
@Al 8 le

ik
l 8
( i )

x1Bl 8 le
2 ik

l 8
( i )

x#f l 8
( i )

~y!, ~3!

where f l 8
( i )(y) are the transverse eigenfunctions in layeri,

kl
( i )5@2m* E/\2( lp/Wi)

2#1/2, and Wi is the width of the
layer i. In this paper, it is assumed that the width variation
the transition regions is so slow that we can ignore the s
hopping as the wave functions propagate through the lay
and then Eq.~3! simplifies as

C l
( i )~x,y!5~Al

( i )eikl
( i )x1Bl

( i )e2 ikl
( i )x!f l

( i )~y!. ~4!

In the 1D portion~i.e., the double barrier together with th
left and right leads!, the wave functions may be expressed

C l
I~x,y!5~Al

(I )eikl
(I )x1Bl

(I )e2 ikl
(I )x!f l

1D~y!, ~5!

whereI 51, . . . ,5represent the regions of two barriers, we
and the two 1D leads, respectively.fm

1D(y) are the trans-
verse eigenfunctions of electrons in the 1D portio
kl

x5@2m* (E2UI)/\2( lp/a)2#1/2, and UI is the double-
barrier potential:
6-2
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UI5H U0 in the barriers,

0 otherwise.

Using continuity ofC l and ]C l /]x at the boundaries be
tween neighboring layers, we determine the wave functi
of the electrons in the system, and then the injectivity11

dnL~x!

dE
5(

l
E dES 2] f

]E D E dy
1

hv l
uc l~x,y!u2, ~6!

wherev l5\kl
x/m* is the incident velocity of the electrons i

the direction of transport (x axis!. Furthermore, for our sym
metrical system,

dnR~x!

dE
5

dnL~2x!

dE
, ~7!

and the LDOS is then given by

dn~x!

dE
5

dnL~x!

dE
1

dnR~x!

dE
. ~8!

Meanwhile, the scattering matricess11 ands21 are given by
Eqs. ~1! and ~2!. In the presence of a small and low
frequency ac voltagevac applied to the reservoira (a51 or
L for the left reservoir anda52 or R for the right reservoir!,
the internal potentialU(x) is given by U(x)5ua(x)vac ,
whereua is the characteristic function. Using the Thoma
Fermi approximation, the characteristic functionua satisfies
the Poisson equation:14,15

2¹2ua1
e2

«0

dn~r !

dE
ua~x!5

e2

«0

dna~r !

dE
, a51,2. ~9!

Under the Thomas-Fermi approximation, the second term
Eq. ~9! gives the induced charges in the conductor and
third term gives clearly the injected charges. As has b
pointed out by Bu¨ttiker and Christen,24 The Thomas-Ferm
approximation is not well justified and permits us to obta
an estimate only. In this paper, we do not attempt to mak
very accurate calculation, and our interest is to presen
qualitative estimate for the potential and charge distributio
In Eq. ~9! we have neglected the variation of the potent
with y andz, and assume that the characteristic function i
function of x only. This assumption is reasonable, beca
the variation of potential, in fact, is induced by electrochem
cal potential differencedm ~or external voltagedV) between
the left and the right sides. We obtain the following equat
by integrating overy and z and using*dydzuf(z,y)u251
~for convenience of presentation, we only mentioned ab
the coordinatey in the above discussion!:

2
d2ua~x!

dx2
1

e2

«0A~x!

dn~x!

dE
ua~x!5

e2

«0A~x!

dna~x!

dE
,

~10!

where A(x)5d3w(x) is the cross-sectional area of th
double-barrier structure,d is the thickness of the system.
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III. INTERNAL POTENTIAL AND CHARGE DENSITY

We first calculate the internal potentialua(x) by numeri-
cally solving the Poisson equation~10!, and then obtain the
induced charge distribution. To solve Eq.~10! for ua(x), we
need the boundary values ofua(x). Here we use the neutral
ity condition14 to determine the boundary values ofua(x):

ua~xL!5
dna~xL!

dE Y dn~xL!

dE
,

ua~xR!5
dna~xR!

dE Y dn~xR!

dE
, ~11!

where xL and xR are left and right boundary lines of th
regionV ~see Fig. 1!, which is a volume14–16that is so large
that electric-field lines through the surface of it vanish, i.
the electric field is completely screened within the volume
the reservoirs are very large~the widthW is very large!, then
from Eq. ~11! we conclude that the boundary valuesu1(xL)
3@u2(xR)# andu1(xR)@u2(xL)# are very close to unity and
zero, respectively. In our case, the boundary values are c
to unity or zero. When our system is biased by a small vo
agedV ~applied to reservoira), the distribution of charge
density inV is given bydq(x)5r(x)dV, where

r~x!5
dq~x!

dV
52«0A~x!

d2ua~x!

dx2

5e2Fdna~x!

dE
2

dn~x!

dE
ua~x!G . ~12!

In Fig. 2, we present the distribution of internal potent
u5u1(x) and charge densityr(x) for various Fermi levels
m(5mL5mR) at temperatureT50. As is aforementioned
we useD5h2/8m* a2, the energy of the transverse groun
state in the 1D leads as a unit of energy, and the widtha of
the leads as a unit of distance. In our calculation, we
a550 nm, d5a/2 ~the thickness of our system!, and
xL52xR .

Figure 2~a! shows the results form51.805, which corre-
sponds to the resonant case where the Fermi level equal
resonant energy of the double-barrier structure, and for
open channel the transmission probability equals unity.
this case, one finds that the potential drops mainly appea
the transition regions between the 1D and 2D portions,
basically there is no potential drop across the double bar
although we find some oscillations in the potential in the
leads. Furthermore, for the resonant case, the charge de
shows intensive fluctuations around zero beyond the dou
barrier, while inside the double barrier there is almost
charge accumulation. This reflects the effect of contacts
the distributions of potential and charge density. We kn
that the injected electron density is proportional to the squ
of the amplitude of the electron wave function which is o
cillating along thex direction. Thus, the distribution of the
injected electron density consists of alternative layers
more negative charges and less negative charges. This w
be the total charge-density distribution should there be
6-3
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coulomb interaction between the charges. In the presenc
coulomb interaction, the more negatively charged layers
duce positive charges in the neighboring less negativ
charged layers. Hence, the intensive fluctuations in
charge density are expected. In the resonant case, the

FIG. 2. Distributions of internal potential and charge density
~a! m51.805, ~b! m51.802, and~c! m51.7. Other parameters ar
d50.5, Lc54, Lco57.5, b50.5, c51, andW520. The energy is
in unit of the transverse ground-state energyD of 1D leads, and
length in unit of 1D portion widtha (550 nm).
07531
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trons can penetrate completely through the barrier, and
charges driven by the voltage neither stay around nor ins
the conductor. And so, no potential drop is caused. In t
case, the scattering of electrons is completely due to the n
uniform cross section in the transition regions, and this sc
tering results in the potential drops and charge accumula
in the transition regions. In our previous work22 that was
about a 1D double-barrier structure without contacts, the
tential drop in the resonant case was almost zero@i.e. char-
acteristic functionu(x) was constant : 1/2], and there is a
most no charge accumulation throughout the system.
would like to remark that for the near resonance case~that is,
large transmission probability but not equal to one!, the dis-
tributions of internal potential as well as charge density
similar to that of the resonant case. In Fig. 2~b!, we present
the results for the case of small transmission probabilitym
51.802). From the curve ofr(x), one finds that there is a
considerable amount of charge distribution around the bar
regions as well as in the well region, but away from t
double barrier in the leads and in the reservoirs there is
charge accumulation. In this case, the charges driven to
other side of the conductor penetrate through the double
rier with a small transmission probability. Thus, most of t
charge carriers are reflected back into the 1D leads and
ervoir. We then expect that there is no charge accumula
beyond the double barrier and hence the internal poten
u(x) should be constant (51) beyond the double barrie
~even in the transition regions!, as shown in Fig. 2~b!.The
potential drop mainly happens within the double barrier, a
the charges are distributed around and within the conduc
In Fig. 2~c!, we show the result for the case where chemi
potential (m51.7) is far from the resonant energy (E
51.805) and for all channels the transmission probability
almost zero. The results in this case are qualitatively
agreement with that for the double-barrier system with
contacts, where the characteristic functionu51(0) on the
left ~right! side of the double-barrier conductor, and t
curve ofu(x) is almost a straight line inside the conducto
and so the charge accumulation is nonzero only just bey
the two barriers. It is worth emphasizing that our results
the system with wide contacts show that the characteri
function tends to 1 (0) on the left~right! side the double-
barrier conductor for both resonant and nonresonant ca
This fulfills the requirement of Bu¨ttiker’s theory.14

IV. CAPACITANCE AND LOW-FREQUENCY
ADMITTANCE

Having studied the distributions of internal potential a
charge density that reveals certain information of the sys
under investigation, next we will study the capacitance a
ac conductance, which may present a result that is capab
being directly verified with the experimental data. Accordi
to Eq. ~12!, when a small voltagedV is applied to the left
reservoir (a51), the total charge accumulated in the le
half portion ofV is given by

dQ5E
xL

x0L
dq~x!dx,

r

6-4
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and then the capacitance of the double-barrier system ca
defined as

C5
dQ

dV
5E

xL

x0L
r~x!dx

5e2E
xL

x0LFdna~x!

dE
2

dn~x!

dE
ua~x!Gdx, ~13!

wherex0L is the position of center of the left barrier. As i
the well-known Coulomb blockde model for junction array
where one junction~barrier! corresponds to one capacitanc
we regard the double-barrier system as two capacitors in
ries. It should be point out that it is difficult to give a preci
definition of the capacitance for our system because
model is a continuous one, and generally the charge di
bution shows an extensive fluctuation around zero. In
case of Figs. 2~a! and 2~c!, the system can be regarded as
single capacitor, but in the case of Fig. 2~b! it would be
invalid to regard it in this way.

With the information of partial density of states~PDOS!,
injectivities, and internal potentials, we can calculate the
mittance for low frequencies14–16

gab~v!5gab~0!2 ive2Eab , ~14!

wherev is the frequency of the ac bias,gab(0) is the dc
conductance, and

Eab5e2
dNab

dE
2e2E dx

dna~x!

dE
ub~x! ~15!

is the emittance. In the first term of Eq.~15!,

dNab

dE
5

1

4p i E dES 2] f

]E DTrFsab
† dsab

dE
2

dsab
†

dE
sabG

~16!

are the partial densities of states, and may be interprete
the carrier density of states in volumeV, corresponding to
those carriers injected from reservoirb and going out of
reservoira. It should be noticed that Eq.~16! is exact only
when V is infinite (uxLu⇀`).23 For the finite-size system
PDOS can be defined as14,15

dNab

dE
5

21

4p i E dES 2] f

]E DTrFsab
† dsab

dU
2

dsab
†

dU
sabG ,

~17!

where

dsab

dU
5E

xL

xR dsab

dU~x!
dx. ~18!

dsab /dU can be calculated as the following. In the cons
ered regionV, introducing a constant potentialU, we repeat
the above process of calculating the wave functions, and
the scattering matrixsab(E,U). Alternatively, we can set the
07531
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electron ‘‘energy’’ asE8and E in and out of the regionV,
respectively, and getsab(E,E8). We then have

dsab

dU
5E

xL

xR dsab

dU~x!
dx5

dsab~E,U !

dU UU50

52
dsab~E,E8!

dE8
U

E85E

. ~19!

In Figs. 3~a! and 3~b!, we present the capacitanceC and
diagonal emittanceE11, respectively, as functions of chem
cal potential around the resonant energy. The diagonal e
tance is always positive~showing a capacitive behavior!
when chemical potentialm is not too close to the resonan
energy, but when the chemical potential is close to~or ex-
actly equal to! the resonant energy, the emittance is negat
and gives a very great negative peak~showing an inductive
behavior!. This is qualitatively in agreement with the discre
model results obtained by Preˆtre et al.17 and with our previ-
ous results~continuous model!22 for the case without con-
tacts. Figure 3~b! shows the capacitance around the re

FIG. 3. The plots of emittance~a! and capacitance~b! as func-
tions of chemical potentialm, around the resonant energy. The oth
parameters are the same as in Fig. 2. The energy and length
are taken as above.
6-5
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nance. From this figure, we find that when the chemi
potential approaches to the resonant energy, the capacit
decreases first, and then increases sharply making a s
peak at the resonant energy. This is very different from
case without contacts where the charge accumulation is
ishingly small at the resonance. Moreover, our results sh
that the amplitude of the emittance around the resonant
ergy is much greater than the capacitance, and at the r
nance the capacitance has a peak while the emittance m
a great negative peak.

We believe that this peak originates from the contact
fect, and a plausible explanation can be presented as foll
When the Fermi level is right at the resonant energy,
behavior of this system is similar to the case of a quant
wire ~QW! with contacts, and with one channel open. A
cording to the previous work,25 with the increasing Ferm
level, a quasiplateau of capacitance would appear after
channel is open. Here, in our case, the resonant energy 1
is at the front part of the plateau, so the capacitance sh
be quite large. On the other hand, when the Fermi le
moves away a little bit from the resonant energy, the pot
tial drop around the barriers will rapidly increase because
resonant width is very narrow. Meanwhile, the potent
variation in the transition region is greatly reduced and
comes very small, hence the charge accumulation in the
gion vanishes rapidly, resulting in a drop of capacitance
therefore, the formation of such a peak. We conclude that
behavior of capacitance is very different as compared to
case without contacts: a sharp peak occurs at the reso
energy. However, the feature of negative peak ofE11 ~in the
case without contacts! is unchanged in the presence of co
tacts.

In Fig. 4, we present the capacitanceC(m) and emittance
E11(m), starting with the chemical potential far away fro
the resonant energy. One can find that the emittance
capacitance tend to same values when the chemical pote
is far away from the resonant energy, this is expected,

FIG. 4. The plots of emittance and capacitance as function
chemical potentialm, which start from far away from the resona
energy. The other parameters are the same as in Fig. 2, an
energy and length units are taken as above. Inset: the plot o
pacitance that displays a peak at abovem51.80.
07531
l
nce
arp
e
n-
w
n-
so-
kes

f-
s.
e

ne
05
ld
l
-
e
l
-
e-
d
e
e

ant

nd
tial
ut

when the system approaches to the resonance both the
tance and capacitance increase. The increase of emittan
much more rapid, and the difference of them is enlarg
rapidly. Moreover, the capacitance reachs a peak~which is
wider as compared to the resonant peak! when the chemical
potential is about 1.8, and there is another wide peak in
capacitance at symmetrical position tom51.8 about the
sharp resonant peak. We would like to point out that in
case without contacts, two similar peaks of the capacita
occur at the same positions as the positive~capacitive! peaks
of the emittance. It is clear from Fig. 4 that the presence
contacts changes the location of these two peaks of the
pacitance.

V. CONCLUSION

In conclusion, by employing the scattering theory dev
oped by Bu¨ttiker et al., we have studied the dynamical re
sponse of the double-barrier system, in which the 1D dou
barrier and two 2D reservoirs are included. We have p
sented the calculation of various physical quantities such
the distributions of internal potential and charge density,
pacitance, and low-frequency ac conductance. The resul
the internal potential and the charge density show that
induced charge density has an antisymmetric distribut
profile about the well center, and the characteristic potent
would tend to unity~zero! deep in the reservoirs. When th
system is far away from resonance, although some quan
channels are open, the transmission probability is very sm
In this case, the antisymmetric charge distribution exists o
around the barrier regions as a response to the applied
age, and hence the contacts almost have no effect on
results. For the case of small transmission probability,
found a considerable amount of charge accumulation aro
the conductor, but there is almost no potential drop outsid
As for the cases of resonance or near resonance~with a large
transmission probability for an open channel!, there is no
charge accumulation inside the double-barrier conduc
However, there are intensive fluctuations of the charge d
sity in the transition regions between the contacts~2D! and
the double barrier~1D!. In this case, the effect of contacts o
the charge and potential distributions is considerable. I
found from the calculation of ac conductance that qual
tively the presence of contacts does not change the m
features of the emittance without contacts, i.e., the nega
peak~inductive behavior! and the positive peaks~capacitive
behavior!. However, the effect of contacts on the capacitan
is significant when the chemical potential is very close to
resonant energy: causing a capacitance peak at the
nance. This peak is clearly due to the charge accumulatio
the transition regions between the 1D and 2D portions.
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