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Dynamic response of a double barrier system: The effect of contacts
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We study the dynamical response of a double-barrier conductor with two contacts to investigate the contact
effect on ac conduction in the system. We have presented the calculation of various physical quantities such as
the distributions of internal potential and charge density, capacitance and low-frequency ac conductance. We
show that the characteristic potentials would tend to uf@éyo in the reservoirs. When the system is far away
from resonance, the charge distribution exists only around the barrier regions as a response to the applied
voltage, and hence the contacts almost have no effect on the results. In the case of small transmission
probability, we find a considerable amount of charge distribution surrounding the double-barrier conductor. As
for the resonant case or near the resonance, our results show that the charge distribution displays large
fluctuations outside the conductor, but almost no charge distribution within the conductor. In this case, the
effect of contacts on the charge and potential distributions is considerable. Moreover, we find that qualitatively
the presence of contacts does not change the main features of the emittance without contacts. But the contact
effect on the capacitance is significant when the chemical potential is very close to resonant energy: there is a
sharp capacitance peak at resonance that does not exist in the case without contacts.
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[. INTRODUCTION and their significance in the study of the physics of confined
structures. Btiiker et al. applied their theory of ac transport
The transport properties of mesoscopic conductor system@ the regime of linear response and low frequenay
have been studied extensively, both theoretically and experPBRTNS based on the discrete potential model.detailed
mentally. One of these studied systems is the oneanalysis for a larger range of frequencies and for a nonlinear
dimensional device connected to wide reservoirs involvingcase associated with mesoscopic conductors can also be done
the electron-electronete) interaction which is of fundamen- by Bittiker and Christe® Moreover, Zhacet al?! used the
tal importance:? The contacts play an important role in the continues potential model to study the internal potential and
conductanc&”’ due to its significant interaction with charge-density distributions in DBRTNS. Shanggedral.
conductoré The effect ofe-e interaction on quantum trans- followed up to investigate in detail the ac emittance and the
port in quantum wire(QW) was investigated using the electrochemical potential, taking into account also the tem-
Luttinger-Liquid model, which explains the renormalization perature effect? They found that for very low temperature,
of charge-wave density and gives the standard dc condughe charge accumulation is very small in the resonant cases
tance step®?/h.13~5° For the ac case, the ac response isand in the cases of zero transmission probability; and for
strongly sensitive to the distribution of potential inside thecases in which the transmission probability is large but less
samplet®~** Bittiker et al. have discussed extensively the than one(near resonangethe charge accumulation is large.
current conservation and gauge invariance for ac transport in However, so far the effect of contadtseservoir$ on ac
the presence oe-e interaction**~!” They formulated the transport in DBRTNS has not yet been investigated quanti-
theory of ac conductance in the regime of linear response an@tively. In this paper, we consider the DBRTNS with con-
low frequency based on both continuous and discrete internaacts as a whole system and study how the wide contacts
potential models. There were further works on the ac transaffect the ac transport properties such as internal potential,
port in QW with contacts. Blantest al. adopted the random- charge accumulation, ac emittance, and so on. The left and
phase approximation to calculate the ac admittance in theght contacts we consider are identical and two dimensional
presence ofe-e interaction'® Sablikov etal. used the (2D), and the DBRTNS is one dimensional. We use the hy-
Hartree-Fock approximation for electron wave functions toperbolic tangent function to represent the 2D contacts in such
investigate the internal potential and electron-density distria way that the transverse dimension of the contacts varies
butions in QWA Also, Sablikov and Shchamkhalova studied slowly with distance. Thus, the transverse energy levels are
the one-dimensionag-e interaction using the Bosonization slowly varying functions of distance in the transition region
techniquet® They obtained different a¢low frequencies  from the contacts to the double barrier. In this case, we as-
transport properties such as electron-density distribution ansume, as a good approximation, that there is no coupling
guantum wire impedance compared to that of the Luttingerbetween all the transverse channels in the scattering process
Liquid model with short-range interaction. of charge carriers. Hence, each charge carrier will be all the
On the other hand, the double-barrier-resonant-tunnelingvay in a single channel throughout the scattering process
nanostructure$DBRTNS) also have attracted great researchwithout being scattered into the other channels. This approxi-
interest because of their many potential device applicationsnation much simplifies the calculation of scattering wave
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y system, which affect the transport of the electrons in the
systems. To proceed, we imagine a volufaethe dashed-
line box in Fig. 3, which encloses the entire conductor and
parts of the reservoirs and is large enough to include all the
varying distributions of the potential and charges. This
means that all the electric-field lines come from and end at
the charges inside).

In order to calculate the dynamics response of the double-
barrier system, according to Biker's theory, we have to
calculate the injectivitydn,(r)/dE and the local density of
states(LDOS) dn(r)/dE=ZX,dn,(r)/dE (Refs. 10,14,1p
for the systemhere «=1 or L for the left contact andx
=2 orRfor the right contact. Because our interest is electron
transport in the longitudinal directiofthe x direction, say.

We will assume that the potential and charge-density distri-
butions are one dimensional. Accordingly, we will only cal-
culate the injectivitydn,(x)/dE=[dn,(r)/dEdy and the
Uittt density of statesin(x)/dE=fdn(r)/dEdy. To do this, we
first calculate the electron wave function of the incoming
scattering statéfrom the lef). In the reservoirs, the wave

functions read
FIG. 1. Schematic view of a double-barrier structure with two

reservoirs. The) is a imagined volume, and it is assumed that no
electric-field line penetrates the surface(df

Doublg barrier

Reservoir(R)

=< | Reservoir(L)
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x
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WHxy) = (€4 + 515,67 pM(y) for x<— L= Lo,

1)
functions and scattering matrix. The internal potential, gov- .
ermed by a 3D Poisson equation, is assumed to be 1D. That  VR(X,y) =S, € %¢"(y) for x>Leo+Lle, (2
means, it is only a function of the distance in the longitudinal W ) .
direction. So we can integrate the Poisson equation over th&here#;"(y) are the transverse eigenfunctions of the reser-
transverse direction and the equation will involve the vari-voirs, ki=[2m*E/%—(1m/W)?]¥? are the wave numbers
able cross-sectional arédue to the different cross-sectional defined in thex direction,m* is the effective mass of elec-

areas of the contacts and wjire trons, andE is the energy of the electron. In the transition
regions between 1D and 2D portions, we plot vertical lines to
Il. MODEL AND THEORY divide the regions into a series of narrow layéssee Fig. L
In the narrow layers labeled by=1,2,3 . . ., thewave func-

The model of the double barrier with reservoirs that wetions can be expressed as
consider in this paper is a two-dimensional—one-
dimensional—two-dimensional systefsee Fig. 1 In the . (W) N0 :
. ; . — ky, —ik, (i)
center of this system is a conductor of double-barrier struc- ‘I’f')(x,y)—z [A€ >+ Be X80 (y),  (3)
ture. We assume that the width of the system as a function of :

x is where ¢|(i,)(y) are the transverse eigenfunctions in layer
—a 2(x+ Lgp) k{=[2m* E/f — (17/W;)?]*% and W, is the width of the
w(x)=a+ 5 tanh — -0 +1| for x<0, layeri. In this paper, it is assumed that the width variation in
¢ the transition regions is so slow that we can ignore the state
W-a 2(x— L) hopping as the wave functions propagate through the layers,
wx)=a+— an!‘( - c0 )+1 for x>0. and then Eq(3) simplifies as
Cc
Here,a and W are the widths of 1D portion and reservoirs T (x,y)=(ADek ™+ BDe~ k%) p)(y). (4)

(2D), respectivelyL . describes the size of the transition re- o ) _

gions between the reservoirs and 1D portion, ahg,2is N the 1D portion(i.e., the double barrier together with the
equal to the distance between the centers of the left and righgft and right leads the wave functions may be expressed as
transition regions. Furthermore, we ubefor the barrier

; , > . N0 0!

width and Z for the well width. We will investigate the Wl(x,y)= (A" ¥+ BVe ki) Il (y), (5)
linear response of the system to a time-dependent external ) )
voltage. When the voltage is applied to the two reservoirswherel =1, ... 5represent the regions of two barriers, well,

besides the process in which electrons are injected into thend the two 1D leads, respectively’(y) are the trans-
1D transverse channels and then undergo scattering by tiwerse eigenfunctions of electrons in the 1D portion,
contacts and double barrier, we have to consider the pile-ub,x=[2m*(E—U.)/h—(Iw/a)z]l’z, and U, is the double-
charge and the induced internal electrostatic potential in thbarrier potential:
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[Uo in the barriers, IIl. INTERNAL POTENTIAL AND CHARGE DENSITY
|

0 otherwise. We first calculate the internal potentia),(x) by numeri-
cally solving the Poisson equati@f0), and then obtain the

Using continuity of ¥, and #¥,/dx at the boundaries be- induced charge distribution. To solve E40) for u,(x), we
tween neighboring layers, we determine the wave functiongieed the boundary values vf(x). Here we use the neutral-

of the electrons in the system, and then the injectiVity ity condition* to determine the boundary values @f(x):
dn.(x) _ —of 1 2 dn,(x.) / dn(x.)
4E —Z de(f)fdyh—mWh(X,yﬂ , (6 Ua(X0) = —5E T
wherev, =7#k{/m* is the incident velocity of the electrons in dn,(xg) / dn(xg)
the direction of transportq axis). Furthermore, for our sym- Ua(XR) = —(E JE (13)

metrical system,
where x, and xg are left and right boundary lines of the

dng(x) dn_(—x) regionQ) (see Fig. 1, which is a volum& ~8that is so large

dE =~ dE () that electric-field lines through the surface of it vanish, i.e.,
the electric field is completely screened within the volume. If
and the LDOS is then given by the reservoirs are very largthe widthW is very large, then
from Eq.(11) we conclude that the boundary valuegx, )
dn(x) dng(x) dngr(x) X[us(xg)] andu (xg)[Ux(x,.)] are very close to unity and
dE _ dE dE 8 zero, respectively. In our case, the boundary values are close

to unity or zero. When our system is biased by a small volt-
Meanwhile, the scattering matricesg, ands,, are given by age 6V (applied to reservoiw), the distribution of charge
Egs. (1) and (2). In the presence of a small and low- density in{) is given by 8q(x) = p(x) 8V, where
frequency ac voltage,. applied to the reservoi (a=1 or

L for the left reservoir and=2 or R for the right reservoir, dq(x) d?u (x)
the internal potentialJ(x) is given by U(X)=uU,(X)vac, p(X)= gy~ €0AX) 5
whereu, is the characteristic function. Using the Thomas- dx
Fermi approximation, the characteristic functiop satisfies dn,(x) dn(x)
the Poisson equatioff:*® =e? GE~ gE Y| (12
2 2
vy + € dn(r) _< dng(r) a=12. (9) In Fig. 2, we present the distribution of internal potential
“ gy dE ¢ go dE ' u=u,(x) and charge density(x) for various Fermi levels

. o (=pL=png) at temperaturelr =0. As is aforementioned,
Under the Thomas-Fermi approximation, the second term Ilé:e useA =h2/8m* a2, the energy of the transverse ground

Eq. (9) gives the induced charges in the conductor and thg,ia in the 1D leads as a unit of energy, and the wact

third term gives clearly the injected charges. As has beefyo |0ads as a unit of distance. In our calculation, we set
pointed out by Bttiker and Christer; The Thomas-Fermi a=50 nm,d=a/2 (the thickness of our systém and

approximation is not well justified and permits us to obtainX
an estimate only. In this paper, we do not attempt to make a-
very accurate calculation, and our interest is to present a
gualitative estimate for the potential and charge distributions
In Eq. (9) we have neglected the variation of the potential
with y andz, and assume that the characteristic function is
function of x only. This assumption is reasonable, becau
the variation of potential, in fact, is induced by electroche
cal potential differencéu (or external voltageSV) between
the left and the right sides. We obtain the following equation
by integrating overy and z and usingfdydZ¢(z,y)|?=1

(for convenience of presentation, we only mentioned abou
the coordinatey in the above discussign

R .
Figure Z2a) shows the results for=1.805, which corre-
ponds to the resonant case where the Fermi level equals the
resonant energy of the double-barrier structure, and for an
open channel the transmission probability equals unity. In
&his case, one finds that the potential drops mainly appear in
S&he transition regions between the 1D and 2D portions, and
ml'basically there is no potential drop across the double barrier
although we find some oscillations in the potential in the 1D
leads. Furthermore, for the resonant case, the charge density
shows intensive fluctuations around zero beyond the double
Barrier, while inside the double barrier there is almost no
charge accumulation. This reflects the effect of contacts on
the distributions of potential and charge density. We know

d?u,(x) e’ dn(x) et dny(x) that the injected electron density is proportional to the square

- dx2 +£0A(X) dE Ua(X)= goA(X) dE of the amplitude of the electron wave function which is os-
(10) cillating along thex direction. Thus, the distribution of the
injected electron density consists of alternative layers of

where A(x)=dXw(x) is the cross-sectional area of the more negative charges and less negative charges. This would
double-barrier structure] is the thickness of the system. be the total charge-density distribution should there be no
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trons can penetrate completely through the barrier, and the
charges driven by the voltage neither stay around nor inside
the conductor. And so, no potential drop is caused. In this
case, the scattering of electrons is completely due to the non-
uniform cross section in the transition regions, and this scat-
tering results in the potential drops and charge accumulation
in the transition regions. In our previous wéfkhat was
about a 1D double-barrier structure without contacts, the po-
tential drop in the resonant case was almost Zeeo char-
acteristic functionu(x) was constant : 1/2], and there is al-
most no charge accumulation throughout the system. We
would like to remark that for the near resonance désat is,
large transmission probability but not equal to pribe dis-
tributions of internal potential as well as charge density are
similar to that of the resonant case. In Figb)2 we present
the results for the case of small transmission probability (
=1.802). From the curve gf(x), one finds that there is a
considerable amount of charge distribution around the barrier
regions as well as in the well region, but away from the
double barrier in the leads and in the reservoirs there is no
charge accumulation. In this case, the charges driven to the
other side of the conductor penetrate through the double bar-
rier with a small transmission probability. Thus, most of the
charge carriers are reflected back into the 1D leads and res-
ervoir. We then expect that there is no charge accumulation
beyond the double barrier and hence the internal potential
u(x) should be constant<1) beyond the double barrier
(even in the transition regiopjsas shown in Fig. @).The
potential drop mainly happens within the double barrier, and
the charges are distributed around and within the conductor.
In Fig. 2(c), we show the result for the case where chemical
potential w=1.7) is far from the resonant energyE (
=1.805) and for all channels the transmission probability is
almost zero. The results in this case are qualitatively in
agreement with that for the double-barrier system without
contacts, where the characteristic functios1(0) on the
left (right) side of the double-barrier conductor, and the
curve ofu(x) is almost a straight line inside the conductor,
and so the charge accumulation is nonzero only just beyond
the two barriers. It is worth emphasizing that our results for
the system with wide contacts show that the characteristic
function tends to 1 (0) on the leftight) side the double-
barrier conductor for both resonant and nonresonant cases.
This fulfills the requirement of Bitiker’s theory™*

IV. CAPACITANCE AND LOW-FREQUENCY
ADMITTANCE

Having studied the distributions of internal potential and

FIG. 2. Distributions of internal potential and charge density for charge density that reveals certain information of the system
(@) ©=1.805, (b) »=1.802, andc) u=1.7. Other parameters are under investigation, next we will study the capacitance and

d=0.5,L.=4, L;,,=7.5,b=0.5,c=1, andW=20. The energy is
in unit of the transverse ground-state enefgyf 1D leads, and

length in unit of 1D portion widtha (=50 nm).

coulomb interaction between the charges. In the presence
coulomb interaction, the more negatively charged layers in-
duce positive charges in the neighboring less negatively
charged layers. Hence, the intensive fluctuations in the
charge density are expected. In the resonant case, the elec-

ac conductance, which may present a result that is capable of
being directly verified with the experimental data. According
to Eq. (12), when a small voltagéV is applied to the left

<?servoir @=1), the total charge accumulated in the left
alf portion of Q) is given by

Q= fXXOLéq(x)dx,
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and then the capacitance of the double-barrier system can b
defined as

c oQ fXOL()d
=—= x)dx
PVARN M

XoL
XL

wherexg, is the position of center of the left barrier. As in
the well-known Coulomb blockde model for junction arrays,
where one junctioribarrie corresponds to one capacitance,
we regard the double-barrier system as two capacitors in se
ries. It should be point out that it is difficult to give a precise
definition of the capacitance for our system because oul
model is a continuous one, and generally the charge distri-
bution shows an extensive fluctuation around zero. In the
case of Figs. @) and Zc), the system can be regarded as a

dna(x) _ dn(x) u,(x) [dx, (13 Y

dE dE
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single capacitor, but in the case of Figbgit would be
invalid to regard it in this way.
With the information of partial density of stat¢BDOS,

injectivities, and internal potentials, we can calculate the ad- o ]

mittance for low frequencié$ 6

gaﬁ(w):gaﬁ(o)_iwezEaﬁ! (14)

where w is the frequency of the ac biag,z(0) is the dc
conductance, and

dN dn,(x)
—e2 B2 a
E.p=¢€ dE efdx dE Uug(x) (15

is the emittance. In the first term of E(L5),

dE  4mi gE | '

4
o dsc,,g,_d:saﬁS
“f dE  dE T*F

(16)

are the partial densities of states, and may be interpreted as

the carrier density of states in volunfg, corresponding to
those carriers injected from reservghr and going out of

reservoira. It should be noticed that E16) is exact only

when Q is infinite (|x_|—=).23 For the finite-size system,
PDOS can be defined 4s®

dN -1 —of ds,, ds
ap_ 1 + USep USap
dE 4 dE( JE )Tr SeFqu ~ du @A)
17
where
ds XR OS,
af o B
qu —LL 5U(x)dx' (18
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FIG. 3. The plots of emittanc&) and capacitancé) as func-
tions of chemical potentigk, around the resonant energy. The other
parameters are the same as in Fig. 2. The energy and length units
are taken as above.

electron “energy” asE’and E in and out of the region},
respectively, and ged,;(E,E’). We then have

dSaﬁ_ JXR 550,5 - dSaﬁ(E,U)

du ), 800 T T du U=
_ dss(EE) 9
e |,

In Figs. 3a) and 3b), we present the capacitanGeand
diagonal emittanc&,, respectively, as functions of chemi-
cal potential around the resonant energy. The diagonal emit-
tance is always positivéshowing a capacitive behavjor
when chemical potentigk is not too close to the resonant
energy, but when the chemical potential is closgdp ex-
actly equal to the resonant energy, the emittance is negative
and gives a very great negative pgakowing an inductive

ds,z/dU can be calculated as the following. In the consid-behavioy. This is qualitatively in agreement with the discrete

ered regiorn(}, introducing a constant potentidl, we repeat

model results obtained by Rre et al'” and with our previ-

the above process of calculating the wave functions, and getus results(continuous modef? for the case without con-

the scattering matrig, z(E,U). Alternatively, we can set the

tacts. Figure @) shows the capacitance around the reso-
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' ' ' ' when the system approaches to the resonance both the emit-
tance and capacitance increase. The increase of emittance is
much more rapid, and the difference of them is enlarged
rapidly. Moreover, the capacitance reachs a peahich is
wider as compared to the resonant peaken the chemical
potential is about 1.8, and there is another wide peak in the
capacitance at symmetrical position jo=1.8 about the

] ] sharp resonant peak. We would like to point out that in the
0osd "™ case without contacts, two similar peaks of the capacitance
occur at the same positions as the posits@pacitive peaks

of the emittance. It is clear from Fig. 4 that the presence of
contacts changes the location of these two peaks of the ca-

T T . T pacitance.
1.70 1.72 1.74 1.76 1.78 1.80

0.14 <
4 oovel

0.124
0.0016 |

0.104
00014

008 oomz|

EC

006 oconof

0.02 4

0.00 <

FIG. 4. The plots of emittance and capacitance as functions of V. CONCLUSION
chemical potential, which start from far away from the resonant ) ) )
energy. The other parameters are the same as in Fig. 2, and the In conclusion, by employing the scattering theory devel-
energy and length units are taken as above. Inset: the plot of cgped by Bitiker et al, we have studied the dynamical re-
pacitance that displays a peak at abgve 1.80. sponse of the double-barrier system, in which the 1D double
barrier and two 2D reservoirs are included. We have pre-
o . ~sented the calculation of various physical quantities such as
nance. From this figure, we find that when the chemicalne gjstributions of internal potential and charge density, ca-
potential approaches to the resonant energy, the capacitanggcitance, and low-frequency ac conductance. The results of
decreases first, and then increases sharply making a shaip, jnternal potential and the charge density show that the

peak at the resonant energy. This is very d|fferent. ”OT“ th‘i’nduced charge density has an antisymmetric distribution
case without contacts where the charge accumulation is van-

O rofile about the well center, and the characteristic potentials
ishingly small at the resonance. Moreover, our results sho Would tend to unity(zerd deep in the reservoirs. When the
that the amplitude of the emittance around the resonant en- P )

ergy is much greater than the capacitance, and at the resgystem is far away from resonance, although some quantum

nance the capacitance has a peak while the emittance mak%lgannels are open, the transmission probability is very small.

a great negative peak. In this case, the.antisy.mmetric charge distribution exi§ts only
We believe that this peak originates from the contact efaround the barrier regions as a response to the applied volt-
fect, and a plausible explanation can be presented as follow89€, and hence the contacts almost have no effect on the
When the Fermi level is right at the resonant energy, théesults. For the case of small transmission probability, we
behavior of this system is similar to the case of a quantuniound a considerable amount of charge accumulation around
wire (QW) with contacts, and with one channel open. Ac- the conductor, but there is almost no potential drop outside it.
cording to the previous work with the increasing Fermi As for the cases of resonance or near resonanitk a large
level, a quasiplateau of capacitance would appear after origansmission probability for an open channehere is no
channel is open. Here, in our case, the resonant energy 1.8@85arge accumulation inside the double-barrier conductor.
is at the front part of the plateau, so the capacitance shouldowever, there are intensive fluctuations of the charge den-
be quite large. On the other hand, when the Fermi levesity in the transition regions between the contd@®) and
moves away a little bit from the resonant energy, the potenthe double barrief1D). In this case, the effect of contacts on
tial drop around the barriers will rapidly increase because theéne charge and potential distributions is considerable. It is
resonant width is very narrow. Meanwhile, the potentialfound from the calculation of ac conductance that qualita-
variation in the transition region is greatly reduced and betive|y the presence of contacts does not Change the main
comes very small, hence the charge accumulation in the rgeatures of the emittance without contacts, i.e., the negative
gion vanishes rapidly, resulting in a drop of capacitance angeak(inductive behaviorand the positive peakgapacitive
therefore, the formation of such a peak. We conclude that thgehavioy. However, the effect of contacts on the capacitance
behavior of capacitance is very different as compared to thgs significant when the chemical potential is very close to the
case without contacts: a Sharp peak occurs at the resonafétsonant energy: Causing a Capacitance peak at the reso-
energy. However, the feature of negative pealegf (in the  nance. This peak is clearly due to the charge accumulation in

case without contactss unchanged in the presence of con- the transition regions between the 1D and 2D portions.
tacts.

In Fig. 4, we present the capacitan€éu) and emittance
Eqi(w), starting with the chemical potential far away from ACKNOWLEDGMENTS
the resonant energy. One can find that the emittance and
capacitance tend to same values when the chemical potential The work was partially supported by the postdoctoral pro-
is far away from the resonant energy, this is expected, bugram(G-YW68) of The Hong Kong Polytechnic University.
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