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Dynamic response of a quantum wire structure
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We present an investigation of the dynamical response for a quantum wire structure with reservoirs. The
capacitance, admittance, and the distribution of internal potential and charge density are calculated. Our
numerical calculation for internal potential and charge density shows that the induced charge density is mainly
distributed in transition regions between the reservoirs and the wire, and that once any quantum channel opens,
the potential drop is very sharp and occurs in the transition regions. Small Friedel oscillations in the charge
density as well as charge peaks are observed. We show in our model that in the reservoirs the characteristic
potentials tend to unity or zero. The results of capacitance and emittance show the resonant peaks due to the
opening of an additional channel, and the oscillations are related to the longitudinal states of the quantum wire.
For capacitance, a steplike behavior appears as the number of open channels increase, but for emittance such
steplike structure is not observed. Furthermore, we found that the emittance curves may lie either below or
above capacitance, so the charge transmission may give positive or negative contributions to the emittance.
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I. INTRODUCTION

The transport properties of ballistic quantum syste
have been extensively studied since the early 1980s. A t
cal system, the one-dimensional~1D! ballistic quantum wire
~QW! connected to wide reservoirs, has attracted intens
research interest, both experimentally and theoretically,
cause of its fundamental importance and potential microe
tronic applications. Studies of the dc and ac conductanc
this structure have been frequently reported in the literat
An important issue is the effect of the Coulomb interacti
between electrons on the conductance in the system. Fo
dc case, the commonly used Luttinger liquid model1–6 for
interacting electrons gives the renormalization of the cond
tance quantum obtained in noninteracting Fermi liquids, a
the model could explain some experimental results. Thus,
Coulomb interaction makes a quantitative correction to
conductance of the system. For the time-dependent c
however, the interaction plays a key role in ensuring
charge~current! conservation and the gauge invariance un
a potential shift.7–10 Büttiker et al. have discussed this poin
extensively and formulated the theory of ac conductance
the linear response and low-frequency regime including
effects of charging, in the both frameworks of continuo
and discrete internal potential models.8–10 The effect of the
interaction on the ac conductance of a QW with reservo
was studied in Ref. 11 by using the random phase appr
mation. The internal potential and electron-density distrib
tion in the system were investigated in Ref. 12 based on
Hartree-Fock approximation. Using the bosonization te
nique, Sablikov and Shchamkhalova5 also studied ac electro
transport in a QW with Coulomb interaction, and give t
distribution of internal potential and electron density. F
thermore, the ac response in QW’s of infinite length has b
studied.13,14 To our knowledge, however, the distribution
potential and charge density in the transition regions betw
the QW and the reservoirs has not been studied qualitativ
For the ballistic wire systems the variation of the potentia
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such regions is very important and would give rise to a do
nant charge distribution of the systems. In fact, the result
Ref. 12 indicated that in the QW the potential drop a
charge mainly appear near the contacts. In this paper
follow the scattering theory developed by Bu¨ttiker et al. to
study the dynamical response of the QW system to a tim
dependent voltage. We calculate the internal potential
charge density in the ballistic system including the transit
regions, and present the results of capacitance and emitta

II. MODEL AND FORMULA

The model that we consider in this paper is a 2D-1D-
system~see Fig. 1!, which includes a narrow ballistic chan
nel, i.e., QW~C: uxu,d and uyu,a/2), and two wide 2D
electron reservoirs, i.e. the left (L: x,2d and uyu,W/2)
and right (R: x.d and uyu,W/2) contacts. We will investi-
gate the linear response of the system to a time-depen
external voltage. When voltage is applied to the reservo
besides the scattering processes for electrons in the

FIG. 1. Schematic view of a quantum ballistic wire structu
with two reservoirs.V is a hypothetical volume, and it is assume
that no electric field lines penetrate the surface ofV.
©2002 The American Physical Society15-1
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1D-2D system, we have to consider the piled-up charge
the induced internal electrostatic potential in the syste
which affect the transport of the electrons. To proceed,
imagine a volumeV ~the dashed-line box in Fig. 1! that
encloses the entire QW and parts of the reservoirs an
large enough to include all the electric field lines and char
of the system.

A. Internal potential and charge density

In the scattering theory of quantum transport for mes
copic conductors developed by Bu¨ttiker et al., the local par-
tial density of states~LPDOS! and injectivities are two very
important concepts. The LPDOS originates from the d
placement current, which is the response of the long-ra
Coulomb interaction to ac perturbations, and is given by

dnab~r !

dE
5

21

4p i E dES 2] f

]E DTrFsab
† dsab

dU~r !
2

dsab
†

dU~r !
sabG ,

~1!

wherea, b are the reservoir indices~herea51 or L for the
left reservoir, anda52 or R for the right reservoir! andsab
are the scattering matrices. With the LPDOS the injectivit
are defined by

dna~r !

dE
5(

b

dnba~r !

dE
. ~2!

The injectivity describes the carrier density of states incid
in the reservoira regardless of which reservoir it exits.9 This
is justified by the following formula ofdna(x)/dE derived
by Gasperianet al.:15

dna~r !

dE
5E dES 2] f

]E D 1

hva
uc~r !u2, ~3!

where va is the incident velocity of the carriers into th
reservoir a, and c(r ) the corresponding incoming wav
function.

In order to calculate the dynamical response of the Q
system, based on the theory of Bu¨ttiker et al., we have to
calculate the injectivities,dna(r )/dE, and local density of
states ~LDOS!, dn(r )/dE5(adna(r )/dE.8,9,15,16 Because
our interest is electron transport and the distribution of
tential and charge density along thex axis, we need to inte-
grate the injectivities and the density of states over the tra
verse direction ~i.e., the y direction!: dna(x)/dE
5*@dna(r )/dE#dy and dn(x)/dE5*@dn(r )/dE#dy. We
first calculate the electron wave functions incident from
left, using the mode-matching approach.17 In the left ~L! and
right ~R! reservoirs the wave functions can be read as

C l
L~x,y!5(

l 8
$d l 8 le

ikl
xx1S11,l 8 le

2 ik
l 8
x

x%f l 8
W

~y! for x,2d,

~4!

C l
R~x,y!5(

l 8
S21,l 8 le

ik
l 8
x

xf l 8
W

~y! for x.d, ~5!
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wheref l 8
W(y) are the transverse eigenfunctions in the res

voirs, kl
x5@2m* E/\2( lp/W)2#1/2 the incident wave vec-

tors in thex direction, m* the effective mass of electrons
andE the incident energy of the electron. The sum in Eq.~ 4!
is taken over all transverse componentsl 8, andkl 8

x in Eq. ~4!
can be either real or imaginary, i.e., evanescent waves
included. In the QW, the wave functions may be expresse

C l
C~x,y!5(

m
@Amle

ikm
x x1Bmle

2 ikm
x x#fm

C~y!, ~6!

wherefm
C(y) are the transverse eigenfunctions of electro

in the QW, km
x 5@2m* E/\2(mp/a)2#1/2, and the sum is

again taken over all channelsm including all evanescent an
transport wave functions.

The continuity ofC l and]C l /]x at x52d andd yields

(
n

@~Tmn1kn
xdmn!e

2 ikn
xdAnl1~Tmn2kn

xdmn!e
ikn

xdBnl#,

~7!

(
n

@~Tmn2kn
xdmn!e

ikn
xdAnl1~Tmn1kn

xdmn!e
2 ikn

xdBnl#,

~8!

and

S11,l 8 l52d l 8 le
2 i (k

l 8
x

1kl
x)d1(

n
Ml 8n~Amle

2 i (km
x

1k
l 8
x

)d

1Bmle
i (km

x
2k

l 8
x

)d!, ~9!

S21,l 8 l5(
n

Ml 8n~Amle
i (km

x
2k

l 8
x

)d1Bmle
2 i (km

x
1k

l 8
x

)d!,

~10!

where Ml 8n5*@f l 8
W(y)#* fn

C(y)dy and Tmn

5( l 8kl 8
x (Ml 8m)* Ml 8n . Furthermore, the elements of th

scattering matrix can be obtained by the following formu

sab,l 8 l~E!5S v l 8
v l

D 1/2

Ssb,l 8 l~E!

for values of l 8 that give real kl 8
x , ~11!

where v l5\kl
x/m* (v l 85\kl 8

x /m* ) is the incident~emer-
gent! velocity of the electrons in the direction of transportx
axis!. Combining Eqs.~4!–~11!, we obtain first the wave
function of the electrons in the system, and then
injectivity15

dnL~x!

dE
5(

l
E dES 2] f

]E D E dy
1

hv l
uc l~x,y!u2. ~12!

For our symmetrical system,

dnR~x!

dE
5

dnL~2x!

dE
. ~13!

The LDOS is then given by
5-2
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dn~x!

dE
5

dnL~x!

dE
1

dnR~x!

dE
. ~14!

In the presence of a small and low-frequency ac voltagevac
applied to the reservoira (a51 or 2!, the internal potential
U(x) is given byU(x)5ua(x)vac, whereua is called the
characteristic function. Using the Thomas-Fermi approxim
tion, the characteristic potential functionua is governed by
the Poisson equation:9,16

2¹2ua1
e2

«0

dn~r !

dE
ua~x!5

e2

«0

dna~r !

dE
, a51,2.

~15!

Under the Thomas-Fermi approximation the second term
Eq. ~15! is the induced charges in the conductor and the th
term is clearly the injected charges. Here we neglect
variation of the potential in the transverse direction, and
sume that the characteristic function is a function ofx only.
We obtain the following equation by integrating over t
transverse direction:

2
d2ua~x!

dx2
1

e2

«0A~x!

dn~x!

dE
ua~x!5

e2

«0A~x!

dna~x!

dE
~16!

where A(x) represents the cross-sectional area of the Q
and reservoirs. In the QWA5ab, and in the reservoirsA
5Wb, whereb is the thickness of the QW structure.

To solve Eq.~16! for ua(x), we need the boundary value
of ua(x). Here we use the neutrality condition18 to determine
the boundary values ofua(x):

ua~xL!5
dna~xL!

dE Y dn~xL!

dE
,

ua~xR!5
dna~xR!

dE Y dn~xR!

dE
, ~17!

where xL and xR are left and right boundary lines of th
regionV ~see Fig. 1!, which is a hypothetical volume8–10,19

and is so large that electric field lines through the surface
it vanish, i.e., the electric field is completely screened wit
the volume. If the reservoir is very large~the width W is
infinite!, we can see from Eq.~17! that the characteristic
potentialsu1(xL) @u2(xR)# and u1(xR) @u2(xL)# are unity
and zero, respectively. In our case, they are close to unit
zero. From Eq.~16!, we know that when the system is bias
by a small voltagedV applied to reservoira, the distribution
of the charge density inV is given bydq(x)5r(x)dV, and

r~x!5
dq~x!

dV
52«0A~x!

d2ua~x!

dx2

5e2Fdna~x!

dE
2

dn~x!

dE
ua~x!G . ~18!
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B. Capacitance and low-frequency admittance

According to Eq.~18!, when a small voltagedV is applied
to the left reservoir the total charge in the left half portion
V is given by

dQ5E
xL

0

dq~x!dx,

FIG. 2. Distribution of internal potential and charge density f
~a! m50.1, ~b! m52.2, and~c! m59.5. Other parameters areb
50.5, d52, and W550. The energy is in units of the groun
energyD, and length in units of the QW lengtha ~550 nm!.
5-3
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FIG. 3. The plots of emittance and capacitance as functions of chemical potentialm, for QW length~a! 2d52, ~b! 2d54, and~c!
2d50.6. ~d! is a replotting of the capacitance in~a! and ~b!. The other parameters areb50.5 andW520. The energy is in units of the
ground energyD, and length in units of QW lengtha ~550 nm!.
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and then the capacitance of the QW system can be calcu
by the following:

C5
dQ

dV
5E

xL

0

r~x!dx5e2E
xL

0 FdnL~x!

dE
2

dn~x!

dE
uL~x!Gdx.

~19!

With the quantities of the partial density of states~PDOS!,
injectivities, and internal potentials obtained, we can cal
late the admittance for low frequencies:8–10,19

gab~v!5gab~0!2 ive2Eab , ~20!

wherev is the frequency of the ac bias,gab(0) the dc con-
ductance, and

Eab5e2
dNab

dE
2e2E dx

dna~x!

dE
ub~x! ~21!

is the emittance. In the first term of Eq.~21!,

dNab

dE
5

1

4p i E dES 2] f

]E DTrFsab
† dsab

dE
2

dsab
†

dE
sabG

~22!
23531
ted

-

are the partial densities of states, and may be interprete
the carrier density of states in volumeV, which consists of
those carriers injected from reservoirb and emerging from
reservoira. Equation~22! is exact only whenV is infinite,
i.e., uxLu⇀`.20 For the finite-size system, PDOS can be d
fined as8–10,19

dNab

dE
5E

xL

xRdnab~x!

dE
dx, ~23!

where

dnab~x!

dE
5

21

4p i E dES 2] f

]E DTrFsab
† dsab

dU~x!
2

dsab
†

dU~x!
sabG

~24!

are the one-dimensional LPDOS.dsab /dU(x) is the func-
tional derivative ofsab„E,U(x)…, and in our case it is taken
around U(x)50. Equations~23! and ~24! indicate that
dsab /dE in the PDOS ~22! should be replaced by
2dsab /dU52*xL

xR@dsab /dU(x)#dx. We can calculate

dsab /dU as follows. In the considered regionV, introduc-
ing a constant potentialU, we repeat the above process
calculating wave functions, and get the scattering ma
5-4
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sab(E,U). Alternatively, we can set the electron ‘‘energy’’ a
E8and E in and out of the regionV, respectively, and ge
sab(E,E8). We then have

2
dsab

dU
52E

xL

xR dsab

dU~x!
dx52

dsab~E,U !

dU U
U50

5
dsab~E,E8!

dE8
U

E85E

. ~25!

III. NUMERICAL RESULTS

In this section, we first study the internal potentialu(x)
and the charge densityr(x) with various Fermi levelsm
(5mL5mR) for temperaturesT50, and then present th
numerical results of ac conductance and capacitance
aforementioned we useD5h2/8m* a2, the transverse groun
state energy of the QW, as the unit of energy, and the Q
width a as the unit of distance. To solve the Poisson equa
~16!, we seta550 nm, and the thickness of the QW stru
ture b5a/2. In our calculation, we takexL52xR .

In Fig. 2 we present plots ofuL(x) and r(x) for Fermi
energiesm50.1 @Fig. 2~a!#, 2.2 @Fig. 2~b!#, andm59.5 @Fig.
2~c!#. Figure 2~a! corresponds to the case in which the Fer
energy is smaller than the transverse ground energy (D) of
the QW. In this case, the transverse ground state energy p
the role of a potential barrier for the incident electrons,
what we see is the behavior of single barrier tunneling, a
the QW system is a barrier capacitor. The shape ofu(x) is a
smooth curve and almost linear inside the QW, and the
tential drop is uniform between the two ends ofV. In the
case ofm.D, however, Figs. 2~b! and 2~c! show that the
abrupt drops in the potential appear within the transition
gions between the QW and the reservoirs. For all cur
@Fig. 2~a!, 2~b!, and 2~c!#, we see thatu(x)'1(0) on theleft
~right! side of the considered volumeV, and that the charge
distribution r(x) is considerable only around the left an
right ends of the QW and otherwise almost zero. It is notic
that in the QW the charge distribution is almost zero, but
variation of the internal potential does not vanish@see Figs.
2~a! and 2~b!#. It is not surprising: this is because the on
dimensional charge distribution is given by integrating ov
the cross-sectional area of the system, and the cross-sec
area of contact is much larger than that of the QW. In ad
tion to the two peaks of charge distribution on the two sid
of the QW, the Friedel oscillations in the charge densities
also observed in the reservoir and the QW, but much sma
than the charge peaks.

While the distribution of the internal potential and char
density reveals information about the system under inve
gation, the capacitance and ac conductance of the QW de
may present a result that is directly capable of being veri
with experimental data. Below we calculate the capacita
and emittance at zero temperature using Eqs.~19! and ~21!.
In Fig. 3 we present the capacitanceC and diagonal emit-
tanceE11 as functions of the chemical potential, for the Q
length 2d52 @Fig. 2~a!# 4 @Fig. 2~b!# and contact widthW
520, where the chemical potential is parametrized byj
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5(m/D)1/2. The emittance shows a positive and a negat
resonant peak around the integral values ofj, which corre-
sponds to the stepjump of the dc conductance of the Q
structures and is caused by the opening of additional qu
tum channels in the QW. This is a resonance related to
transverse energy levels of the QW. In addition to th
resonance there is another type of resonance relate
the longitudinal motion of electrons in the QW. Th
emittance and capacitance are oscillatory between the
neighboring resonances, corresponding to the opening
the next higher channel, and the strength and frequenc
oscillation increase with the increase of chemical poten
and the QW length. This oscillation is caused by longitudin
resonant electron states that occur when the length
the QW is approximately equal to integer multiples
half longitudinal Fermi wavelength,17 i.e., 2d'klF/2
5 1

2 kh/A2m* (m2n2D) (k51,2,3, . . . ; n51,2,3, . . . ).
Furthermore, to get a clearer view, we plot the two capa
tance curves of Figs. 3~a! and 3~b! in Fig. 3~d!, where the

FIG. 4. The plots of emittance and capacitance as function
QW length d for chemical potentialm51.1 and 1.8. The other
parameters are the same as in Fig. 3. The energy is in units o
ground energyD, the emittance and capacitance ine2/D, and
length in units of QW lengtha ~550 nm!.
5-5
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curve ford51 is offset vertically by 0.1 for a clearer com
parison. In this figure, a steplike behavior is shown as
number of open channels increase, and the oscillation
tween the steps appears clearly. For emittance curves
jump in value appears when the incident energym nears to
the next higher transverse energy levels as mentioned ab
but there is no steplike structure compared to capacita
curves. It is worth pointing out that in contrast to the resu
for a quantum point contact in Ref. 21, our results show t
the emittance curves do not always lies below the cap
tance curves, and when the Fermi energy is around and c
to a transverse energy level of the QW the emittance give
positive peak, and its value may be larger than the cap
tance. So, in this case, the charge transmission would gi
positive contribution to the emittance. In addition, this ph
nomena is QW-length dependent, and for a QW of very sh
length, unless the Fermi energy is close to and smaller t
the ground energyD, the emittance always lies below th
capacitance@see Fig. 3~c!#.

In order to exhibit the resonance related to the longitu

FIG. 5. The plots of emittance and capacitance as function
QW length d for chemical potentialm51.5 and 4.5. The othe
parameters are the same as in Fig. 3. The energy is in units o
ground energyD, the emittance and capacitance ine2/D, and
length in units of QW lengtha ~550 nm!.
23531
e
e-
he

ve,
ce
s
t
i-
se
a
i-
a

-
rt
an

i-

nal motion of electrons in the QW, more clearly, we pres
in Figs. 4–6 the emittance and capacitance as function
the QW lengthd. As mentioned above, longitudinal reso
nance appears when 2d'klF/2. In the figures both curves
of emittance and capacitance show a periodic oscillat
with d, and the period is about12 h@8m* (m2n2D)#21/2. So
we see that for the same value ofn the oscillation frequency
increases but the oscillation amplitude decreases with Fe
energy~see Fig. 4!. For different values ofn andm, as long
as the differencem2n2D is same, the oscillation frequenc
would be the same~see Fig. 5!. As for the case ofm,D, the
oscillation feature disappears~see Fig. 6!.

IV. CONCLUSION

In conclusion, by employing the scattering theory dev
oped by Bu¨ttiker et al. within a continuous model, we hav
studied the dynamical response of the QW system in wh
the QW and two-contact reservoirs are included. We h
presented the calculation of various physics quantities s
as the distribution of the internal potential and charge d
sity, capacitance, and low-frequency ac conductance. Our
merical calculation for the internal potential and charge d
sity shows that the induced charge density is mai
distributed in the transition regions between the reserv
and the wire and antisymmetric about the QW center.

In our model we showed that in large reservoirs the ch
acteristic potentials would tend to unity or zero. The pote
tial drop in the transition region is very sharp and it happe
when the Fermi energy is above the transverse ground s
energy. Friedel oscillations in the charge density are
served in the QW system as well as charge peaks. For
results of capacitance and emittance, we oberved reso
peaks due to the opening of the next higher quantum ch
nels and the oscillations related to the longitudinal reson
electron states of the QW. For the capacitance, steplike
havior appears as the number of open channels increase

of

he

FIG. 6. The plots of emittance and capacitance as function
QW lengthd for chemical potentialm50.8. The other parameter
are the same as in Fig. 3. The energy is in units of the gro
energyD, the emittance and capacitance ine2/D, and length in
units of QW lengtha ~550 nm!.
5-6
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the emittance curves do not have a steplike struct
Furthermore, we found that the emittance curves may
below or above capacitance curves, and when the Ferm
ergy is around and close to a transverse energy level of
QW the emittance shows a peak, and its value may be la
than the capacitance. So, we conclude that the charge t
,

e

.

23531
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mission may give positive or negative contributions to t
emittance.
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