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Dynamic response of a quantum wire structure
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We present an investigation of the dynamical response for a quantum wire structure with reservoirs. The
capacitance, admittance, and the distribution of internal potential and charge density are calculated. Our
numerical calculation for internal potential and charge density shows that the induced charge density is mainly
distributed in transition regions between the reservoirs and the wire, and that once any quantum channel opens,
the potential drop is very sharp and occurs in the transition regions. Small Friedel oscillations in the charge
density as well as charge peaks are observed. We show in our model that in the reservoirs the characteristic
potentials tend to unity or zero. The results of capacitance and emittance show the resonant peaks due to the
opening of an additional channel, and the oscillations are related to the longitudinal states of the quantum wire.
For capacitance, a steplike behavior appears as the number of open channels increase, but for emittance such
steplike structure is not observed. Furthermore, we found that the emittance curves may lie either below or
above capacitance, so the charge transmission may give positive or negative contributions to the emittance.
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[. INTRODUCTION such regions is very important and would give rise to a domi-
nant charge distribution of the systems. In fact, the results of
The transport properties of ballistic quantum systemdRef. 12 indicated that in the QW the potential drop and

have been extensively studied since the early 1980s. A typiharge mainly appear near the contacts. In this paper we
cal system, the one-dimensioraD) ballistic quantum wire ~ follow the scattering theory developed by tBker et al. to
(QW) connected to wide reservoirs, has attracted intensivétudy the dynamical response of the QW system to a time-
research interest, both experimentally and theoretically, bedependent voltage. We calculate the internal potential and
cause of its fundamental importance and potential microeleccharge density in the ballistic system including the transition
tronic applications. Studies of the dc and ac conductance d€dions, and present the results of capacitance and emittance.
this structure have been frequently reported in the literature.
An important issue is the effect of the Coulomb interaction
between electrons on the conductance in the system. For the
dc case, the commonly used Luttinger liquid mdd&ffor The model that we consider in this paper is a 2D-1D-2D
interacting electrons gives the renormalization of the conducsystem(see Fig. 1, which includes a narrow ballistic chan-
tance quantum obtained in noninteracting Fermi liquids, anchel, i.e., QW(C: |x|<d and |y|<a/2), and two wide 2D
the model could explain some experimental results. Thus, thelectron reservoirs, i.e. the left.( x<—d and |y|<W/2)
Coulomb interaction makes a quantitative correction to theand right R: x>d and|y|<W/2) contacts. We will investi-
conductance of the system. For the time-dependent casgate the linear response of the system to a time-dependent
however, the interaction plays a key role in ensuring theexternal voltage. When voltage is applied to the reservoirs,
charge(curren} conservation and the gauge invariance undebesides the scattering processes for electrons in the 2D-
a potential shift.~° Buttiker et al. have discussed this point
extensively and formulated the theory of ac conductance in AY
the linear response and low-frequency regime including the
effects of charging, in the both frameworks of continuous
and discrete internal potential mod&fs° The effect of the
interaction on the ac conductance of a QW with reservoirs
was studied in Ref. 11 by using the random phase approxi-
mation. The internal potential and electron-density distribu-
tion in the system were investigated in Ref. 12 based on the L
Hartree-Fock approximation. Using the bosonization tech-
nique, Sablikov and Shchamkhaldaiso studied ac electron
transport in a QW with Coulomb interaction, and give the
distribution of internal potential and electron density. Fur-
thermore, the ac response in QW'’s of infinite length has been —_— —
studied*®'* To our knowledge, however, the distribution of "~ -—--—-—---—-*
potential and charge density in the transition regions between FIG. 1. Schematic view of a quantum ballistic wire structure
the QW and the reservoirs has not been studied qualitativelyith two reservoirs() is a hypothetical volume, and it is assumed
For the ballistic wire systems the variation of the potential inthat no electric field lines penetrate the surfaceof

II. MODEL AND FORMULA
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1D-2D system, we have to consider the piled-up charge andhere ¢,)(y) are the transverse eigenfunctions in the reser-
the induced internal electrostatic potential in the systemygjrg kf=[2m*E/f— (1 w/W)?]¥2 the incident wave vec-

which affect the transport of the electrons. To proceed, W&ors in thex direction, m* the effective mass of electrons,

imagine a volume() (the dashed-line box in Fig.)lthat  4nqE the incident energy of the electron. The sum in E4).

encloses the entire QW and parts of the reservoirs and IS taken over all transverse componelﬁtsandkf‘, in Eq. (4)

large enough to include all the electric field lines and charges . . : i
of the system. Can be either real or imaginary, i.e., evanescent waves are

included. In the QW, the wave functions may be expressed as

A. Internal potential and charge density

_ VY =2 [An€mt Bre “mI45(y),  (6)
In the scattering theory of quantum transport for mesos- m

copic conductors developed by @iler et al, the local par- where ¢C(y) are the transverse eigenfunctions of electrons
tial density of statesLPDOS and injectivities are two very mtY 9

i X _ * _ 21172 H
important concepts. The LPDOS originates from the dis" the QW, kiy=[2m™E/% (n_w/a).] , and the sum is
placement current, which is the response of the Iong-rang@ga'n taken over all channetsincluding all evanescent and

; : : PR transport wave functions.
Coulomb interaction to ac perturbations, and is given b e .
P g y The continuity of¥#, anddV¥,/ox atx=—d andd yields

dnaﬁ(r) B -1 £ —of T + 55(13 5525 x X
dE 4w JE M| Sas ou(r) oU(r) Sap | ; [(Tmnt kéamn)e_lkndAnl"'(Tmn_ kﬁémn)elkndBnl]i
1
() @)
wherea, B are the reservoir indicedderea=1 orL for the
left reservoir, andv=2 or R for the right reservoirands,, g T kS )ekdA  + (T 4K 5. e kndp
are the scattering matrices. With the LPDOS the injectivities ; [T~ KnOmn) €50 Ani+ (Tran* Kndmn) € 0B
are defined by (8)
dny(r) < dng(r) and
dE ~2 dE @ » x
b Slljr|:_5|r|e_i(kl’+k|)d+2 M|rn(Am|e_i(km+kl’)d
The injectivity describes the carrier density of states incident .
in the reservoii regardless of which reservoir it exitd his N Bm|ei(k?n*"|xf)d), ©)

is justified by the following formula ofin,(x)/dE derived
by Gasperiaret al:*®

=S My (A e )
dna(r)_f - _s\ 1 i ; Spay1 ; 1'n(Ami mi )
dE - —E EW/(FH , 3) (10)

— W * 4C
where v, is the incident velocity of the carriers into the wherex M"*“_f[‘b"(y)] $n(y)dy and Tmn
reservoir &, and ¢(r) the corresponding incoming wave = >1K,(Mi/m)*M,/,. Furthermore, the elements of the

function. scattering matrix can be obtained by the following formula:
In order to calculate the dynamical response of the QW 12
system, based on the theory of tBker et al, we have to b
T ; Sap.11(E) Sop,i1(E)
calculate the injectivitiesgdn,(r)/dE, and local density of ' ’

states (LDOS), dn(r)/dE=3 ,dn,(r)/dE.8%1%1® Because

our interest is electron transport and the distribution of po-
tential and charge density along thads, we need (o inte- _where y, ~fkfjm* (o, =Akj/m*) is the incident(emer-
3;?52 %i'gitcio'x' |(?sean thee yenzliri:(?tis r;'l es d(rjww(a;) /deEransg—enb velocity of the electrons in the direction of transport (

B - axis). Combining Egs.(4)—(11), we obtain first the wave
Tf[dna(r)/dE]dy and dn(x)/dE—f[FIn(r)_/dI_E]dy. we function of the electrons in the system, and then the
first calculate the electron wave functions incident from theinjectivity15
left, using the mode-matching approddhn the left(L) and

right (R) reservoirs the wave functions can be read as dn,(X)

—of 1
dE :2| de(o'?_E)fdyh_m|¢l(X’y)|2' (12)

for values of |” that give real kf,, (12

VEHxy) =2 {81+ Siyye MG gl(y) for x<—d,
I/
(@)

For our symmetrical system,
dng(x) dn.(—x)
dE~  dE
The LDOS is then given by

X (13
TRXY) =2 SyyneiXgl(y) for x>d, (5
II
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dn(x) _ dn.(x) N dng(x) _ (14) N - l
dE dE dE a
08| N i
In the presence of a small and low-frequency ac voltage
applied to the reservoir (a=1 or 2), the internal potential = os| .
U(x) is given byU(x)=u,(X)v,., Whereu, is called the & | = ---- u(x)
characteristic function. Using the Thomas-Fermi approxima-¥ ,,| ek i
tion, the characteristic potential functian, is governed by
the Poisson equatiotr® ol |
2 2 .
—Vzua+e— dn(r)ud )= e dna(r)7 a=12. oo . /L —————
go dE go dE 5 4 3 2 1 ) 1 2 3 4 5
(15

Under the Thomas-Fermi approximation the second term in
Eq. (15 is the induced charges in the conductor and the third : T T T T T T T T T
term is clearly the injected charges. Here we neglect the
variation of the potential in the transverse direction, and as-
sume that the characteristic function is a functiorxanly.

We obtain the following equation by integrating over the o5
transverse direction:

0.0 |

u(x), p(x)

d?u,(x) € dn(x) € dnx)
- dX2 SOA(X) dE ua(X)_ 80A(X) Jdee 1 - u(x)
(16) ol ]

where A(x) represents the cross-sectional area of the QW 5 . L L L L ' L L !
and reservoirs. In the QWA=ab, and in the reservoirs ) ’ ) ) ’
=Wb, whereb is the thickness of the QW structure. X

To solve Eq(16) for u,(x), we need the boundary values
of u,(x). Here we use the neutrality condittrio determine el R S B L
the boundary values af ,(x):

dn,(x.) dn(x,)
Ua(X)=—4F dE T

u(x),p(x)
o

dn,(Xg) dn(x
U ) = ;ER), (17 _

where x, and xg are left and right boundary lines of the 2F p(x) .
regionQ) (see Fig. 1, which is a hypothetical volunig'®1°

and is so large that electric field lines through the surface of 3]
it vanish, i.e., the electric field is completely screened within

the volume. If the reservoir is very larg¢he width W is

infinite), we can see from Eq(17) that the characteristic FIG. 2. Distribution of internal potential and charge density for
potentialsu,(x,) [Uy(xg)] and u;(xg) [Uy(x.)] are unity (@ #=0.1, (b) u=2.2, and(c) x=9.5. Other parameters ate
and zero, respectively. In our case, they are close to unity of 0.5, d=2, andW=50. The energy is in units of the ground
zero. From Eq(16), we know that when the system is biased €nergyA, and length in units of the QW length (=50 nm).

by a small voltageSV applied to reservoit, the distribution

of the charge density if is given by sq(x) = p(x) 8V, and B. Capacitance and low-frequency admittance
According to Eq(18), when a small voltagéV is applied
dq(x) d2u,(x) to the left reservoir the total charge in the left half portion of
p(X)= qv =—¢goA(X) e Q is given by
dn,(x) dn(x) _ f 0
—e? 6Q= [ 5q(x)dx,
& g~ gg U |- (18 “
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FIG. 3. The plots of emittance and capacitance as functions of chemical potentiat QW length(a) 2d=2, (b) 2d=4, and(c)
2d=0.6. (d) is a replotting of the capacitance {g) and (b). The other parameters abe=0.5 andW=20. The energy is in units of the
ground energy\, and length in units of QW length (=50 nm.

and then the capacitance of the QW system can be calculatede the partial densities of states, and may be interpreted as

by the following: the carrier density of states in volunég, which consists of
those carriers injected from reservgrand emerging from
6Q 0 5 ° dn (x) dn(x) reservoire. Equation(22) is exact only wher() is infinite,
C=%v~ § p(x)dx=e | TdE ~ dE u (x) jdx. i.e., |x |—.% For the finite-size system, PDOS can be de-
- - (19 fined a§-101°
With the quantities of the partial density of state®03, dNag _ jXRd Nap(X) dx 23
injectivities, and internal potentials obtained, we can calcu- dE x, ~dE '
late the admittance for low frequenci&s®1°
where
9up(@)=0ap5(0) —1 0€°E 45, (20)
? g ? dngs(x) -1 —of\_[ . 8 Sl
wherew is the frequency of the ac biag, 5(0) the dc con- dE a1 | 9B | TV Sup SU(X)  dU(x) 8
ductance, and (24)
dN dn,(x) are the one-dimensional LPDOSs,z/6U(x) is the func-
_2 "eB 2 @ . - / .
Ewp=€" g —© f dx—g—Up(x) (21)  tional derivative ofs,(E,U(x)), and in our case it is taken
around U(x)=0. Equations(23) and (24) indicate that
is the emittance. In the first term of E(®1), ds,s/dE in the PDOS (22) should be replaced by
—ds,g/dU= —fﬁ?[ 9s,5/6U(X)]dx. We can calculate
+
dNaB: i dE —of Tl st dSaB_ dsaﬁs ds,s/dU as follows. In the considered regidd, introduc-
dE  4i JE “B dE dE @B ing a constant potentidl, we repeat the above process of

(22 calculating wave functions, and get the scattering matrix
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s«p(E,U). Alternatively, we can set the electron “energy” as
E’andE in and out of the regiol}, respectively, and get
S«p(E,E"). We then have

_ dSaﬁ:_ JXR 5Saﬂ X:_dSaE(E’U)
du Jy 3000 au |,
ds,;(E,E’ x
_ B EE) (25
dE’ ..

III. NUMERICAL RESULTS

In this section, we first study the internal potentigl)
and the charge density(x) with various Fermi levelsu
(=pu=mumg) for temperaturesT=0, and then present the
numerical results of ac conductance and capacitance. A
aforementioned we usk=h?/8m* a2, the transverse ground
state energy of the QW, as the unit of energy, and the QW
width a as the unit of distance. To solve the Poisson equation
(16), we seta=50 nm, and the thickness of the QW struc-
tureb=a/2. In our calculation, we take, = — Xg.

In Fig. 2 we present plots afi, (x) and p(x) for Fermi
energiesu=0.1[Fig. 2@)], 2.2[Fig. 2(b)], andu=9.5[Fig.
2(c)]. Figure 2a) corresponds to the case in which the Fermi
energy is smaller than the transverse ground enedgydf
the QW. In this case, the transverse ground state energy play
the role of a potential barrier for the incident electrons, so
what we see is the behavior of single barrier tunneling, and
the QW system is a barrier capacitor. The shape(a) is a
smooth curve and almost linear inside the QW, and the po-
tential drop is uniform between the two ends©f In the h . . . ; . p - o
case ofu>A, however, Figs. @) and Zc) show that the d
abrupt drops in the potential appear within the transition re-
gions between the QW and the reservoirs. For all curves FIG. 4. The plots of emittance and capacitance as functions of
[Fig. 2(a), 2(b), and Zc)], we see thati(x)~1(0) on theleft QW lengthd for chemical potentialu=1.1 and 1.8. The other
(right) side of the considered volun{®, and that the charge parameters are the same as in Fig. 3. The energy is in units of the
distribution p(x) is considerable only around the left and ground energyA, the emittance and capacitance é4/A, and
right ends of the QW and otherwise almost zero. It is noticedength in units of QW lengtta (=50 nm.
that in the QW the charge distribution is almost zero, but the
variation of the internal potential does not vanjskee Figs. =(u/A)Y2. The emittance shows a positive and a negative
2(a) and 2b)]. It is not surprising: this is because the one-resonant peak around the integral values ofvhich corre-
dimensional charge distribution is given by integrating oversponds to the stepjump of the dc conductance of the QW
the cross-sectional area of the system, and the cross-sectioséiluctures and is caused by the opening of additional quan-
area of contact is much larger than that of the QW. In additum channels in the QW. This is a resonance related to the
tion to the two peaks of charge distribution on the two sidedransverse energy levels of the QW. In addition to this
of the QW, the Friedel oscillations in the charge densities argesonance there is another type of resonance related to
also observed in the reservoir and the QW, but much smallehe longitudinal motion of electrons in the QW. The
than the charge peaks. emittance and capacitance are oscillatory between the two

While the distribution of the internal potential and chargeneighboring resonances, corresponding to the opening of
density reveals information about the system under investithe next higher channel, and the strength and frequency of
gation, the capacitance and ac conductance of the QW devigscillation increase with the increase of chemical potential
may present a result that is directly capable of being verifie@nd the QW length. This oscillation is caused by longitudinal
with experimental data. Below we calculate the capacitanceesonant electron states that occur when the length of
and emittance at zero temperature using E#8) and(21). the QW is approximately equal to integer multiples of
In Fig. 3 we present the capacitan€eand diagonal emit- half longitudinal Fermi wavelengtt, i.e., 2d~k\g/2
tanceE,; as functions of the chemical potential, for the QW = tkh/\2m* (n—n?A) (k=1,23...; n=123...).
length 20=2 [Fig. 2(@)] 4 [Fig. 2(b)] and contact widthV  Furthermore, to get a clearer view, we plot the two capaci-
=20, where the chemical potential is parametrized &y tance curves of Figs.(8 and 3b) in Fig. 3(d), where the
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FIG. 6. The plots of emittance and capacitance as functions of
047 T T ' ' ' . . QW lengthd for chemical potentiajs=0.8. The other parameters
- ll=1 5] are the same as in Fig. 3. The energy is in units of the ground
________ —45 ] energyA, the emittance and capacitancedffA, and length in
0.18 H=F-9 units of QW lengtha (=50 nm.
0.14

0.16

nal motion of electrons in the QW, more clearly, we present
in Figs. 4—6 the emittance and capacitance as functions of
the QW lengthd. As mentioned above, longitudinal reso-
nance appears wherdZk\g/2. In the figures both curves
of emittance and capacitance show a periodic oscillation
with d, and the period is abouth[ 8m* (x—n?A)] 2 So
we see that for the same valuerothe oscillation frequency
increases but the oscillation amplitude decreases with Fermi
energy(see Fig. 4. For different values oh and «, as long
as the difference.—n?A is same, the oscillation frequency
would be the samé&see Fig. 5. As for the case oft <A, the

FIG. 5. The plots of emittance and capacitance as functions oPscillation feature disappeafsee Fig. 6.
QW lengthd for chemical potentialu=1.5 and 4.5. The other

013

T-T-F-C-F-%

0.12

parameters are the same as in Fig. 3. The energy is in units of the IV. CONCLUSION
ground energyA, the emittance and capacitance é¥/A, and
length in units of QW lengtra (=50 nm). In conclusion, by employing the scattering theory devel-

oped by Bitiker et al. within a continuous model, we have

curve ford=1 is offset vertically by 0.1 for a clearer com- studied the dynamical response of the QW system in which
parison. In this figure, a steplike behavior is shown as thehe QW and two-contact reservoirs are included. We have
number of open channels increase, and the oscillation bepresented the calculation of various physics quantities such
tween the steps appears clearly. For emittance curves, thes the distribution of the internal potential and charge den-
jump in value appears when the incident energyiears to  sity, capacitance, and low-frequency ac conductance. Our nu-
the next higher transverse energy levels as mentioned aboweerical calculation for the internal potential and charge den-
but there is no steplike structure compared to capacitancsity shows that the induced charge density is mainly
curves. It is worth pointing out that in contrast to the resultsdistributed in the transition regions between the reservoirs
for a quantum point contact in Ref. 21, our results show thatnd the wire and antisymmetric about the QW center.
the emittance curves do not always lies below the capaci- In our model we showed that in large reservoirs the char-
tance curves, and when the Fermi energy is around and closeteristic potentials would tend to unity or zero. The poten-
to a transverse energy level of the QW the emittance gives #al drop in the transition region is very sharp and it happens
positive peak, and its value may be larger than the capaciwhen the Fermi energy is above the transverse ground state
tance. So, in this case, the charge transmission would give energy. Friedel oscillations in the charge density are ob-
positive contribution to the emittance. In addition, this phe-served in the QW system as well as charge peaks. For the
nomena is QW-length dependent, and for a QW of very shortesults of capacitance and emittance, we oberved resonant
length, unless the Fermi energy is close to and smaller thapeaks due to the opening of the next higher quantum chan-
the ground energy\, the emittance always lies below the nels and the oscillations related to the longitudinal resonant
capacitancésee Fig. &)]. electron states of the QW. For the capacitance, steplike be-

In order to exhibit the resonance related to the longitudi-havior appears as the number of open channels increase, but
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the emittance curves do not have a steplike structuremission may give positive or negative contributions to the
Furthermore, we found that the emittance curves may liemittance.

below or above capacitance curves, and when the Fermi en-

ergy is around and close to a transverse energy level of the ACKNOWLEDGMENT
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