39 research outputs found

    Diaphragm Muscle Weakness in an Experimental Porcine Intensive Care Unit Model

    Get PDF
    In critically ill patients, mechanisms underlying diaphragm muscle remodeling and resultant dysfunction contributing to weaning failure remain unclear. Ventilator-induced modifications as well as sepsis and administration of pharmacological agents such as corticosteroids and neuromuscular blocking agents may be involved. Thus, the objective of the present study was to examine how sepsis, systemic corticosteroid treatment (CS) and neuromuscular blocking agent administration (NMBA) aggravate ventilator-related diaphragm cell and molecular dysfunction in the intensive care unit. Piglets were exposed to different combinations of mechanical ventilation and sedation, endotoxin-induced sepsis, CS and NMBA for five days and compared with sham-operated control animals. On day 5, diaphragm muscle fibre structure (myosin heavy chain isoform proportion, cross-sectional area and contractile protein content) did not differ from controls in any of the mechanically ventilated animals. However, a decrease in single fibre maximal force normalized to cross-sectional area (specific force) was observed in all experimental piglets. Therefore, exposure to mechanical ventilation and sedation for five days has a key negative impact on diaphragm contractile function despite a preservation of muscle structure. Post-translational modifications of contractile proteins are forwarded as one probable underlying mechanism. Unexpectedly, sepsis, CS or NMBA have no significant additive effects, suggesting that mechanical ventilation and sedation are the triggering factors leading to diaphragm weakness in the intensive care unit

    Corticosteroid effects on ventilator-induced diaphragm dysfunction in anesthetized rats depend on the dose administered

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High dose of corticosteroids has been previously shown to protect against controlled mechanical ventilation (CMV)-induced diaphragmatic dysfunction while inhibiting calpain activation. Because literature suggests that the calpain inhibiting effect of corticosteroid depends on the dose administered, we determined whether lower doses of corticosteroids would also provide protection of the diaphragm during CMV. This may be important for patients undergoing mechanical ventilation and receiving corticosteroids.</p> <p>Methods</p> <p>Rats were assigned to controls or to 24 hours of CMV while being treated at the start of mechanical ventilation with a single intramuscular administration of either saline, or 5 mg/kg (low MP) or 30 mg/kg (high MP) of methylprednisolone.</p> <p>Results</p> <p>Diaphragmatic force was decreased after CMV and this was exacerbated in the low MP group while high MP rescued this diaphragmatic dysfunction. Atrophy was more severe in the low MP group than after CMV while no atrophy was observed in the high MP group. A significant and similar increase in calpain activity was observed in both the low MP and CMV groups whereas the high dose prevented calpain activation. Expression of calpastatin, the endogenous inhibitor of calpain, was decreased in the CMV and low MP groups but its level was preserved to controls in the high MP group. Caspase-3 activity increased in all CMV groups but to a lesser extent in the low and high MP groups. The 20S proteasome activity was increased in CMV only.</p> <p>Conclusions</p> <p>Administration of 30 mg/kg methylprednisolone during CMV protected against CMV-induced diaphragm dysfunction while 5 mg/kg was more deleterious. The protective effect is due mainly to an inhibition of the calpain system through preservation of calpastatin levels and to a lesser extent to a caspase-3 inhibition.</p

    Treatment with a corticotrophin releasing factor 2 receptor agonist modulates skeletal muscle mass and force production in aged and chronically ill animals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Muscle weakness is associated with a variety of chronic disorders such as emphysema (EMP) and congestive heart failure (CHF) as well as aging. Therapies to treat muscle weakness associated with chronic disease or aging are lacking. Corticotrophin releasing factor 2 receptor (CRF2R) agonists have been shown to maintain skeletal muscle mass and force production in a variety of acute conditions that lead to skeletal muscle wasting.</p> <p>Hypothesis</p> <p>We hypothesize that treating animals with a CRF2R agonist will maintain skeletal muscle mass and force production in animals with chronic disease and in aged animals.</p> <p>Methods</p> <p>We utilized animal models of aging, CHF and EMP to evaluate the potential of CRF2R agonist treatment to maintain skeletal muscle mass and force production in aged animals and animals with CHF and EMP.</p> <p>Results</p> <p>In aged rats, we demonstrate that treatment with a CRF2R agonist for up to 3 months results in greater extensor digitorum longus (EDL) force production, EDL mass, soleus mass and soleus force production compared to age matched untreated animals. In the hamster EMP model, we demonstrate that treatment with a CRF2R agonist for up to 5 months results in greater EDL force production in EMP hamsters when compared to vehicle treated EMP hamsters and greater EDL mass and force in normal hamsters when compared to vehicle treated normal hamsters. In the rat CHF model, we demonstrate that treatment with a CRF2R agonist for up to 3 months results in greater EDL and soleus muscle mass and force production in CHF rats and normal rats when compared to the corresponding vehicle treated animals.</p> <p>Conclusions</p> <p>These data demonstrate that the underlying physiological conditions associated with chronic diseases such as CHF and emphysema in addition to aging do not reduce the potential of CRF2R agonists to maintain skeletal muscle mass and force production.</p

    Segregation of myoblast fusion and muscle-specific gene expression by distinct ligand-dependent inactivation of GSK-3β

    Get PDF
    Myogenic differentiation involves myoblast fusion and induction of muscle-specific gene expression, which are both stimulated by pharmacological (LiCl), genetic, or IGF-I-mediated GSK-3β inactivation. To assess whether stimulation of myogenic differentiation is common to ligand-mediated GSK-3β inactivation, myoblast fusion and muscle-specific gene expression were investigated in response to Wnt-3a. Moreover, crosstalk between IGF-I/GSK-3β/NFATc3 and Wnt/GSK-3β/β-catenin signaling was assessed. While both Wnt-3a and LiCl promoted myoblast fusion, muscle-specific gene expression was increased by LiCl, but not by Wnt-3a or β-catenin over-expression. Furthermore, LiCl and IGF-I, but not Wnt-3a, increased NFATc3 transcriptional activity. In contrast, β-catenin-dependent transcriptional activity was increased by Wnt-3a and LiCl, but not IGF-I. These results for the first time reveal a segregated regulation of myoblast fusion and muscle-specific gene expression following stimulation of myogenic differentiation in response to distinct ligand-specific signaling routes of GSK-3β inactivation

    High-intensity exercise to promote accelerated improvements in cardiorespiratory fitness (HI-PACE): study protocol for a randomized controlled trial

    Get PDF
    Background: African Americans have a disproportionate prevalence and incidence of type 2 diabetes compared with Caucasians. Recent evidence indicates that low cardiorespiratory fitness (CRF) level, an independent risk factor for type 2 diabetes, is also more prevalent in African Americans than Caucasians. Numerous studies in Caucasian populations suggest that vigorous exercise intensity may promote greater improvements in CRF and other type 2 diabetes risk factors (e.g., reduction of glucose/insulin levels, pulse wave velocity, and body fat) than moderate intensity. However, current evidence comparing health benefits of different aerobic exercise intensities on type 2 diabetes risk factors in African Americans is negligible. This is clinically important as African Americans have a greater risk for type 2 diabetes and are less likely to meet public health recommendations for physical activity than Caucasians. The purpose of the HI-PACE (High-Intensity exercise to Promote Accelerated improvements in CardiorEspiratory fitness) study is to evaluate whether high-intensity aerobic exercise elicits greater improvements in CRF, insulin action, and arterial stiffness than moderate-intensity exercise in African Americans. Methods/Design: A randomized controlled trial will be performed on overweight and obese (body mass index of 25–45 kg/m2) African Americans (35–65 years) (n = 60). Participants will be randomly assigned to moderate-intensity (MOD-INT) or high-intensity (HIGH-INT) aerobic exercise training or a non-exercise control group (CON) for 24 weeks. Supervised exercise will be performed at a heart rate associated with 45–55% and 70–80% of VO2 max in the MOD-INT and HIGH-INT groups, respectively, for an exercise dose of 600 metabolic equivalents of task (MET)-minutes per week (consistent with public health recommendations). The primary outcome is change in CRF. Secondary outcomes include change in insulin sensitivity (measured via an intravenous glucose tolerance test), skeletal muscle mitochondrial oxidative capacity (via near-infrared spectroscopy), skeletal muscle measurements (i.e., citrate synthase, COX IV, GLUT-4, CPT-1, and PGC1-α), arterial stiffness (via carotid-femoral pulse wave velocity), body fat, C-reactive protein, and psychological outcomes (quality of life/exercise enjoyment). Discussion: The anticipated results of the HI-PACE study will provide vital information on the health effects of high-intensity exercise in African Americans. This study will advance health disparity research and has the potential to influence future public health guidelines for physical activity

    Vitamin C Enhances Vitamin E Status and Reduces Oxidative Stress Indicators in Sea Bass Larvae Fed High DHA Microdiets

    Get PDF
    Docosahexaenoic acid (DHA) is an essential fatty acid necessary for many biochemical, cellular and physiological functions in fish. However, high dietary levels of DHA increase free radical injury in sea bass (Dicentrarchus labrax) larvae muscle, even when vitamin E (&alpha;-tocopherol, &alpha;-TOH) is increased. Therefore, the inclusion of other nutrients with complementary antioxidant functions, such as vitamin C (ascorbic acid, vitC), could further contribute to prevent these lesions. The objective of the present study was to determine the effect of vitC inclusion (3,600 mg/kg) in high DHA (5 % DW) and &alpha;-TOH (3,000 mg/kg) microdiets (diets 5/3,000 and 5/3,000 + vitC) in comparison to a control diet (1 % DHA DW and 1,500 mg/kg of &alpha;-TOH; diet 1/1,500) on sea bass larvae growth, survival, whole body biochemical composition and thiobarbituric acid reactive substances (TBARS) content, muscle morphology, skeletal deformities and antioxidant enzymes, insulin-like growth factors (IGFs) and myosin expression (MyHC). Larvae fed diet 1/1,500 showed the best performance in terms of total length, incidence of muscular lesions and ossification degree. IGFs gene expression was elevated in 5/3,000 diet larvae, suggesting an increased muscle mitogenesis that was confirmed by the increase in the mRNA copies of MyHC. vitC effectively controlled oxidative damages in muscle, increased &alpha;-TOH larval contents and reduced TBARS content and the occurrence of skull deformities. The results of the present study showed the antioxidant synergism between vitamins E and C when high contents of DHA are included in sea bass larvae diets
    corecore