35 research outputs found

    Altered Anesthetic Sensitivity of Mice Lacking Ndufs4, a Subunit of Mitochondrial Complex I

    Get PDF
    RDP and AQ were supported by the Howard Hughes Medical Institute (HHMI). AQ was a recipient of MICINN postdoctoral mobility program fellowship from the Spanish Ministerio de Ciencia e Innovación. PGM and MMS were supported by National Institutes of Health (NIH) grant GM58881. These studies were also supported in part by the Mitochondrial Research Guild. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Anesthetics are in routine use, yet the mechanisms underlying their function are incompletely understood. Studies in vitro demonstrate that both GABAA and NMDA receptors are modulated by anesthetics, but whole animal models have not supported the role of these receptors as sole effectors of general anesthesia. Findings in C. elegans and in children reveal that defects in mitochondrial complex I can cause hypersensitivity to volatile anesthetics. Here, we tested a knockout (KO) mouse with reduced complex I function due to inactivation of the Ndufs4 gene, which encodes one of the subunits of complex I. We tested these KO mice with two volatile and two non-volatile anesthetics. KO and wild-type (WT) mice were anesthetized with isoflurane, halothane, propofol or ketamine at post-natal (PN) days 23 to 27, and tested for loss of response to tail clamp (isoflurane and halothane) or loss of righting reflex (propofol and ketamine). KO mice were 2.5 - to 3- fold more sensitive to isoflurane and halothane than WT mice. KO mice were 2-fold more sensitive to propofol but resistant to ketamine. These changes in anesthetic sensitivity are the largest recorded in a mammal

    Reduced Coupling of Oxidative Phosphorylation In Vivo Precedes Electron Transport Chain Defects Due to Mild Oxidative Stress in Mice

    Get PDF
    Oxidative stress and mitochondrial function are at the core of many degenerative conditions. However, the interaction between oxidative stress and in vivo mitochondrial function is unclear. We used both pharmacological (2 week paraquat (PQ) treatment of wild type mice) and transgenic (mice lacking Cu, Zn-superoxide dismutase (SOD1−/−)) models to test the effect of oxidative stress on in vivo mitochondrial function in skeletal muscle. Magnetic resonance and optical spectroscopy were used to measure mitochondrial ATP and oxygen fluxes and cell energetic state. In both models of oxidative stress, coupling of oxidative phosphorylation was significantly lower (lower P/O) at rest in vivo in skeletal muscle and was dose-dependent in the PQ model. Despite this reduction in efficiency, in vivo mitochondrial phosphorylation capacity (ATPmax) was maintained in both models, and ex vivo mitochondrial respiration in permeabilized muscle fibers was unchanged following PQ treatment. In association with the reduced P/O, PQ treatment led to a dose-dependent reduction in PCr/ATP ratio and increased phosphorylation of AMPK. These results indicate that oxidative stress uncouples oxidative phosphorylation in vivo and results in energetic stress in the absence of defects in the mitochondrial electron transport chain

    The L 98-59 System: Three Transiting, Terrestrial-size Planets Orbiting a Nearby M Dwarf

    Get PDF
    We report the Transiting Exoplanet Survey Satellite (TESS) discovery of three terrestrial-size planets transiting L 98-59 (TOI-175, TIC 307210830)—a bright M dwarf at a distance of 10.6 pc. Using the Gaia-measured distance and broadband photometry, we find that the host star is an M3 dwarf. Combined with the TESS transits from three sectors, the corresponding stellar parameters yield planet radii ranging from 0.8 R ⊕ to 1.6 R ⊕. All three planets have short orbital periods, ranging from 2.25 to 7.45 days with the outer pair just wide of a 2:1 period resonance. Diagnostic tests produced by the TESS Data Validation Report and the vetting package DAVE rule out common false-positive sources. These analyses, along with dedicated follow-up and the multiplicity of the system, lend confidence that the observed signals are caused by planets transiting L 98-59 and are not associated with other sources in the field. The L 98-59 system is interesting for a number of reasons: the host star is bright (V = 11.7 mag, K = 7.1 mag) and the planets are prime targets for further follow-up observations including precision radial-velocity mass measurements and future transit spectroscopy with the James Webb Space Telescope; the near-resonant configuration makes the system a laboratory to study planetary system dynamical evolution; and three planets of relatively similar size in the same system present an opportunity to study terrestrial planets where other variables (age, metallicity, etc.) can be held constant. L 98-59 will be observed in four more TESS sectors, which will provide a wealth of information on the three currently known planets and have the potential to reveal additional planets in the system

    Assessing associations between the AURKAHMMR-TPX2-TUBG1 functional module and breast cancer risk in BRCA1/2 mutation carriers

    Get PDF
    While interplay between BRCA1 and AURKA-RHAMM-TPX2-TUBG1 regulates mammary epithelial polarization, common genetic variation in HMMR (gene product RHAMM) may be associated with risk of breast cancer in BRCA1 mutation carriers. Following on these observations, we further assessed the link between the AURKA-HMMR-TPX2-TUBG1 functional module and risk of breast cancer in BRCA1 or BRCA2 mutation carriers. Forty-one single nucleotide polymorphisms (SNPs) were genotyped in 15,252 BRCA1 and 8,211 BRCA2 mutation carriers and subsequently analyzed using a retrospective likelihood appr

    Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    Get PDF
    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P = 2.7×10-8, HR = 1.14, 95% CI: 1.09-1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P = 1.4×10-8, HR = 1.27, 95% CI: 1.17-1.38) and 4q32.3 (rs4691139, P = 3.4×10-8, HR = 1.20, 95% CI: 1.17-1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific associat

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    Altered Anesthetic Sensitivity of Mice Lacking Ndufs4, a Subunit of Mitochondrial Complex I

    No full text
    RDP and AQ were supported by the Howard Hughes Medical Institute (HHMI). AQ was a recipient of MICINN postdoctoral mobility program fellowship from the Spanish Ministerio de Ciencia e Innovación. PGM and MMS were supported by National Institutes of Health (NIH) grant GM58881. These studies were also supported in part by the Mitochondrial Research Guild. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Anesthetics are in routine use, yet the mechanisms underlying their function are incompletely understood. Studies in vitro demonstrate that both GABAA and NMDA receptors are modulated by anesthetics, but whole animal models have not supported the role of these receptors as sole effectors of general anesthesia. Findings in C. elegans and in children reveal that defects in mitochondrial complex I can cause hypersensitivity to volatile anesthetics. Here, we tested a knockout (KO) mouse with reduced complex I function due to inactivation of the Ndufs4 gene, which encodes one of the subunits of complex I. We tested these KO mice with two volatile and two non-volatile anesthetics. KO and wild-type (WT) mice were anesthetized with isoflurane, halothane, propofol or ketamine at post-natal (PN) days 23 to 27, and tested for loss of response to tail clamp (isoflurane and halothane) or loss of righting reflex (propofol and ketamine). KO mice were 2.5 - to 3- fold more sensitive to isoflurane and halothane than WT mice. KO mice were 2-fold more sensitive to propofol but resistant to ketamine. These changes in anesthetic sensitivity are the largest recorded in a mammal

    The dose response curves for WT and <i>Ndufs4</i> KO mice for LORR after intraperitoneal propofol.

    No full text
    <p>Dose-response curves were generated using the percentage of mice that presented LORR at the measured concentrations (n = 5–7 per group for each injection dose). The values for the KO animals were significantly different from those for WT (p<0.01).</p
    corecore