9,619 research outputs found

    Network calculus for parallel processing

    Full text link
    In this note, we present preliminary results on the use of "network calculus" for parallel processing systems, specifically MapReduce

    Galilean invariance of lattice Boltzmann models

    Full text link
    It is well-known that the original lattice Boltzmann (LB) equation deviates from the Navier-Stokes equations due to an unphysical velocity dependent viscosity. This unphysical dependency violates the Galilean invariance and limits the validation domain of the LB method to near incompressible flows. As previously shown, recovery of correct transport phenomena in kinetic equations depends on the higher hydrodynamic moments. In this Letter, we give specific criteria for recovery of various transport coefficients. The Galilean invariance of a general class of LB models is demonstrated via numerical experiments

    A Sensitivity Analysis of the SPACSYS Model

    Get PDF
    A sensitivity analysis is critical for determining the relative importance of model parameters to their influence on the simulated outputs from a process-based model. In this study, a sensitivity analysis for the SPACSYS model, first published in Ecological Modelling (Wu, et al., 2007), was conducted with respect to changes in 61 input parameters and their influence on 27 output variables. Parameter sensitivity was conducted in a 'one at a time' manner and objectively assessed through a single statistical diagnostic (normalized root mean square deviation) which ranked parameters according to their influence of each output variable in turn. A winter wheat field experiment provided the case study data. Two sets of weather elements to represent different climatic conditions and four different soil types were specified, where results indicated little influence on these specifications for the identification of the most sensitive parameters. Soil conditions and management were found to affect the ranking of parameter sensitivities more strongly than weather conditions for the selected outputs. Parameters related to drainage were strongly influential for simulations of soil water dynamics, yield and biomass of wheat, runoff, and leaching from soil during individual and consecutive growing years. Wheat yield and biomass simulations were sensitive to the 'ammonium immobilised fraction' parameter that related to soil mineralization and immobilisation. Simulations of CO2 release from the soil and soil nutrient pool changes were most sensitive to external nutrient inputs and the process of denitrification, mineralization, and decomposition. This study provides important evidence of which SPACSYS parameters require the most care in their specification. Moving forward, this evidence can help direct efficient sampling and lab analyses for increased accuracy of such parameters. Results provide a useful reference for model users on which parameters are most influential for different simulation goals, which in turn provides better informed decision making for farmers and government policy alike

    Correlation between irradiation treatment and metabolite changes in Bactrocera dorsalis (Diptera: Tephritidae) Larvae using solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS)

    Get PDF
    The metabolites produced by the larvae of Bactrocera dorsalis (Diptera: Tephritidae) exposed to different doses of irradiation were analyzed using solid phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS), and a metabonomic analysis method of irradiated insects based on GC-MS was established. The analysis revealed 67 peaks, of which 23 peaks were identified. The metabolites produced by larvae treated with different irradiation doses were compared by multivariate statistical analysis, and eight differential metabolites were selected. Irradiation seriously influenced the fatty acid metabolic pathway in larvae. Using the R platform combined with the method of multivariate statistical analysis, changes to metabolite production under four irradiation doses given to B. dorsalis larvae were described. Differential metabolites of B. dorsalis larvae carried chemical signatures that indicated irradiation dose, and this method is expected to provide a reference for the detection of irradiated insects

    Energy-related CO2 emission accounts and datasets for 40 emerging economies in 2010-2019

    Get PDF
    Since 2000, CO2 emissions from emerging economies have outstripped those of developed economies. To limit global warming to under 1.5gg C by 2100, over 100 emerging economies have proposed net-zero carbon targets. Yet the supportive data are lacking-no inventory of CO2 emission outlines detailed sources by sector or distribution at the subnational level for these economies. Here, we redress the balance by establishing a dataset for an energy-related CO2 emission inventory that covers 47 sectors and eight energy types in 40 emerging economies (10.5281/zenodo.7309360, Cui et al., 2021). Their emissions, growing rapidly by 3.0g%gyr-1, reached 7.5gGt in 2019 and were sourced primarily in coal and oil (34.6g% and 28.1g%, respectively) and consumed by the power and transportation sectors. Meanwhile, among African countries in this group, biomass combustion was responsible for 34.7g%-96.2g% of emissions. Our dataset fills a data gap by providing a detailed, robust emission accounting baseline for emerging economies-an advance that will support emission reduction policymaking at global, national, and subnational levels

    High Aspect Pattern Formation by Integration of Micro Inkjetting and Electroless Plating

    Get PDF
    This paper reports on formation of high aspect micro patterns on low temperature co-fired ceramic (LTCC) substrates by integrating micro inkjetting with electroless plating. Micro inkjetting was realized by using an inkjetting printer that ejects ink droplets from a printhead. This printhead consists of a glass nozzle with a diameter of 50 micrometers and a piezoelectric transducer that is coated on the nozzle. The silver colloidal solution was inkjetted on a sintered CT800 ceramic substrate, followed by curing at 200 degrees C for 60 minutes. As a result, the silver trace with a thickness of 200 nm was obtained. The substrate, with the ejected silver thin film as the seed layer, was then immersed into a preinitiator solution to coat a layer of palladium for enhancing the deposition of nickel. Electroless nickel plating was successfully conducted at a rate of 0.39 micrometers /min, and the thickness of traces was plated up to 84 micrometers. This study demonstrates that the integration of inkjetting with plating is an effective method to form high aspect patterns at the demand location.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Sulforaphane Protects the Liver against CdSe Quantum Dot-Induced Cytotoxicity.

    Get PDF
    The potential cytotoxicity of cadmium selenide (CdSe) quantum dots (QDs) presents a barrier to their use in biomedical imaging or as diagnostic and therapeutic agents. Sulforaphane (SFN) is a chemoprotective compound derived from cruciferous vegetables which can up-regulate antioxidant enzymes and induce apoptosis and autophagy. This study reports the effects of SFN on CdSe QD-induced cytotoxicity in immortalised human hepatocytes and in the livers of mice. CdSe QDs induced dose-dependent cell death in hepatocytes with an IC50 = 20.4 μM. Pre-treatment with SFN (5 μM) increased cell viability in response to CdSe QDs (20 μM) from 49.5 to 89.3%. SFN induced a pro-oxidant effect characterized by depletion of intracellular reduced glutathione during short term exposure (3-6 h), followed by up-regulation of antioxidant enzymes and glutathione levels at 24 h. SFN also caused Nrf2 translocation into the nucleus, up-regulation of antioxidant enzymes and autophagy. siRNA knockdown of Nrf2 suggests that the Nrf2 pathway plays a role in the protection against CdSe QD-induced cell death. Wortmannin inhibition of SFN-induced autophagy significantly suppressed the protective effect of SFN on CdSe QD-induced cell death. Moreover, the role of autophagy in SFN protection against CdSe QD-induced cell death was confirmed using mouse embryonic fibroblasts lacking ATG5. CdSe QDs caused significant liver damage in mice, and this was decreased by SFN treatment. In conclusion, SFN attenuated the cytotoxicity of CdSe QDs in both human hepatocytes and in the mouse liver, and this protection was associated with the induction of Nrf2 pathway and autophagy

    The effects of matter density uncertainties on neutrino oscillations in the Earth

    Get PDF
    We compare three different methods to evaluate uncertainties in the Earth's matter density profile, which are relevant to long baseline experiments, such as neutrino factories.Comment: 3 pages, 1 figure. Talk given at the NuFact'02 Workshop, London, 1-6 July, 200

    The role of matter density uncertainties in the analysis of future neutrino factory experiments

    Full text link
    Matter density uncertainties can affect the measurements of the neutrino oscillation parameters at future neutrino factory experiments, such as the measurements of the mixing parameters θ13\theta_{13} and \deltacp. We compare different matter density uncertainty models and discuss the possibility to include the matter density uncertainties in a complete statistical analysis. Furthermore, we systematically study in which measurements and where in the parameter space matter density uncertainties are most relevant. We illustrate this discussion with examples that show the effects as functions of different magnitudes of the matter density uncertainties. We find that matter density uncertainties are especially relevant for large \stheta \gtrsim 10^{-3}. Within the KamLAND-allowed range, they are most relevant for the precision measurements of \stheta and \deltacp, but less relevant for ``binary'' measurements, such as for the sign of \ldm, the sensitivity to \stheta, or the sensitivity to maximal CP violation. In addition, we demonstrate that knowing the matter density along a specific baseline better than to about 1% precision means that all measurements will become almost independent of the matter density uncertainties.Comment: 21 pages, 7 figures, LaTeX. Final version to be published in Phys. Rev.

    Lattice-Boltzmann and finite-difference simulations for the permeability for three-dimensional porous media

    Full text link
    Numerical micropermeametry is performed on three dimensional porous samples having a linear size of approximately 3 mm and a resolution of 7.5 μ\mum. One of the samples is a microtomographic image of Fontainebleau sandstone. Two of the samples are stochastic reconstructions with the same porosity, specific surface area, and two-point correlation function as the Fontainebleau sample. The fourth sample is a physical model which mimics the processes of sedimentation, compaction and diagenesis of Fontainebleau sandstone. The permeabilities of these samples are determined by numerically solving at low Reynolds numbers the appropriate Stokes equations in the pore spaces of the samples. The physical diagenesis model appears to reproduce the permeability of the real sandstone sample quite accurately, while the permeabilities of the stochastic reconstructions deviate from the latter by at least an order of magnitude. This finding confirms earlier qualitative predictions based on local porosity theory. Two numerical algorithms were used in these simulations. One is based on the lattice-Boltzmann method, and the other on conventional finite-difference techniques. The accuracy of these two methods is discussed and compared, also with experiment.Comment: to appear in: Phys.Rev.E (2002), 32 pages, Latex, 1 Figur
    corecore