12,919 research outputs found

    Categorification of quantum symmetric pairs I

    Get PDF
    We categorify a coideal subalgebra of the quantum group of sl2r+1\mathfrak{sl}_{2r+1} by introducing a 22-category \`a la Khovanov-Lauda-Rouquier, and show that self-dual indecomposable 11-morphisms categorify the canonical basis of this algebra. This allows us to define a categorical action of this coideal algebra on the categories of modules over cohomology rings of partial flag varieties and on the BGG category O\mathcal{O} of type B/C.Comment: final version, to appear in Quantum Topolog

    An Introduction to the Digital Watermarking

    Full text link
    Digital watermarking is the process of embedding a message pertaining to the digital content itself and contains information about its author, buyer etc. It is same as that of steganography; only the difference is in the process of hiding the information. In digital watermarking the information is hided pertaining to the digital content itself whereas the message embedded in a digital content in the case of steganography is the secret message that has to be transmitted over the communication channel. Hence digital watermarking can be used for many applications like ownership assertion, copy right prevention, fingerprinting, data authentication (medical field) etc

    Renormalization group approach to anisotropic superconductivity

    Full text link
    The superconducting instability of the Fermi liquid state is investigated by considering anisotropic electron-boson couplings. Both electron-electron interactions and anisotropic electron-boson couplings are treated with a renormalization-group method that takes into account retardation effects. Considering a non-interacting circular Fermi surface, we find analytical solutions for the flow equations and derive a set of generalized Eliashberg equations. Electron-boson couplings with different momentum dependences are studied, and we find superconducting instabilities of the metallic state with competition between order parameters of different symmetries. Numerical solutions for some couplings are given to illustrate the frequency dependence of the vertices at different coupling regimes.Comment: 9 pages, 7 figures. Final version as published in Phys. Rev.

    A Sensitivity Analysis of the SPACSYS Model

    Get PDF
    A sensitivity analysis is critical for determining the relative importance of model parameters to their influence on the simulated outputs from a process-based model. In this study, a sensitivity analysis for the SPACSYS model, first published in Ecological Modelling (Wu, et al., 2007), was conducted with respect to changes in 61 input parameters and their influence on 27 output variables. Parameter sensitivity was conducted in a 'one at a time' manner and objectively assessed through a single statistical diagnostic (normalized root mean square deviation) which ranked parameters according to their influence of each output variable in turn. A winter wheat field experiment provided the case study data. Two sets of weather elements to represent different climatic conditions and four different soil types were specified, where results indicated little influence on these specifications for the identification of the most sensitive parameters. Soil conditions and management were found to affect the ranking of parameter sensitivities more strongly than weather conditions for the selected outputs. Parameters related to drainage were strongly influential for simulations of soil water dynamics, yield and biomass of wheat, runoff, and leaching from soil during individual and consecutive growing years. Wheat yield and biomass simulations were sensitive to the 'ammonium immobilised fraction' parameter that related to soil mineralization and immobilisation. Simulations of CO2 release from the soil and soil nutrient pool changes were most sensitive to external nutrient inputs and the process of denitrification, mineralization, and decomposition. This study provides important evidence of which SPACSYS parameters require the most care in their specification. Moving forward, this evidence can help direct efficient sampling and lab analyses for increased accuracy of such parameters. Results provide a useful reference for model users on which parameters are most influential for different simulation goals, which in turn provides better informed decision making for farmers and government policy alike

    High Aspect Pattern Formation by Integration of Micro Inkjetting and Electroless Plating

    Get PDF
    This paper reports on formation of high aspect micro patterns on low temperature co-fired ceramic (LTCC) substrates by integrating micro inkjetting with electroless plating. Micro inkjetting was realized by using an inkjetting printer that ejects ink droplets from a printhead. This printhead consists of a glass nozzle with a diameter of 50 micrometers and a piezoelectric transducer that is coated on the nozzle. The silver colloidal solution was inkjetted on a sintered CT800 ceramic substrate, followed by curing at 200 degrees C for 60 minutes. As a result, the silver trace with a thickness of 200 nm was obtained. The substrate, with the ejected silver thin film as the seed layer, was then immersed into a preinitiator solution to coat a layer of palladium for enhancing the deposition of nickel. Electroless nickel plating was successfully conducted at a rate of 0.39 micrometers /min, and the thickness of traces was plated up to 84 micrometers. This study demonstrates that the integration of inkjetting with plating is an effective method to form high aspect patterns at the demand location.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Holographic Superconductor for a Lifshitz fixed point

    Full text link
    We consider the gravity dual of strongly coupled system at a Lifshitz-fixed point and finite temperature, which was constructed in a recent work arXiv:0909.0263. We construct an Abelian Higgs model in that background and calculate condensation and conductivity using holographic techniques. We find that condensation happens and DC conductivity blows up when temperature turns below a critical value.Comment: 14 pages, 4 figures, v4: improved version, references adde

    Crystal isomorphisms in Fock spaces and Schensted correspondence in affine type A

    Get PDF
    We are interested in the structure of the crystal graph of level ll Fock spaces representations of Uq(sle^)\mathcal{U}_q (\widehat{\mathfrak{sl}_e}). Since the work of Shan [26], we know that this graph encodes the modular branching rule for a corresponding cyclotomic rational Cherednik algebra. Besides, it appears to be closely related to the Harish-Chandra branching graph for the appropriate finite unitary group, according to [8]. In this paper, we make explicit a particular isomorphism between connected components of the crystal graphs of Fock spaces. This so-called "canonical" crystal isomorphism turns out to be expressible only in terms of: - Schensted's classic bumping procedure, - the cyclage isomorphism defined in [13], - a new crystal isomorphism, easy to describe, acting on cylindric multipartitions. We explain how this can be seen as an analogue of the bumping algorithm for affine type AA. Moreover, it yields a combinatorial characterisation of the vertices of any connected component of the crystal of the Fock space

    New effective interactions in RMF theory with non-linear terms and density-dependent meson-nucleon coupling

    Full text link
    New parameter sets for the Lagrangian density in the relativistic mean field (RMF) theory, PK1 with nonlinear sigma- and omega-meson self-coupling, PK1R with nonlinear sigma-, omega- and rho-meson self-coupling and PKDD with the density-dependent meson-nucleon coupling, are proposed. They are able to provide an excellent description not only for the properties of nuclear matter but also for the nuclei in and far from the valley of beta-stability. For the first time in the parametrization of the RMF Lagrangian density, the center-of-mass correction is treated by a microscopic way, which is essential to unify the description of nuclei from light to heavy regions with one effective interaction.Comment: 22 pages, 16 EPS figures, RevTeX

    Diffusion in a multi-component Lattice Boltzmann Equation model

    Full text link
    Diffusion phenomena in a multiple component lattice Boltzmann Equation (LBE) model are discussed in detail. The mass fluxes associated with different mechanical driving forces are obtained using a Chapman-Enskog analysis. This model is found to have correct diffusion behavior and the multiple diffusion coefficients are obtained analytically. The analytical results are further confirmed by numerical simulations in a few solvable limiting cases. The LBE model is established as a useful computational tool for the simulation of mass transfer in fluid systems with external forces.Comment: To appear in Aug 1 issue of PR
    corecore