15 research outputs found

    On the uncertainty quantification and non-linear hyper elastic simulation of biological tissues

    Get PDF
    In this dissertation, a computational structural mechanics capability is developed for the simulation of biological tissues. These tissues may exhibit either linear or nonlinear material responses and, therefore, the resultant theory and computational implementation are presented. Various discretization methods of the systems of equations are possible, and in the current work Continuous Galerkin (CG) and the Discontinuous Galerkin (DG) approaches are employed. Additionally, due to natural variations in biophysical properties from person to person, uncertainty quantification may be used to ascertain the impact on deterministic simulation results when assuming mean values of these properties. To this end, a hyper elastic formulation for the nonlinear, transversely isotropic behavior of soft and hard tissue is utilized for the simulation and failure analysis of the proximal femur. Both linear and nonlinear material results are compared. The uncertainty in the failure analysis due to the selected biophysical properties is then examined using the First-Order Second-Moment (FOSM) method. Additionally, within Computational Fluid Dynamics (CFD) it is often necessary to adaptively move the mesh (e.g. moving boundary simulations, shape design optimization, generation of higher-order grids near curved boundaries, etc.). In these regards, linear elasticity is commonly used for adaptation by viewing the mesh as a solid. In some cases, such as for anisotropic meshes or for extremely large boundary movement, this approach to mesh movement has experienced difficulties in producing valid grids for simulation purposes. Thus, using the developed capability, the potential benefits of utilizing nonlinear material behavior for mesh movement is additionally examined

    Crowdsourced mapping of unexplored target space of kinase inhibitors

    Get PDF
    Despite decades of intensive search for compounds that modulate the activity of particular protein targets, a large proportion of the human kinome remains as yet undrugged. Effective approaches are therefore required to map the massive space of unexplored compound-kinase interactions for novel and potent activities. Here, we carry out a crowdsourced benchmarking of predictive algorithms for kinase inhibitor potencies across multiple kinase families tested on unpublished bioactivity data. We find the top-performing predictions are based on various models, including kernel learning, gradient boosting and deep learning, and their ensemble leads to a predictive accuracy exceeding that of single-dose kinase activity assays. We design experiments based on the model predictions and identify unexpected activities even for under-studied kinases, thereby accelerating experimental mapping efforts. The open-source prediction algorithms together with the bioactivities between 95 compounds and 295 kinases provide a resource for benchmarking prediction algorithms and for extending the druggable kinome. The IDG-DREAM Challenge carried out crowdsourced benchmarking of predictive algorithms for kinase inhibitor activities on unpublished data. This study provides a resource to compare emerging algorithms and prioritize new kinase activities to accelerate drug discovery and repurposing efforts

    GRAND: a database of gene regulatory network models across human conditions

    No full text
    Abstract Gene regulation plays a fundamental role in shaping tissue identity, function, and response to perturbation. Regulatory processes are controlled by complex networks of interacting elements, including transcription factors, miRNAs and their target genes. The structure of these networks helps to determine phenotypes and can ultimately influence the development of disease or response to therapy. We developed GRAND (https://grand.networkmedicine.org) as a database for computationally-inferred, context-specific gene regulatory network models that can be compared between biological states, or used to predict which drugs produce changes in regulatory network structure. The database includes 12 468 genome-scale networks covering 36 human tissues, 28 cancers, 1378 unperturbed cell lines, as well as 173 013 TF and gene targeting scores for 2858 small molecule-induced cell line perturbation paired with phenotypic information. GRAND allows the networks to be queried using phenotypic information and visualized using a variety of interactive tools. In addition, it includes a web application that matches disease states to potentially therapeutic small molecule drugs using regulatory network properties

    LINCS Experimental Metadata and Processing Pipelines

    No full text
    <p>Abstract. The NIH Library of Integrated Network-Based Cellular Signatures (LINCS) program generates extensive multidimensional datasets using a variety of assay formats and technologies. Integration and analysis of diverse LINCS datasets depend on the availability of sufficient metadata to describe the reagents, assays and screening results. Previously, reagent metadata standards were developed in the LINCS Data Working Group (DWG) as a LINCS Consortium effort. Expanding on these standards, we have included experimental metadata standards for assays, entities, and datasets. These expanded metadata specifications ensure that not only comprehensive dataset metadata, but adequate descriptions of all levels of data submission, analysis, and processing are provided, as well. As part of the generation of these standards, we have established linkages to many relevant and qualified external data standards and ontologies. The FAIR guidelines were an important criteria in developing and implementing metadata standards specifications.</p> <p>The LINCS standards specifications are shared with and approved by Consortium members. Standards are maintained on incoming data by the Data Coordination and Integration Center (DCIC).</p

    Connecting omics signatures and revealing biological mechanisms with iLINCS

    No full text
    There are only a few platforms that integrate multiple omics data types, bioinformatics tools, and interfaces for integrative analyses and visualization that do not require programming skills. Here we present iLINCS (http://ilincs.org), an integrative web-based platform for analysis of omics data and signatures of cellular perturbations. The platform facilitates mining and re-analysis of the large collection of omics datasets (>34,000), pre-computed signatures (>200,000), and their connections, as well as the analysis of user-submitted omics signatures of diseases and cellular perturbations. iLINCS analysis workflows integrate vast omics data resources and a range of analytics and interactive visualization tools into a comprehensive platform for analysis of omics signatures. iLINCS user-friendly interfaces enable execution of sophisticated analyses of omics signatures, mechanism of action analysis, and signature-driven drug repositioning. We illustrate the utility of iLINCS with three use cases involving analysis of cancer proteogenomic signatures, COVID 19 transcriptomic signatures and mTOR signaling. There are only a few platforms that integrate multiple omics data types, bioinformatics tools, and interfaces for integrative analyses and visualization that do not require programming skills. Here the authors present an integrative web-based platform for analysis of omics data and signatures of cellular perturbations

    Data Portal for the Library of Integrated Network-based Cellular Signatures (LINCS) program: integrated access to diverse large-scale cellular perturbation response data

    No full text
    The Library of Integrated Network-based Cellular Signatures (LINCS) program is a national consortium funded by the NIH to generate a diverse and extensive reference library of cell-based perturbation-response signatures, along with novel data analytics tools to improve our understanding of human diseases at the systems level. In contrast to other large-scale data generation efforts, LINCS Data and Signature Generation Centers (DSGCs) employ a wide range of assay technologies cataloging diverse cellular responses. Integration of, and unified access to LINCS data has therefore been particularly challenging. The Big Data to Knowledge (BD2K) LINCS Data Coordination and Integration Center (DCIC) has developed data standards specifications, data processing pipelines, and a suite of end-user software tools to integrate and annotate LINCS-generated data, to make LINCS signatures searchable and usable for different types of users. Here, we describe the LINCS Data Portal (LDP) (http://lincsportal.ccs.miami.edu/), a unified web interface to access datasets generated by the LINCS DSGCs, and its underlying database, LINCS Data Registry (LDR). LINCS data served on the LDP contains extensive metadata and curated annotations. We highlight the features of the LDP user interface that is designed to enable search, browsing, exploration, download and analysis of LINCS data and related curated content
    corecore