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ABSTRACT

In this dissertation, a computational structuralmechanics capability is developed for the sim-

ulation of biological tissues. These tissues may exhibit either linear or nonlinear material responses

and, therefore, the resultant theory and computational implementation are presented. Various dis-

cretization methods of the systems of equations are possible, and in the current work Continuous

Galerkin (CG) and the Discontinuous Galerkin (DG) approaches are employed. Additionally, due

to natural variations in biophysical properties from person to person, uncertainty quantification

may be used to ascertain the impact on deterministic simulation results when assuming mean

values of these properties. To this end, a hyper elastic formulation for the nonlinear, transversely

isotropic behavior of soft and hard tissue is utilized for the simulation and failure analysis of the

proximal femur. Both linear and nonlinear material results are compared. The uncertainty in the

failure analysis due to the selected biophysical properties is then examined using the First-Order

Second-Moment (FOSM) method. Additionally, within Computational Fluid Dynamics (CFD) it

is often necessary to adaptively move the mesh (e.g. moving boundary simulations, shape design

optimization, generation of higher-order grids near curved boundaries, etc.). In these regards,

linear elasticity is commonly used for adaptation by viewing the mesh as a solid. In some cases,

such as for anisotropic meshes or for extremely large boundary movement, this approach to mesh

movement has experienced difficulties in producing valid grids for simulation purposes. Thus,
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using the developed capability, the potential benefits of utilizing nonlinear material behavior for

mesh movement is additionally examined.
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CHAPTER 1

INTRODUCTION

Constitutive laws are essential for studying the mechanical behavior and simulation of

physical materials. These equations are defined to represent the response of a material due to

applied loading. Elasticity equations utilize a particular form of these constitutive equations, and

are used for simulation and computational prototyping. Whether linear or non-linear, elasticity

equations are used in a large number of computational fluid and structural problems. For these

reasons, this dissertation is devoted to investigate some implementation schemes and applications

of linear and non-linear elasticity equations. The fundamentals of continuum mechanics in solid

structures are introduced and elasticity equations for linear and non-linear materials are discussed

in a general manner. Then, finite element discretization and analysis for elasticity equations

are investigated. Subsequently, some applications of these equations in mesh deformation and

simulation of large strain materials such as biological tissues are investigated.

The outline of this dissertation is as follows: the fundamentals of elasticity equations in solid

structures are discussed in the chapter(2) where the equations are derived in a general framework of

minimization of total potential function. The difference between the linear and non-linear elasticity

is further investigated by defining different potential functions.
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In chapter(3), two different schemes for computational implementation of linear elasticity

in a finite element framework, i.e. Continuous Galerkin (CG) and Discontinuous Galerkin (DG)

are discussed.

Elastic materials are often formulated in the Lagrangian frame of reference and this concept

is used in the mesh deformation procedure in computational fluid dynamics when there is a need to

modify the mesh. Hence, chapter(4) is dedicated to comparing the linear and non-linear elasticity

algorithms in a mesh deformation procedure.

Biological soft tissues such as muscles and flesh, and hard tissues like bones show highly

non-linear and anisotropic mechanical properties. These materials are inherently non-linear and

often show different behavior in the fiber direction as opposed to the direction normal to fibers.

This phenomenon is addressed in chapter(5) and linear and non-linear elasticity relations for these

problems are described for simulation of the proximal femur.

Biological parameters in the human anatomy are distributed data, thus the chapter(6) is

devoted to take into account this distribution of data. Equations of failure in the proximal femur

during the gait cycle are investigated. Uncertainty quantification is used to quantify the failure

results in the proximal femur based on unknown or distributed biological parameters. Summary of

this research and suggestions about the extension of this work is provided in the last chapter.
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CHAPTER 2

FUNDAMENTAL OF LINEAR AND NONLINEAR ELASTICITY

Elasticity equations represent the conservation of momentum and are mathematically sim-

ilar to Poisson equation with the difference being these are coupled multi-variable second order

boundary value equations. In the next section some fundamental background material concerning

elasticity, from continuum mechanics perspective, are reviewed.

2.1 Deriving elasticity relation from fundamentals of continuum mechanics

The solution of the deformation ofmaterials under internal and external forces and boundary

conditions is obtainedwhen the total deformation energyΨ of the domain isminimized. In structural

mechanics this energy functional is referred to as Helmholtz free energy; the deformation energy

density or deformation energy density function w̄ is defined as

Ψ =

∫
Ω

w̄ dΩ (2.1)

The material is at rest when the variation of Ψ vanishes, meaning δ (Ψ) = 0.
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2.1.1 Strain tensors

Deformation energy density w̄ depends on the local deformation of the material and the

local material properties, so to define the dependency of w̄ to deformation, the deformation gradint

tensor F is introduced as

Fi, j =
∂xi

∂X j
(2.2)

where xi and X j are the components of deformed coordinate (Eulerian) and original undeformed

reference coordinate (Lagrangian), respectively. Figure(2.1) illustrates the undeformed and de-

formed configurations and the respective coordinate systems for a continuum particle.

X

X

x

X

1

2

3

1

2

3x

x

Path line

u(x,t)=U(X,t)

x=f(X,t)

Un-deformed
Configuration

Deformed
Configuration

Figure 2.1 Deformation of continuum particle
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The Right Cauchy-Green deformation tensor C and the left Cauchy-Green deformation

tensor B are expressed as

C = FT F, B = FFT (2.3)

These definitions are used to define the strain tensors in the Lagrangian and Eulerian coordinates.

Large or finite strain tensor is the measure of change in the length of material ds2 = dx2− dX2 with

respect to dx2 or dX2. These measures, and resultant displacements, are depicted in figure(2.2).

The Eulerian/Almansi strain tensor η and Lagrangian/Green strain tensor γ can be written as

γ =
1
2

(C − I), η =
1
2

(I − B−1) (2.4)

The strain tensors can be written as a function of displacement u = x − X as well.

X

X

x

X

1

2

3

1

2

3x

x

u(x,t)=U(X,t)

x=f(X,t)

Un-deformed
Configuration

Deformed
Configuration

Figure 2.2 Displacement of continuum particle
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After algebraic manipulation the Eulerian and Lagrangian strain tensors in terms of dis-

placement gradients become

γ =
1
2

(
∂ui

∂X j
+
∂u j

∂Xi
+
∂uk

∂Xi

∂uk

∂X j

)
, η =

1
2

(
∂ui

∂x j
+
∂u j

∂xi
−
∂uk

∂xi

∂uk

∂x j

)
(2.5)

Considering the principle of material frame indifference for isotropic materials results in the strain

energy density function depending only on the left or the right Cauchy deformation tensors or

equivalently the invariants of these tensors. Similarly, strain energy density function only depends

on invariants of, for example C tensor, which are

w̄ (I1, I2, I3) , det(F) = J

I1 = tr(C) = λ2
1 + λ

2
2 + λ

2
3

I2 =
1
2

(
tr(C)2 − tr(C2)

)
= C : C = λ2

1λ
2
2 + λ

2
2λ

2
3 + λ

2
3λ

2
1

I3 = det(C) = (J)2 = λ2
1λ

2
2λ

2
3

(2.6)

where det and tr refer to the determinant and trace of a tenor, J is the Jacobian and d(v )
d(V ) represents

the volume change between the deformed and reference configurations, and λi’s are the eigenvalues

of tensor C. Differentiating of these invariants with respect to C gives

∂I1

∂C
= I,

∂I2

∂C
= 2C,

∂I3

∂C
= I3C−1 (2.7)

For small deformations, after neglecting the higher order terms, the Eulerian/Almansi and La-

grangian/Green strain tensor are equivalent with the small or infinitesimal strain tensor ε, that
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is

γ = η = ε = 1
2

(
∂ui
∂X j
+

∂u j

∂Xi

)
= 1

2

(
∂ui
∂x j
+

∂u j

∂xi

)
(2.8)

2.1.2 Stress tensors

Deformation energy Ψ is the energy required to deform a material and represents the area

under the stress-strain diagram. In the equilibrium state the variation of deformation energy is zero.

This variation may be expressed as

δΨ =

∫
Ω

∂w̄

∂γ
: δγ =

∫
Ω

∂w̄

∂C
∂C
∂γ

: δγ =
∫
Ω

2
∂w̄

∂C
: δγ (2.9)

The relation between C and γ in the above equation is defined in equation(2.4). Disregarding

residual stresses for isothermal reversible processes, ∂w̄
∂γ in the above equation has a physical

meaning and is referred to as the second Piola-Kirchhoff stress tensor P − K2 or S.

S =
∂w̄

∂γ
=

2∂w̄
∂C
= 2

∂w̄

∂I1
I + 4C

∂w̄

∂I2
+ 2I3C−1 ∂w̄

∂I3
(2.10)

Applying this stress tensor to an area element with unit normal vector N and on area of A in the

original undeformed coordinate results in a non-physical force F−1 f in the reference coordinate

system, where f is the physical force on the area

S N dA = F−1 f (2.11)
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In the above equation, f pertains to the physical force on the deformed area, hence to obtain a

stress tensor in the undeformed configuration that results in the physical force in the deformed

configuration, the first Piola-Kirchhoff stress tensor P − K1 or P is defined as P = F S

S = F−1P→ P N dA = f (2.12)

X

X x

X

1

2

3
1

2

3x

x

NUn-deformed
Configuration

Deformed
Configuration

f

P

Figure 2.3 Relation between the Cauchy stress tensor and first P-K stress tensor

Finally, as shown on figure(2.3), the Cauchy stress tensor σ is specified on the deformed

configuration that relates the actual force vector f on the deformed area a with unit normal n to

the stress tensor

σ n da = f (2.13)
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2.2 Constitutive equations

Constitutive equations relate the material response to the applied loading, for example in

structural mechanics the relationship between stresses or forces with strains or deformations is

defined with these equations [1]. As discussed in section(2.1.2) the second Piola-Kirchhoff stress

tensor is the derivative of strain energy density w̄ with respect to Lagrangian/Green strain tensor γ.

In general for isothermal processes the second Piola-Kirchhoff stress tensor in terms of the Green

strain tensor can be simplified to

S = K : γ or Si j =
∑
kl

Ki j kl γkl (2.14)

where K is a fourth order stiffness tensor. Equation(2.14) is known as Hooke’s law, and the strain

energy density function for these materials will be reduced to

w̄ =

∫
Ω

γ : K : γ (2.15)

The definition of deformation energy density will depend on the material of interest.

2.2.1 Linear elastic materials

Materials for which the constitutive behavior is only a function of the current state of

deformation are generally known as elastic [1]. As shown in equation(2.8), for small deformations,

the infinitesimal strain tensors may be used and the relation between stress and strain can be written

9



as

σ = K : ε (2.16)

where K is the fourth order stiffness tensor and defined as

Kijkl = λδijδkl + µ
(
δikδjl + δilδjk

)
(2.17)

where λ and µ are the first and second Lamé’s constants that depend on the mechanical properties

of the material. These parameters can be represented in terms of the Young’s modulus E and

Poisson’s ratio ν for and isotropic material as

λ = ν E
(1+ν)(1−2ν)

µ = E
2(1+ν)

(2.18)

Substituting the stiffness tensor in equation(2.17), into equation(2.15) and assuming the material

undergoes small strains, gives the strain energy function of linear elasticity as

w̄ =

∫
Ω

ε : K : ε (2.19)

Since these materials assume small strains, the elasticity equations are the same in the current and

the reference configurations.
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2.2.2 Neo-Hookean hyper elastic materials

When the work done by the stresses during a deformation process is dependent only on the

initial state and the final configuration, the behavior of the material is said to be path-independent

(that is, reversible) and the material is termed hyper elastic [1]. A general type of hyper elastic

materials is called neo-hookean or rubber like materials [2]. The strain energy function of these

materials is defined as

w̄ =
1
2
µ(I1 − 3) − µ ln(J) +

1
2
λ(J − 1)2 (2.20)

The second Piola-Kirchhoff and Lagrangian elasticity tensors are defined as the first and second

derivatives of the equation(2.20) and are shown in equations(2.21) and (2.22) respectively.

S = µ(I − C−1) + λJ (J − 1)C−1 (2.21)

K = λJ (2J − 1)C−1 ⊗ C−1 + 2
[
µ − λJ (J − 1)

]
♦

♦i j kl =
(
C−1

)
ik

(
C−1

)
jl

(2.22)

The stress and stiffness tensors can be defined in the current or Eulerian configuration as well [3].

As discussed before, stress in the current configuration is known as the Cauchy stress tensor or σ

and can be written in terms of the second Piola-Kirchhoff tensor as

S = J F−1 σ F−T ;σ = J−1F S FT (2.23)
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Hence, the stress and stiffness tensors in the Eulerian configuration are

σ =
µ
J (B − I) + λ(J − 1)I

KEulerian = λ (2J − 1)I ⊗ I + 2
J
[
µ − λJ (J − 1)

]
℘

℘i j kl = δikδ jl

(2.24)

Based on additional assumptions, the equations for neo-Hookean hyper elasticity may take different

forms. In the current work, transversely isotropic neo-Hookean materials are implemented and will

subsequently be discussed. Interested readers are directed to [1] for more details concerning the

various forms of these equations. If the deformation energy density is defined as

w̄ =
µ

2
(I1 − 3) − µ ln(J) +

λ

2
(ln J)2 (2.25)

The Cauchy stress and stiffness tensors for this model are

σ =
µ
J (B − I) + λ

J (ln J)I

KEulerian =
λ
J I ⊗ I + 2

J
[
µ − λ ln J

]
℘

℘i j kl = δikδ jl

(2.26)

2.2.3 Saint Venant-Kirchhoff materials

The simplest model for hyper-elastic materials is the Saint Venant-Kirchhoff model which

is used for isotropic and isothermal materials. Strain energy density for these materials is defined
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as

w̄ (γ) =
1
2
λ

(
tr(γ)

)2
+ µγ : γ (2.27)

The second Piola-Kirchhoff stress tensor becomes

S =
∂w̄ (γ)
∂γ

=
(
λδi jδkl + µ

(
δikδ jl + δilδ j k

))
γkl = λtr(γ)I + 2µγ (2.28)

The stiffness tensor in these types of materials is constant and shall be defined the same as linear

elastic materials. The difference between this class of materials and linear elastic materials is that

the strain is not linear. Therefore, Hooke’s law for these materials in the reference and current

configurations can be defined as

S = K : γ

σ = K : η
(2.29)

The constitutive equations presented in section(2.2.2) are valid in the fully nonlinear range and

they are used as the isotropic component of the transversely isotropic model derived in section(5).

Constitutive equations here in section(2.2.3) for the Saint Venant-Kirchhoff materials have linear

stress-strain relations, therefore these equations are more applicable in small to moderate strain

ranges.
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2.3 Discretization of linear elasticity

Strain and stress tensors in both Lagrangian and Eulerian coordinates have been discussed.

The relationship between these two tensors is defined through the constitutive equations that was

generally illustrated in the previous section. The strong form of the elasticity equations, as previ-

ously noted, represent the conservation of momentum in the Lagrangian coordinate for mechanics

of materials. A general methodology for the solution of structural problems is the finite element

method. Two commonly used discretization techniques for linear materials will be presented in

chapter(3).

2.4 Linearization and Newton-Raphson solution

The neo-hookean and Saint Venant-Kirchhoff model of materials are nonlinear and, there-

fore must be solved iteratively. An iterative solution procedure, such as Newton-Raphson method,

requires linearization of the system of equations. There are different approaches to numerically

obtain the linearization of the system. Two such techniques are traditional finite difference or the

complex Taylor series expansion (CTSE) method [4]. Using the CTSE method the exact tangent

matrix for the simulation process will be obtained to second order accuracy and without subtractive

cancellation errors. In this section a linearized tangent matrix based on the virtual work schemewill

be provided. Virtual work of these nonlinear materials for a system undergoing a virtual velocity is

a function of the current configuration =(x) or displacement =(u). Recall the displacement vector

u = x − X → R = δW (x) = =(x) or R = δW (u) = =(u) (2.30)

14



where R is the residual. In the virtual work the summation of internal and external works should

be zero, hence

R = δW (u) =
∫

S : γ̇ dV̄−
∫

b.δv dV̄−
∫

t.δv dA = 0 (2.31)

where v is the velocity vector, b is the body force, t is traction forces on the surface and V̄ is the

volume in the original configuration. γ̇ is the material strain rate tensor and is defined as

γ̇ =
1
2

Ċ =
1
2

(
ḞT F + FT Ḟ

)
(2.32)

Ḟ is the time derivative of the deformation gradient tensor F. The displacement vector u and the

velocity vector v can be written in terms of the basis functions Ni and nodal displacement values

ui as u =
∑

Niui = N .u and v = N .v . The velocity gradient tensor l is defined as the derivative

of velocity with respect to the current coordinates. With this definition the time derivative of the

deformation gradient tensor becomes

l =
∂v(x, t)
∂x

= ∇xv = ∇x N .v → Ḟ =
∂v(x, t)
∂X

= l F = (∇x N .v ) F (2.33)

Using the Newton-Raphson algorithm and assuming that the residual approaches zero, the first

order expansion is written as

Rn+1 = Rn +
∂R
∂u

du →
∂R
∂u

du = −Rn (2.34)
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Substituting the residual due to internal work from equation(2.31) into the above relation, the

linearized internal work can be written as

∂
(∫

V̄
S:γ̇

)
dV̄

∂u =
∫

V̄

(
∂S
∂u : γ̇

)
dV̄ +

∫
V̄

(
S : ∂γ̇

∂u

)
dV̄

=
∫

V̄

(
∂S
∂γ

∂γ
∂u : γ̇

)
dV̄ +

∫
V̄

(
S : ∂γ̇

∂u

)
dV̄

=
∫

V̄

(
∂γ
∂u : K : γ̇

)
dV̄ +

∫
V̄

(
S : ∂γ̇

∂u

)
dV̄

(2.35)

Equation(2.35) assumes that the external work is not a function of displacement vector. To evaluate

the above equation, the terms ∂γ
∂u , γ̇ and ∂γ̇

∂u should be defined. Furthermore, the derivative of

deformation gradient tensor with respect to displacement may be expressed as

∂F
∂u
=

∂

∂u

(
∂(X +

∑
Niui)

∂X

)
= ∇X N = ∇x N . F (2.36)

With this equation ∂γ
∂u is given by

∂γ

∂u
=
∂γ

∂F
∂F
∂u
=

1
2

FT (∇x N + (∇x N )T )F = FT (∇x N )F (2.37)

Following equations(2.32) and (2.33) the material strain rate tensor yields

γ̇ =

(
1
2

FT (∇x N + (∇x N )T ).v F
)
= FT (∇x N ).v F (2.38)

Also ∂γ̇
∂u is the time derivative of equation(2.37) and is defined as

∂γ̇

∂u
=
∂

∂t
∂γ

∂u
=
∂

∂t

(
FT (∇x N )F

)
= ḞT (∇x N )F + FT (∇x N )Ḟ = FT (∇x N∇x N ).v F (2.39)
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The relation between the elasticity tensor, stress tensor and volumebetweenEulerian andLagrangian

coordinates can be written as

σ = J−1FSFT

(KEulerian)i j kl = J−1
3∑

I,J,K,L=1
FiIF j JFkKFlLKI JK L

v̄ = J V̄

(2.40)

Substituting these relations, along with equations(2.37), (2.38) and (2.39), into equation(2.35), the

linearized internal work in the current or Eulerian coordinates can be written as

∂R
∂u
=

∫
v̄

(∇x N : KEulerian : ∇x N ) d v̄ +
∫
v̄
σ : (∇x N∇x N ) d v̄ (2.41)

The linearized format is further analyzed and validated with central finite difference formulations.

As it is obvious in equation(2.41), the first part of the linearized internal work is the stiffness matrix

for linear materials. The second part is the added term in the tangent matrix for the nonlinear

materials. In these equations the stress and elasticity tensors should be calculated with the relations

provided based on the material of interest. Furthermore, at each iteration, the linear system is

solved using GMRES [5].

External work can also be a function of current configuration because of change in volume

and surface area of material after deformation and these terms can contribute in the calculation of

the LHS. Three procedures are suggested for this issue:
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• First is to assume that the body and boundary forces are constant with deformation; for exam-

ple, constant weight means that the density of the elements changes with the transformation

of the elements to maintain the constant body force.

• Second is to take into account this nonlinear part in the tangent matrix.

• And third is to ignore this fraction of nonlinearity because it is not necessary to have an exact

tangent matrix, but these parameters should be exactly calculated in the right hand side.
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CHAPTER 3

DISCONTINUOUS GALERKIN FOR ELLIPTIC EQUATIONS

3.1 Introduction

Discontinuous Galerkin (DG) finite elements methods intrinsically have some attractive

properties and, therefore have received considerable attention within the scientific community.

However, one drawback of these schemes has been their computational implementation for second

order equations. Following [6], in this section, DG schemes for solving Poisson and linear elastic-

ity equations are formulated in a unified primal equation. From these methods, classes of interior

penalty methods are rewritten by adding stability and symmetry terms. By introducing new fluxes

for the interior and boundary faces, the primal equation that applies for all branches of interior

penalty schemes can be formulated. Herein, detailed implementation of those equations is described

and discussed, and a few examples with exact solutions are illustrated and verified via error analysis.

3.2 A short note about history

In recent years, Discontinuous Galerkin (DG) finite element methods (FEM) that allows

discontinuity between the elements have been used in a wide range of applications. This stems from

the characteristics of DG formulations. DG methods can be locally high-order accurate enabling

them to model complex geometries and sensitive boundary conditions. Although discontinuity
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between the elements increases the number of degrees-of-freedom of the problem, the mass matrix

is block diagonal. Furthermore, the stiffness matrix will only be dependent upon the local element

and the immediate neighbors of the elements. These attributes render these schemes ideal for par-

allelization and adaptation techniques. Moreover, stability of the DG techniques can be guaranteed

in the formulation. Being locally conservative for physical quantities such as mass, momentum

and energy, DG methods have received considerable attention in Computational Fluid Dynamics

(CFD) [7].

Reed and Hill [8] first introduced DG methods for hyperbolic equations. During the

same decade some variants of Galerkin FEM admitting discontinuities between elements were

introduced for elliptic and parabolic equations [9,10]. This family of FEM is called interior penalty

(IP) methods and share a common concept with the DG methods.

In the last decade, implementation of DG methodologies have grown in solid mechanics

due to the amenability of the methods for parallel programming and to complex geometries. Some

examples of exploiting the DG method for beams, plates and shells can be found in [11, 12]. Lew

et al. [13] have implemented DG for linear elasticity, Hansbo and Larson [14] also developed a DG

FEM for incompressible and nearly incompressible elasticity. Eyck and Lew [15] expanded the

implementation in [13] to non-linear elasticity.

Discontinuity in the displacement jumps between the elements and compatibility of the

mesh adaptation in crack propagation problems are pressing issues within fracture mechanics and

may be addressed using DG approaches. Examples of implementation of DG methods in fracture

mechanics can be found in [16–18].
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The Interior Penalty (IP) method was first introduced to impose Dirichlet boundary condi-

tions weakly. Nitsche [19] introduced a consistency, symmetric and a penalty term in the bi-linear

matrix of the Poisson equation. In a similar work by Babuška [20], a penalty term for penalizing

the jump was utilized. Further discussion concerning the IP scheme can be found in the works

by Arnold [10], Douglas and Dupont [9], Baker [21] and Babuška and M. Zlámal [22]. For other

implementations of the IP scheme, and an excellent review of the development of IP methods, the

reader is directed to [23]. Meanwhile, starting with the work of Bassi and Rebay in 1997 [24], but

independently from improvements in the IP, DG schemes for elliptic equations were implemented

in the Navier-Stokes equations. Later Cockburn and Shu [25] generalized the work of Bassi and

Rebay and introduced the Local Discontinuous Galerkin (LDG) method. Other variants were pro-

posed by Brezzi et al. [26, 27], Baumann and Oden [28], Bassi et al. [29] and Riviére et al. [30].

As noted in the work of Arnold et al. [6], these variants can be written in a unified fashion and the

difference between them is the definition of numerical fluxes. A complete review concerning the

development of DG methods can be found in [31].

The next section is devoted to explaining the discussed DG formulations of the Poisson

equation in a unified format. IP schemes will be subsequently presented for the Poisson equation

and linear elasticity. In this work, implementation of the DG scheme is thoroughly discussed, and

examples with error analysis are provided for verification.
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3.3 Discontinuous Galerkin formulation of the Poisson equation in a unified primal format

A d-dimensional convex polygon computational domain of Ω in Rd , d = 1, 2 or 3, confined

in boundary ∂Ω partitioned with Dirichlet and Neumann boundary condition of ∂ΩD and ∂ΩN is

defined; where ∂ΩD ∪ ∂ΩN = ∂Ω, ∂ΩD ∩ ∂ΩN = ∅ and ∂ΩD , ∅. Consider the model boundary

value problem of

−∇.(κ∇u) = f in Ω

u = uD on ∂ΩD

κ ∂u
∂n = uN on ∂ΩN

(3.1)

where f , uD and uN are given functions in L2(Ω), κ is a positive value in L∞(Ω) and n is the outward

unit normal vector on the boundaries. Introducing an auxiliary variable σ̄ = κ∇u, equation(3.1)

can be written as a system of two ordinary differential equations

σ̄ = κ∇u in Ω

−∇.σ̄ = f in Ω

u = uD on ∂ΩD

σ̄.n = uN on ∂ΩN

(3.2)

Assume subdivision Th = {E} of the domain Ω, where E is an interval, triangle or tetrahedron if

d =1,2, or 3, respectively. Broken spaces V (Th) and Σ̄(Th) are introduced as

Vh :=
{
v ∈ L2(Ω) : v |E ∈ P(E) ∀E ∈ Th

}

∑
h :=

{
τ ∈

[
L2(Ω)

] d
: τ |E ∈

∑
(E) ∀E ∈ Th

} (3.3)
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where P(E) = Pp(E) is the polynomial space with the degree of 1 ≤ p and
∑

(E) =
[
Pp(E)

] d
is a

polynomial vector field of degree p or p − 1. Now uh ∈ Vh and σ̄h ∈
∑

h should be found such that

for all elements E ∈ Th the following relations holds

∫
E σ̄h.τ dx =

∫
E (κ∇uh).τ dx∫

E (−∇.σ̄h) v dx =
∫

E f v dx
(3.4)

Application of integration by parts gives

∫
E
σ̄h.τ dx = −

∫
E

uh ∇.(κτ) dx +
∫
∂E

û κ (τ.n) ds (3.5)

∫
E
σ̄h.∇v dx =

∫
E

f v dx +
∫
∂E
v (σ̂.n) ds (3.6)

In the above equations, ∂E refers to boundaries of all elements E ∈ Th and û and σ̂ are the

numerical f luxes that approximate the traces of u and σ̄ = κ∇u on ∂E. ∂E can be divided to

boundary faces ∂Ω and the union of all interior faces ∂Ωi. Furthermore, ∂Ω consists of Neumann

boundary condition ∂ΩN andDirichlet boundary conditions ∂ΩD. By setting τ = ∇v , equation(3.5)

can be rewritten as

∫
E
σ̄h.∇v dx = −

∫
E

uh ∇.(κ∇v ) dx +
∫
∂E

û κ (∇v.n) ds (3.7)
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Performing integration by parts on the first term in the right hand side of equation(3.7) yields

∫
E
σ̄h.∇v dx =

∫
E
∇uh (κ∇v ) dx+

∫
∂E

(û − uh) (κ∇v ).n ds (3.8)

E1

E2

n+

n-

eee

qq
q
+

-

ne

Figure 3.1 Face e shared with two elements E1 and E2 with the unit normal of ne from E1 to E2
with double valued variable q on either side

To prevent double surface integration over ∂Ei, two operators of jump [.] and average {.}

are defined. As shown in figure(3.1), considering an interior face e between two elements E1 and

E2 with an associated unit normal of ne, these operators are defined as

∀e = ∂E1 ∩ ∂E2, [w] = (w |E1) − (w |E2), {w} =
1
2

(w |E1) +
1
2

(w |E2) (3.9)

The definition of these two operators on the boundary faces are

∀e = ∂E1 ∩ ∂Ω, [w] = (w |E1), {w} = (w |E1) (3.10)
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It can be shown that the result of the integration of variable q multiplied by a test function w on the

element boundaries ∂E each with unit normal of ne can be written as the summation of jump and

average operators on the union of interior faces ∂Ωi with unit normal vector of n and the boundary

of domain ∂Ω

∑
E∈Th

∫
∂E

q w neds =
∫
∂Ωi

[
q
]
{w} nds +

∫
∂Ωi

{q} [w] nds +
∫
∂Ω

q w nds (3.11)

Comparing equations(3.6) and (3.8), the equivalency of the Left Hand Side (LHS) of these two

equations can be observed, thus the combination of these two equations gives the the so called

primal formulation

∫
E
∇uh .(κ∇v ) dx+

∫
∂E

(û − uh) (κ∇v ).n ds =
∫

E
f v dx +

∫
∂E
v (σ̂.n) ds (3.12)

Furthermore applying relation(3.11) in equation(3.12) gives

∫
E ∇uh .(κ∇v ) dx+

∫
∂Ωi

([û − uh] {κ∇v } + {û − uh} [κ∇v]) .n ds

−
∫
∂Ωi

([σ̂] {v } + {σ̂} [v]) .n ds +
∫
∂Ω

(ûb − uh) (κ∇v ).n ds −
∫
∂Ω
v (σ̂b.n) ds

=
∫

E f v dx

(3.13)

in which ûb and σ̂b refer to the fluxes on the boundaries.

Equation(3.13) is the basis to compare different variants of DG schemes for the elliptic

equations. The diversity of the methods originates from the definition of fluxes on the interior and

boundary faces. These effect the behavior of the solution, such as the stability and accuracy, as well
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as sparsity of the matrices or symmetry of the stiffness matrix. Other properties such as locality,

consistency and conservation can be investigated for each method as well. These properties are

defined as:

1. A method is called local if the fluxes defined on the face e shared between elements E1 and

E2 are only function of uE1, ∇uE1, σ̄E1 , uE2, ∇uE2 and σ̄E2.

û|e = f (uE1,∇uE1, σ̄E1, uE2,∇uE2, σ̄E2)

σ̂ |e = f (uE1,∇uE1, σ̄E1, uE2,∇uE2, σ̄E2)
(3.14)

2. Consistency refers to schemes that satisfy

û|e = f (uE1,∇uE1, uE2,∇uE2) = u|e

σ̂ |e = f (uE1,∇uE1, uE2,∇uE2) = κ∇ u|e

(3.15)

Where u|e satisfy the Dirichlet boundary conditions on ∂ΩD.

3. And finally a scheme is conservative if the numerical fluxes û and σ̂s on a face shared between

elements E1 and E2 are the same

ûE1 |e = ûE2 |e

σ̂E1 |e = σ̂E2 |e

(3.16)
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In fact, if the test function v in equation(3.6) is taken as identity, the conservative fluxes

satisfy

∫
E

f dx = −
∫
∂E

(σ̂.n) ds (3.17)

Further discussion and comprehensive reviews concerning these properties can be found in the

works of Arnold et al. [23] and Castillo [32].

3.3.1 Interior penalty methods

DG schemes for the elliptic problems can be categorized as Symmetric Interior Penalty

discontinuous Galerkin (SIPG), Non-Symmetric Interior Penalty discontinuous Galerkin (NIPG)

and Incomplete Interior Penalty discontinuous Galerkin (IIPG). The differnece between these

methods is the sign of the added symmetry term to the weak form of the elliptic equation. To begin

considering the concept of IP methods, one can write the weak form of Poisson equation as

∫
E
∇uh (κ∇v ) dx −

∫
∂E

(κ∇uh) .n v ds =
∫

E
f v dx (3.18)

or with the average and jump notations as

∫
E ∇uh (κ∇v ) dx −

∫
∂Ωi

({κ∇uh} [v]) .n ds −
∫
∂Ωi

([κ∇uh] {v }) .n ds −
∫
∂Ω

(κ∇uh) .n v ds

=
∫

E f v dx
(3.19)
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In the exact solution, the term −
∫
∂Ωi

([κ∇uh] {v }) .n ds vanishes and makes integration unstable,

hence this term is omitted and two other terms are added to equation(3.19) to insure the coercivity

of the scheme. The general formulation can be written as

A(uh, v) = L(v ) (3.20)

where A(uh, v) is the bi-linear form and L(v ) the linear form and are defined as

A(uh, v) :=
∫

E ∇uh (κ∇v ) dx −
∫
∂Ωi

({κ∇uh} [v]) .n ds −
∫
∂Ω

(κ∇uh) .n v ds

−

symmetr y︷                                 ︸︸                                 ︷
α

∫
∂Ωi+∂Ω

({κ ∇v } [uh]) .n ds +

stabilit y︷                            ︸︸                            ︷∫
∂Ωi+∂Ω

ηe
/
le

([uh] [v]) ds

L(v ) :=
∫

E f v dx

(3.21)

The first and second added terms are known as symmetry and stabilization terms, and ηe
/
le
is the

penalty parameter. Here, le is the diameter of element and ηe is a positive coefficient that must

be large enough to insure the stability of the method [10]. Epshteyn and Riviére [33] expressed

the minimum value of ηe as a function of the local polynomial degree and the smallest degree in

the triangulation of the mesh for SIPG and IIPG. As described by Wheeler [34], ηe should only

be a positive number and does not have any minimum limit in NIPG method. Other limits for

the stability coefficient can be found in the work by Shahbazi [35]. Furthermore, the coefficient α

defines the variant of IP method:

1. α = 1 : SIPG, Douglas and Dupont [9], Wheeler [34]

2. α = −1 : NIPG, Baumann and Oden [36], Riviére, Wheeler and Girault [30]
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3. α = 0 : IIPG, Sun and Wheeler [37]

The bi-linear form A(uh, v) is positive definite for a sufficiently large penalty parameter; it is also

symmetric for SIPG and non-symmetric for NIPG and IIPG.

A set of local, consistent and conservative fluxes are defined here for SIPG methods as

Interior Faces




û = {uh}

σ̂.n = κ∇uh.n −
(
ηe

/
le

)
[uh]

Dirichlet Boundaries




ûb = uD

σ̂b.n = κ ∇uh.n − ηe
/
le

(uh − uD)

Neumann Boundaries




ûb = uh

σ̂b.n = uN

(3.22)

Incorporating these fluxes into equation(3.13), and using the following identities

[{.}] = 0, [[.]] = 0, {[.]} = [.] , {{.}} = {.} (3.23)

The primal equation(3.13) for SIPG can be expressed as

A (uh, v) =
∫

E ∇uh .(κ∇v ) dx +
∫
∂Ωi∪∂ΩD

ηe
/
le

([v] [uh]) ds

−
∫
∂Ωi∪∂ΩD

({κ∇uh} [v]) .n ds −
∫
∂Ωi∪∂ΩD

({κ ∇v } [uh]) .n ds

L(v ) :=
∫

E f v dx −
∫
∂ΩD

(κ∇v ) .n uD ds +
∫
∂ΩD

ηe
/
le
v uD ds +

∫
∂ΩN

v uN ds

(3.24)
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NIPG and IIPG are different in that the bi-linear form is not symmetric. Following equation(3.13)

all of the IP variants can be written as

A (uh, v) =
∫

E ∇uh (κ∇v ) dx +
∫
∂Ωi∪∂ΩD

ηe
/
le

([v] [uh]) ds

−
∫
∂Ωi∪∂ΩD

({κ∇uh} [v]) .n ds − α
∫
∂Ωi∪∂ΩD

({κ ∇v } [uh]) .n ds

L(v ) :=
∫

E f v dx − α
∫
∂ΩD

(κ∇v ) .n uD ds +
∫
∂ΩD

ηe
/
le
v uD ds +

∫
∂ΩN

v uN ds
(3.25)

3.3.2 Investigation of the consistency of the proposed fluxes

To check the consistency of the unified interior penalty in relation(3.25), another set of

fluxes are investigated and the results are compared with the proposed formulation.

3.3.2.1 Babuška and M. Zlámal scheme

One straightforward choice of fluxes has been defined by Babuška andM. Zlámal (B-Z) [22]

as

û = ûb = uh

σ̂.n = σ̂b.n = −ηe
/
le

[uh]
(3.26)

Thus the weak form of the B-Z scheme is

∫
E ∇uh .(κ∇v ) dx+

∫
∂Ωi

ηe
/
le

( [u] [v]) ds +
∫
∂Ω
ηe

/
le

( [u] v ) ds =
∫

E f v dx
(3.27)
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3.3.2.2 An example about the consistency of the methods

The B-Z method lacks the consistency and symmetry. For example consider the equation

−∆u = 2 0 ≤ x̂ ≤ 1, 0 ≤ ŷ ≤ 1, with Dirichlet boundary conditions, one exact solution to this

equation is u = −x̂2. Choosing the test function as v = 1, the first term in equation(3.27) is equal to

zero because ∇v = 0, also second term is zero because [v] is zero, and utilizing the exact solution

in the remaining integrals gives

−ηe
/
le

(∫ 1

0
x̂2��� ŷ=1

dx̂ +
∫ 1

0
x̂2��� ŷ=0

dx̂ +
∫ 1

0
x̂2���x̂=1

d ŷ
)
,

∫
E

f dx = 2 (3.28)

In the same fashion, equation(3.25) for the above example can be simplified to

∫
∂ΩD

ηe
/
le

(uh) ds −
∫
∂ΩD

(κ∇uh) .n ds =
∫

E
f dx +

∫
∂ΩD

ηe
/
le

(uD) ds (3.29)

Substituting the exact solution u = −x̂2 in the remaining integrations gives us a similar relationship

to the definition of conservative scheme in equation(3.17)

−

∫
∂ΩD

(κ∇uh) .n ds =
∫

E
f dx (3.30)

This is in fact the divergence theorem that results in

∫
∂ΩD

(2x̂) .n ds =
∫ 1

0 (2x̂) | ŷ=1 dx̂ −
∫ 1

0 (2x̂) | ŷ=0 dx̂ +
∫ 1

0 (2x̂) | x̂=1 d ŷ =∫
E f dx = 2

(3.31)
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Thus all of the IP variants for this example are consistent.

3.4 Interior penalty methods for linear elasticity equation

Similar to steps described in section(3.3), the so called primal equation for linear elasticity

problems can be written as

A (uh, v) =
∫

E ∇uh : K : ∇v dx +
∫
∂Ωi∪∂ΩD

ηe
/
le

([v] : [uh]) ds

−
∫
∂Ωi∪∂ΩD

({K : ∇uh} : [v]) ⊗ n ds − α
∫
∂Ωi∪∂ΩD

({K : ∇v } : [uh]) ⊗ n ds

L(v) :=
∫

E f : v dx − α
∫
∂ΩD

((K : ∇v) : uD) ⊗ n ds +
∫
∂ΩD

ηe
/
le

v : uD ds +
∫
∂ΩN

v : uN ds

(3.32)

Vector variables u, v and f are presented in this equation as opposed to scalar variables u, v and

f used for Poisson equation. Additionally, K is the elasticity matrix, and the colon ":" and outer

product ⊗ operators are defined as

x : y =
∑
i j

xi j yi j

x : M =
∑
i j

xi j Mi j kl

M : y =
∑
k l

Mi j kl ykl

x ⊗ y = x yT

(3.33)

where x, y are vectors and M is a matrix. Detailed definition and implementation procedure of

each term in equations(3.32) and (3.25) is presented in the next section.

32



3.5 Discretization and numerical implementation

For implementing the DG primal equations for the Poisson and linear elasticity the dis-

placement vector u is discretized over each element with standard finite element procedure. This

discretization is illustrated in figure(3.2).

Figure 3.2 Illustration of discontinuity between the shape functions and element nodes in adjacent
elements in two dimensional discontinuous Galerkin formulation

In three dimensional space u ∈ Ω ⊂ IR3, and can be discretized as u ≈
∑

Niui. The

following matrices are given to express the primal equations of linear elasticity in standard matrix
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form. Defining

N̄ =



N1 0 0

0 N1 0

0 0 N1

���������������

N2 0 0

0 N2 0

0 0 N2

���������������

· · ·



, n =



nx 0 0 0 nz ny

0 ny 0 nz 0 nx

0 0 nz ny nx 0



T

B̄ =



N1,x 0 0

0 N1, y 0

0 0 N1,z

0 N1,z N1, y

N1,z 0 N1,x

N1, y N1,x 0

������������������������������

N2,x 0 0

0 N2, y 0

0 0 N2,z

0 N2,z N2, y

N2,z 0 N2,x

N2, y N2,x 0

������������������������������

· · ·



(3.34)

where ∗,x indicates the derivative of ∗with respect to variable x and nx , ny and nz are the components

of the normal vector in the Cartesian coordinates. B̄ is referred to as the strain-displacement matrix.

Implementing these relations, the following terms may be expressed as

u = N̄.U, ∇u = B̄.U (3.35)

The following sections are devoted to describe the implementation procedure of the primal equations

of linear elasticity and Poisson equation. Expanded version of these relations are provided for two

dimensional implementations. For the two dimensional problems the elasticity or constitutive
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matrix K will be defined in general as

K =



d11 d12 d13

d21 d22 d23

d31 d32 d33



(3.36)

3.5.1 LHS loops

Calculation of the LHS, or the bi-linear term, requires three loops. These consist of one

over the elements, one over the interior boundaries of element, and one over theDirichlet boundaries.

3.5.1.1 Domain loop

The domain loop is similar to the Continuous Galerkin (CG) formulation and the description

of this implementation is provided in standard CG books.

∫
E ∇uh : K : ∇v dx =

∫
E B̄T K B̄.U dx

(3.37)

3.5.1.2 Interior faces loop

Unlike the CG formulation, there is an internal boundary loop in DG. The implementation

is illustrated in algorithm(1) where We and Je are the weight and Jacobian associated with each

Gauss point on the boundary segment. Table(3.1) defines the parameters of algorithm(1) for each

corresponding integral for linear elasticity. In this integration, the nodes that corresponds to an
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interior face from adjacent elements are involved. Expansion of the involved terms in the interior

loop are provided in equations(3.38), (3.39) and (3.40). Careful attention should be taken for

the sign of variable β during the calculations. This variable can be +1 or −1 according to the

multiplication sign of the jumps in (u2−u1)× (v2− v1). Although the integration is performed over

the faces, other elemental shape functions contribute to this integral. Assuming that the Lagrange

shape functions are used for the interpolations, non-adjacent shape functions to the face are zero

in the integration, but may have non-zero derivatives along this face and should be accounted for

during the integration.

Table(3.2) defines the parameters of algorithm(1) for each corresponding integral for Poisson

equation and expansion of the involved terms in the interior loop are provided in equation(3.41).

Algorithm 1 Interior face integration
1: Loop (e) over every interior face
2: Loop over line Gauss points
3: Loop (i) over both sides of the face param1
4: Loop (j) over both sides of the face param2
5: A [c̄ (uh, v)]+ = We × Je ×

(
k̄1 + k̄2 + k̄3

)

Table 3.1 Description of parameters in algorithm(1) for defining the stiffness matrix in linear
elasticity

Term equation param1 param2
k̄1

∫
∂Ωi

ηe
/
le

([v] : [uh]) ds face shape functions face shape functions
k̄2 −

∫
∂Ωi

({K : ∇uh} : [v]) ⊗ n ds face shape functions elemental shape functions
k̄3 −α

∫
∂Ωi

({K : ∇v } : [uh]) ⊗ n ds face shape functions elemental shape functions
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k̄1[1, 1] = ηe
/
le
× β × Ni × N j, k̄1[1, 2] = 0

k̄1[2, 1] = 0, k̄1[2, 2] = ηe
/
le
× β × Ni × N j

(3.38)

k̄2[1, 1] = −β ×
{
N j,x

( d11 Ni×nx+d31 Ni×ny
2

)
+ N j, y

( d13 Ni×nx+d33 Ni×ny
2

)}

k̄2[1, 2] = −β ×
{
N j, y

( d12 Ni×nx+d32 Ni×ny
2

)
+ N j,x

( d13 Ni×nx+d33 Ni×ny
2

)}

k̄2[2, 1] = −β ×
{
N j,x

( d31 Ni×nx+d21 Ni×ny
2

)
+ N j, y

( d33 Ni×nx+d23 Ni×ny
2

)}

k̄2[2, 2] = −β ×
{
N j, y

( d32 Ni×nx+d22 Ni×ny
2

)
+ N j,x

( d33 Ni×nx+d23 Ni×ny
2

)}

(3.39)

k̄3[1, 1] = −α × β × Ni
{( d11 Nj,x+d31 Nj, y

2

)
nx +

( d13 Nj,x+d33 Nj, y

2

)
ny

}

k̄3[1, 2] = −α × β × Ni
{( d13 Nj,x+d33 Nj, y

2

)
nx +

( d12 Nj,x+d32 Nj, y

2

)
ny

}

k̄3[2, 1] = −α × β × Ni
{( d31 Nj,x+d21 Nj, y

2

)
nx +

( d33 Nj,x+d23 Nj, y

2

)
ny

}

k̄3[2, 2] = −α × β × Ni
{( d33 Nj,x+d23 Nj, y

2

)
nx +

( d32 Nj,x+d22 Nj, y

2

)
ny

}

(3.40)

Table 3.2 Description of parameters in algorithm(1) for defining the stiffness matrix in Poisson
equation

Term equation param1 param2
k̄1

∫
∂Ωi

ηe
/
le

([v] [uh]) ds face shape functions face shape functions
k̄2 −

∫
∂Ωi

({κ∇uh} [v]) .n ds face shape functions elemental shape functions
k̄3 −α

∫
∂Ωi

({κ ∇v } [uh]) .n ds face shape functions elemental shape functions
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k̄1 = ηe
/
le
× β × Ni × N j

k̄2 = −β × N j × κ/2
{
Ni,xnx + Ni, yny

}

k̄3 = −α × β × Ni × κ/2
{
N j,xnx + N j, yny

}
(3.41)

(a) Integral face is highlighted (b) Integral face is highlighted

Figure 3.3 Reordering the elemental shape functions according to corresponding face integration

Care is needed in performing the face integration in a consistent way; that is, to utilize

the appropriate element shape functions. This is accomplished by reordering the elemental shape

functions in neighbor elements according to the face being integrated. This procedure is illustrated

in figure(3.3).
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3.5.1.3 Dirichlet boundary loop

To calculate the stiffness matrix in the DG primal form, another loop over the Dirichlet

boundary faces should be performed. This procedure is described in algorithm(2). Tables(3.3)

and (3.4) explain the parameters of this loop for the linear elastic and the Poisson equations,

respectively. The expanded equations of these terms are defined in equations(3.42), (3.43) and

(3.44) for the linear elasticity and in equation(3.45) for the Poisson equation. Logical parameter ∨

or ′or′ indicates the possibility of existence mixed boundary conditions in the boundary segments,

meaning that the segments can have Dirichlet boundary on one primary variable and Neumann

on other directions. The terms in algorithm(2) should only be implemented in the Dirichlet or

constrained directions of the boundary faces.

Algorithm 2 Integration over Dirichlet Boundary faces.
1: Loop (e) over every Dirichlet boundary faces
2: Loop over line Gauss points
3: Loop (i) over param1
4: Loop (j) over param2
5: A [c̄ (uh, v)]+ = We × Je ×

(
k̂1 + k̂2 + k̂3

)

Table 3.3 Description of parameters in algorithm(2) for defining the stiffness matrix for linear
elasticity

Term equation param1 param2
k̂1

∫
∂ΩD

ηe
/
le

([v] : [uh]) ds face shape functions face shape functions
k̂2 −

∫
∂ΩD

({K : ∇uh} : [v]) ⊗ n ds face shape functions elemental shape functions
k̂3 −α

∫
∂ΩD

({K : ∇v } : [uh]) ⊗ n ds face shape functions elemental shape functions
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k̂1[1, 1] = ηe
/
le
× Ni × N j ∨ 0, k̂1[1, 2] = 0

k̂1[2, 1] = 0, k̂1[2, 2] = ηe
/
le
× Ni × N j ∨ 0

(3.42)

k̂2[1, 1] = −1 ×
{
N j,x

(
d11Ni × nx + d31Ni × ny

)
+ N j, y

(
d13Ni × nx + d33Ni × ny

)}
∨ 0

k̂2[1, 2] = −1 ×
{
N j, y

(
d12Ni × nx + d32Ni × ny

)
+ N j,x

(
d13Ni × nx + d33Ni × ny

)}
∨ 0

k̂2[2, 1] = −1 ×
{
N j,x

(
d31Ni × nx + d21Ni × ny

)
+ N j, y

(
d33Ni × nx + d23Ni × ny

)}
∨ 0

k̂2[2, 2] = −1 ×
{
N j, y

(
d32Ni × nx + d22Ni × ny

)
+ N j,x

(
d33Ni × nx + d23Ni × ny

)}
∨ 0

(3.43)

k̂3[1, 1] = −α × Ni
{(

d11N j,x + d31N j, y
)

nx +
(
d13N j,x + d33N j, y

)
ny

}
∨ 0

k̂3[1, 2] = −α × Ni
{(

d13N j,x + d33N j, y
)

nx +
(
d12N j,x + d32N j, y

)
ny

}
∨ 0

k̂3[2, 1] = −α × Ni
{(

d31N j,x + d21N j, y
)

nx +
(
d33N j,x + d23N j, y

)
ny

}
∨ 0

k̂3[2, 2] = −α × Ni
{(

d33N j,x + d23N j, y
)

nx +
(
d32N j,x + d22N j, y

)
ny

}
∨ 0

(3.44)

Table 3.4 Description of parameters in relation(2) for defining the stiffness matrix in Poisson
equation

Term equation param1 param2
k̂1

∫
∂ΩD

ηe
/
le

([v] [uh]) ds face shape functions face shape functions
k̂2 −

∫
∂ΩD

({κ∇uh} [v]) .n ds face shape functions elemental shape functions
k̂3 −α

∫
∂ΩD

({κ ∇v } [uh]) .n ds face shape functions elemental shape functions
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k̂1 = ηe
/
le
× Ni × N j

k̂2 = −1 × N j × κ/2
{
Ni,xnx + Ni, yny

}

k̂3 = −α × Ni × κ/2
{
N j,xnx + N j, yny

} (3.45)

3.5.2 RHS loops

There are four loops to calculate in the linear form or RHS of the primal equation.

3.5.2.1 Domain loop and Neumann boundary loop

RHS loops corresponding to the body forces and Neumann boundary conditions are given

by

L [c̄ (v)]+ =
∫

E
f : v dx (3.46)

L [c̄ (v)]+ =
∫
∂ΩN

v : uN ds (3.47)

Since these integrals are performed in a similar manner as their CG counter parts they will not be

discussed.
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3.5.2.2 Dirichlet boundary loop

In DG the Dirichlet boundary conditions are imposed weakly. Implementation is shown in

algorithm(3). This loop can be carried out along with the Dirichlet boundary loop in the calculation

of the LHS for the stiffness matrix. Tables(3.5) and (3.6) explain the parameters of this loop for

the linear elastic and the Poisson equations, respectively. The expanded version of these terms are

defined in equations(3.48) and (3.49) for the linear elasticity and in equation(3.50) for the Poisson

equation.

Algorithm 3
1: Loop (e) over every Dirichlet boundary faces
2: Loop over line Gauss points
3: Loop (i) over param1
4: |L [c̄ (v)]+ = We × Je × (r̂1 + r̂2)

Table 3.5 Description of parameters in relation(3) for defining the RHS vector in linear elasticity

Term equation param1
r̂1

∫
∂ΩD

ηe
/
le

v : uD ds face shape functions
r̂2 −α

∫
∂ΩD

((K : ∇v) : uD) ⊗ n ds elemental shape functions

r̂1[1] = ηe
/
le
× Ni × uDx

r̂1[2] = ηe
/
le
× Ni × uDy

(3.48)
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r̂2[1] = −α ×
*....
,

uDx
{(

d11Ni,x + d31Ni, y
)

nx +
(
d13Ni,x + d33Ni, y

)
ny

}

+uDy

{(
d13Ni,x + d33Ni, y

)
nx +

(
d12Ni,x + d32Ni, y

)
ny

}
+////
-

r̂2[2] = −α ×
*....
,

uDx
{(

d31Ni,x + d21Ni, y
)

nx +
(
d33Ni,x + d23Ni, y

)
ny

}

+uDy

{(
d33Ni,x + d23Ni, y

)
nx +

(
d32Ni,x + d22Ni, y

)
ny

}
+////
-

(3.49)

Table 3.6 Description of parameters in relation(3) for defining the RHS vector in Poisson equation

Term equation param1
r̂1

∫
∂ΩD

ηe
/
le
v uD ds face shape functions

r̂2 −α
∫
∂ΩD

(κ∇v ) .n uD ds elemental shape functions

r̂1 = ηe
/
le
× Ni × uD

r̂2 = −α × uD × κ
{
Ni,xnx + Ni, yny

}
(3.50)

3.6 Numerical results

In this section, examples for both Poisson and the linear elastic equations are given. The

examples are carefully selected to cover a wide range of boundary conditions and body forces.

For some examples, exact solutions are available for verification and error analysis of the current

implementation.
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3.6.1 Results of Poisson equation

Three examples with different boundary conditions and body forces are shown for the Pois-

son equation. In the first example, only Dirichlet boundary conditions are defined. In the second

example, body force is added to the equation as a source term and in the third example combination

of Dirichlet and Neumann boundary conditions with body force is examined. Figures(3.5), (3.7)

and (3.9) show the error of these examples which is computed as the difference between the exact

and the numerical results of the simulation. Good agreement of results between the numerical

and exact solutions is illustrated in figures(3.4), (3.6) and (3.8) for these threes examples in the

presented order. Second order reduction logarithm of integral of the L2 norm of error over the

domain for these examples versus the logarithm of elemental length for linear triangle elements is

displayed in figure(3.10) that shows the consistency of the numerical method.

3.6.1.1 Problem with known Dirichlet boundary condition for symmetric interior penalty

Boundary conditions and the problem definition is described in relation(3.51). Symmetric

interior penalty is chosen for this problem.

∇2u = 0 in Ω := (0 < x < a) ∩ (0 < y < b)

u(0, y) = u(π, y) = u(x, 0) = 0 , u(x, 0) = w0 × Sin( π x
a )

Exact Solution = w0
Sinh( π b

a )
× Sin( π x

a ) × Sinh( π ya )

De f ining w0 = 2, a = b = π

(3.51)
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Figure 3.4 Comparison of exact and numerical solution of Poisson equation forDirichlet boundary
condition
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Figure 3.5 Error of numerical solution of Poisson equation for Dirichlet boundary condition

45



3.6.1.2 Problem with known Dirichlet boundary condition and body force for non-symmetric

interior penalty

Boundary conditions and the problem definition is described in equation(3.52). Non-

symmetric interior penalty is selected for the solution of this problem.

∇2u = x × y in Ω := (0 < x < a) ∩ (0 < y < b)

De f ining a = b = π

u(0, y) = u(x, 0) = 0, u(a, y) = π
6 × y

3 , u(x, b) = x
6 × π

3 + Sin(x) × Sinh(π)

Exact Solution = x
6 × y

3 + Sin(x) × (
n∑

i=1

y (2×i−1)

(2×i−1)! )

(3.52)
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Figure 3.7 Error of numerical solution of the Poisson equation for Dirichlet boundary condition
and body force

3.6.1.3 Problem with known Dirichlet and Neumann boundary condition and body force for

incomplete interior penalty

Boundary conditions and the problem definition is described in equation(3.53). For the

numerical solution, incomplete interior penalty method is selected.

∇2u = x × y in Ω := (0 < x < a) ∩ (0 < y < b)

De f ining a = b = π

∂u
∂x .n(0, y) = − y3

6 ,
∂u
∂x .n(a, y) = y3

6 , u(x, 0) = Cos(x) ,

∂u
∂ y .n(x, b) = x

2 × π
2 + Cos(x) × (Cosh(π) + Sinh(π))

Exact Solution = x
6 × y

3 + Cos(x) × (1 +
n∑

i=1

y i

i! )

(3.53)
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Figure 3.8 Comparison of exact and numerical solution of Poisson equation for Dirichlet and
Neumann boundary condition and body force
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Figure 3.9 Error of numerical solution of Poisson equation for Dirichlet and Neumann boundary
condition and body force
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Figure 3.10 Error reduction analysis for the Poisson equation examples in finer elements

3.6.2 Results of linear elasticity

Three examples are selected for the analysis of the DG method for linear elastic problems.

The examples are carefully selected to cover different boundary conditions and geometries.

3.6.2.1 Linear elastic example 1

A square plate fixed at the boundaries and under body force of f is investigated for this

example. The symmetric interior penalty scheme is used for the simulation. The problem is
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defined as

−B̄T (KB̄u) = f in − 1 ≤ x ≤ 1, −1 ≤ y ≤ 1,

u = 0 on ∂ΩD, λ = 0.3, µ = 0.35

K =



λ 2µ + λ 0

2µ + λ λ 0

0 0 µ



, f =



−2µ(3 − x2 − 2y2 − 2x y) − λ(2 − 2y2 − 4x y)

−2µ(3 − 2x2 − y2 − 2x y) − λ(2 − 2x2 − 4x y)



(3.54)

And the exact solution for this problem is

u =



(1 − x2)(1 − y2)

(1 − x2)(1 − y2)



(3.55)

The numerical displacements or (u = u1, v = u2) are shown in figure(3.11). Second order reduction

of logarithm of L2 normof errorwith decreasing element size is expected for linear triangle elements

and is shown in figure(3.12).
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Figure 3.11 Numerical deformation of plate in x and y directions for the first example
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Figure 3.12 Reduction of error with reduction of element size
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3.6.2.2 Linear elastic example 2

For the second problem illustrated in figure(3.13), a plate is hinged at x = −1, y = −1 and

under constant tension at x = 1. The constitutive matrix for this problem is

K =



1.2 0.4 0

0.4 1.2 0

0 0 0.4



(3.56)

The computed deflections of the plate is shown in figure(3.14). Furthermore, this problem can be

solved analytically and the numerical error, i.e. the difference between the numerical and exact

solution, is depicted in figure(3.15).

2

2

Figure 3.13 Problem configuration of the second example
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Figure 3.14 Numerical deformation of plate in x and y directions for the second example
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Figure 3.15 Numerical error in x and y directions for the second example
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3.6.2.3 Plate with hole

For the last problem, a rectangular plate with a hole as described in figure(3.16) is solved

under the plane stress assumption and with the developed symmetric interior penalty DG algorithm.

The dimenesions in this figure are inch for the length and pound for the boundary force. The plate

has the material properties of Aluminum, and are given as

E = 10600ksi, ν = 0.33 (3.57)

24

2

20

(a) (b)

Figure 3.16 Configuration and meshing of the problem

54



Deformation and stress contours of the plate are depicted in figures(3.17), (3.18) and (3.19).

(a) Deformation in u1 direction (b) Deformation in u2 direction

Figure 3.17 Deformation of the third linear elasticity example

(a) Normal stress of the plate (b) Transverse normal stress of the plate

Figure 3.18 Stress contours of the third linear elasticity example
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Figure 3.19 Shear stress contours of the third linear elasticity example

Stresses along three edges of the plate are depicted in figures(3.20) and (3.21). Note that in

the case of a circular hole the Stress Concentration Factor (SCF) does not depend on the size of the

hole and as is shown in figure(3.20-a), this factor is approximately three. Figure(3.20-b) reflects

the normal stress where the force is applied to the plate. The numerical procedure captures this

boundary condition with less than 0.1% error.

Figure(3.21) shows the normal stresses along x = 0. From the figure it is obvious that there

is a singularity near the hole. This singularity comes from the fact that normal and shear stress

inside the hole is zero, while there is a normal stress in the adjacent edge of element that makes the

singularity. At a distance far enough from the hole the normal stress yields zero that satisfies the

zero stress on this edge.
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Figure 3.20 Normal stresses along the y direction
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Figure 3.21 Transverse normal stress along the x direction
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3.7 Conclusion

In this section the numerical implementation of discontinuous Galerkin interior penalty

approaches for solution of Poisson and linear elasticity is presented. The equations are first written

in a primal form and new fluxes on the interior and boundary edges are defined such that they can

be incorporated into any class of interior penalty methods. Implementation details are discussed

and examples are introduced to verify the results of the developed methodology.
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CHAPTER 4

COMPARISON OF LINEAR AND NONLINEAR ELASTICITY FOR MESH DEFORMATION

4.1 Introduction

In arbitrary Lagrangian-Eulerian formulations [38, 39], a procedure to adapt the mesh

after each solid body movement is required. Many approaches have been suggested for this task,

such as tension spring analogy [40] or treating the mesh as a linear elastic material [41]. Other

techniques based on adjoint methods [42] and equations of elasticity with selective treatment for

mesh deformation [43] have also been proposed for improved treatment of large deformations in

the mesh. With increasing popularity of higher-order finite element methods, finding a procedure

to adjust the mesh to curvilinear boundaries has become an important issue. Thus, non-linear

solid mechanics concepts in curved mesh generation and mesh refinement have been implemented

in [44]. Similarly, to address the same issue, thermo-elastic concepts are used in [45] for boundary

curvature. Over the last few years, several works have investigated curvilinear mesh generation

techniques, but these methods have not been implemented for large deformation mesh movement.

The aforementioned schemes are computationally expensive and research that compare

these schemes computationally are rarely found. In this section a procedure to cast the mesh

deformation as a non-linear material response is developed in a continuous Galerkin finite element

framework. The back-ground terminology and two classes of hyper elastic materials (Saint-Venant
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and Neo-Hookean) have been introduced in Chapter(2). Mesh deformation with these two material

models are compared with linear elasticity, and the computational cost of each scheme is discussed.

4.2 Constitutive equations

Constitutive equations for the linear and non-linear isotropic materials have been discussed

in Chapter(2), and here the implementation procedure and the numerical results are presented.

4.3 Mesh deformation implementation procedure

For mesh deformation using the elasticity analogy, the boundary deformation is imposed

incrementally. The stress tensor of each element is calculated due to strain created by this boundary

deformation. In linear elastic and Saint Venant-Kirchhoff materials, the elasticity tensor is inde-

pendent of deformation, but in neo-hookean materials this tensor should be calculated accordingly.

Internal mesh points adjust to new positions to eliminate the residual generated because of this inter-

nal energy. After reducing the residual order to a pre-specified level, another deformation increment

will be applied and this procedure continues until the mesh adapts to its new configuration.

For large displacement and strains, two numerical formulations may be utilized based on

the selected coordinates to be used for evaluation of the quantities. In the updated Lagrange formu-

lation the reference coordinate is updated in each increment but in the total Lagrange the original

un-deformed coordinate is used for the calculations [46]. The effect of this selection is investigated

in section(4.5) of this chapter.
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4.4 Numerical results

In this section the procedure of mesh movement with linear and non-linear elasticity is

illustrated by four examples. A single layer thick beam is investigated initially to validate the

non-linear algorithms for large strain range problems. Subsequently, combined mesh movement

and adaption is studied for a square plate. In large deformations, mesh quality can not be conserves,

thus, this combination increases the mesh quality after the mesh movement procedure. For the next

example, 360◦ rotation of a circle is performed to demonstrate that the scheme is capable of large

mesh deformation. Finally, comparison of linear and non-linear elasticity is investigated for 90◦

rotation of an airfoil. For all of these examples, an updated Lagrange formulation is implemented

in a CG finite element platform.

4.4.1 Clamped-Free single layer laminate under body force

A cantilever steel plate, fixed at x = 0 and free at x = L with different aspect ratios of

(L/H = 1, 4, 10 and 20) described in [47] is investigated. The problem is solved under plane stress

assumptions with Saint Venant and neo-Hookean material models. The material properties and

body force (weight per volume of the material) assumed for this example are defined as

E = 29000 psi, ν = 0.3, b =
{
0,−2.836 × 10−4, 0

} kip f
in3 (4.1)

Both of the material models show similar results so only results of the neo-Hookean model is

provided here. End deflection of the plate for four aspect ratios of 1, 4, 10 and 20 is tabulated
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and compared with the deflection obtained from the classical solution of plates [48] and from

reference [47] in table(4.1). Shamsaei and Boroomand [47] have used exponential basis functions

in their simulations which is and their scheme can capture large strains in thick multi-layered an-

isotropic materials, but that method can only be applied for rectangle laminates. In contrast, the

hyper-elastic formulation presented here is applicable to any geometries. As expected the difference

between the results become less as the aspect ratio grows. However, for a square plate the deflection

obtained from the present study is twice as much as that evaluated from classical laminate theory.

The maximum of normal stress and transverse shear stresses at 0.1 × L from the clamped support

for four ratios of length to thickness are compared between the present analysis and reference [47]

and shown in table(4.2).

Table 4.1 Comparison of maximum deflection of cantilever between classical laminate theory,
reference [47] and the present study in different aspect ratios

L/H 1 4 10 20
Reference [47] −4.159 × 10−6 -0.0005725 -0.0212954 -0.33848
Present analysis −4.249 × 10−6 -0.0005721 -0.0212732 -0.337065
CLT −2.112 × 10−6 -0.0005408 -0.0211233 -0.33797

Results of table(4.2) show good agreements between the present analysis and reference [47].

The distribution of the shear and transverse normal stresses in the thickness of the described square

plate (L = H = 12) is shown in figure(4.1) and normal and transverse deflections are depicted in

figure(4.2).
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Table 4.2 Comparison of maximum stresses at a distance 0.1 × L from the clamped support
between reference [47] and the present study in different aspect ratios

L H |σx |
���τx y

���
Reference [47] Present analysis Reference [47] Present analysis

12 12 0.009423 0.009468 0.00352536 0.00350497
48 12 0.130371 0.1290987 0.0182922 0.0183648
120 12 0.826261 0.814429 0.0460553 0.044663149
240 12 3.30727 3.275483 0.091887 0.0935204

-3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

0

1

2

3

4

5

6

7

8

9

10

11

12

0

1

2

3

4

5

6

7

8

9

10

11

12

Τxy´1000

y

x�L=0.95

x�L=0.5

x�L=0.2

x�L=0.1

(a) Distribution of shear stress (τxy) in the height of the

plate

-1.0 -0.5 0.0 0.5 1.0

0

1

2

3

4

5

6

7

8

9

10

11

12

0

1

2

3

4

5

6

7

8

9

10

11

12

Σy´1000

y

x�L=0.95

x�L=0.5

x�L=0.2

x�L=0.1

(b) Distribution of transverse normal stress (σy) in the

height of the plate

Figure 4.1 The distribution of axial and transverse normal stress in different sections of a square
plate carrying body weight
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Figure 4.2 The displacements in different sections of a square plate carrying body weight

4.4.2 Mesh deformation with adaptation

In this example a 10×10 square plate with a combined boundary movement and mesh adap-

tation is depicted in different stages of the mesh movement. The mesh is refined with a h-adaptation

algorithm in three steps and is subjected to adapt the new boundary condition of 0.15× x× (x−10).

In large deformations, mesh quality changes that affect the final simulation results. One remedy for

this effect is to refine the mesh in skewed elements. In this example this combination is shown that

increases the mesh quality after the mesh movement procedure. Figure(4.3) shows the different

stages of the mesh movement.
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(a) Initial configuration (b) 1/3 of final boundary position

(c) 2/3 of final boundary position (d) Final stage

Figure 4.3 Adaptation of the square plate

4.4.3 Cylinder rotation

For this example a cylinder with a triangular appendage is rotated 360◦. A Saint Venant

Kirchhoff hyper-elastic material is used for this procedure. Modulus of elasticity is linearly reduced
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with the distance from the interior cylinder. 200 incremental steps are regarded for this rotation.

This example is provided to show the capability of the non-linear formulation for large mesh de-

formation and comparison of the linear and non-linear elasticity for this procedure is provided in

the next example. As can be seen in figure(4.4), the current scheme is capable of deforming and

producing a mesh of acceptable quality when subjected to large deformation.

(a) Initial condition of cylinder (b) Cylinder after 360 degrees rotation of inner boundary

Figure 4.4 Cylindrical mesh under large deformation

4.4.4 Rotation of a NACA-6412 airfoil

For the final example, three different material models are deployed for the mesh deformation

of NACA-6412 airfoil. A stiffer layer around the airfoil is embedded to preserve the viscous layer.

The modulus of elasticity in this layer E1 is considered as 100 times more than E2 which is the

stiffest part in the outer layer. Modulus of elasticity is linearly reduced with the distance from the
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airfoil in the softer or outer layer. Figure(4.5) is provided to show the selection of modulus of

elasticity for this example.

E2/d

Figure 4.5 Illustration of modulus of elasticity for the mesh movement

Mesh deformation is investigated using linear elastic, Saint Venant-Kirchhoff and neo-

hookean material models. The neo-Hookean results are provided for the non-linear models in

the following figures because of the similarity between the final results of the Saint-Venant and

neo-Hookean schemes. Figure(4.6) shows the difference between using non-linear hyper-elastic

and linear elastic material models for 200 increments of rotation. Elemental weighted condition

number, skewness and aspect ratio are calculated for each triangle as mesh metrics. Distribution of
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elemental weighted condition number and skewness of initial mesh is depicted in figure(4.7). Com-

parison of elemental aspect ratio, skewness and weighted condition number between linear elastic

and hyper-elastic mesh movement with 200 increments of rotation are depicted in figures(4.8),

(4.9) and (4.10), respectively. The difference between the scaling in these figures should be noted

for better understanding of the differences. Comparison of change in the elemental metrics from

the initial configuration such as aspect ratio, skewness and weighted condition number between

linear elastic and hyper-elastic mesh movement with 200 increments of rotation are also provided

in figures(4.11), (4.12) and (4.13), respectively.

(a) Linear elastic material (b) neo-Hookean material

Figure 4.6 NACA-6412 after 90◦ rotation
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Figure 4.7 Initial NACA-6412 mesh metrics
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(b) Non-linear neo-Hookean model

Figure 4.8 Distribution of aspect ratio of mesh elements in NACA-6412 after 90◦ rotation with
200 incremental rotation
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(b) Non-linear neo-Hookean model

Figure 4.9 Distribution of skewness of mesh elements in NACA-6412 after 90◦ rotation with 200
incremental rotation

CN

55

50

45

40

35

30

25

20

15

10

5

(a) Distribution of weighted condition number of

mesh elements in linear elasticity model

CN

5

4.6

4.2

3.8

3.4

3

2.6

2.2

1.8

1.4

1

(b) Distribution of weighted condition number of

mesh elements in non-linear neo-Hookean model

Figure 4.10 Distribution of weighted condition number of mesh elements in NACA-6412 after
90◦ rotation with 200 incremental rotation
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(a) Linear elasticity model (b) Non-linear neo-Hookean model

Figure 4.11 Distribution of change of aspect ratio of mesh elements in NACA-6412 after 90◦
rotation with 200 incremental rotation

(a) Linear elasticity model (b) Non-linear neo-Hookean model

Figure 4.12 Distribution of change of skewness ofmesh elements inNACA-6412 after 90◦ rotation
with 200 incremental rotation
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(a) Linear elasticity model (b) Non-linear neo-Hookean model

Figure 4.13 Distribution of change of weighted condition number of mesh elements in NACA-
6412 after 90◦ rotation with 200 incremental rotation

Table(4.3) provides more detail for comparing the linear and non-linear models. This table

compares the mesh metrics and computational cost of each algorithm. Table(4.4) represents the

changes in the mesh metrics in the described methods. From these two tables, the superiority of

using linear elasticity with more incremental steps over the non-linear elasticity models is evident.
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Table 4.3 Comparison of mesh metrics and CPU time between different mesh movement algo-
rithms

Deformation method Aspect Ratio Skewness Weight. Cond. Num. CPU Time(s)
Max Min Max Min Max Min

Initial mesh 6.59 1.00 7.09 1.00 5.17 1.00
Linear Elastic 200 Iteration 1717.76 1.00 18.10 1.00 59.97 1.00 3178
Neo-Hookean 200 Iteration 6.59 1.00 7.09 1.00 5.17 1.00 13289
Saint Venant 200 Iteration 6.59 1.00 7.09 1.00 5.17 1.00 15467
Linear Elastic 500 Iteration 6.59 1.00 7.09 1.00 5.17 1.00 8011

Table 4.4 Comparison of maximum and minimum mesh metric change between different mesh
movement algorithms

Deformation method Aspect Ratio Skewness Weight. Cond. Num.
Max Min Max Min Max Min

Linear Elastic 200 Iteration 1716.76 -1.24 16.52 -0.67 58.97 -0.65
Neo-Hookean 200 Iteration 2.55 -0.77 1.63 -0.80 1.23 -0.42
Saint Venant 200 Iteration 2.55 -0.77 1.63 -0.80 1.23 -0.42
Linear Elastic 500 Iteration 2.93 -0.79 1.70 -0.80 1.27 -0.43
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4.5 Discussion

Although, it is not the primary focus of this dissertation, the purpose of the present chapter

was to investigate and compare linear and non-linear elasticity for mesh deformation. Based on

this limited study, some observations can be made.

1. For small deformations, or using small increments during mesh deformation, the final result

of linear and non-linear is the same. This outcome is expected because of the linear behavior

of non-linear equations in small deformations.

2. The updated Lagrange formulation that updates the mesh coordinates in each incremental

step was found to be more robust than the total Lagrange scheme, Although the two methods

can be shown to be mathematically equivalent [46], for extremely large deformations the total

Lagrange formulation would not converge in the mesh movement process.

3. Inherently, the neo-Hookean formulation is more expensive than the Saint Venant hyper-

elasticity, however, the Saint Venant-kirchhoff model requires more non-linear or Newton-

Raphson iterations to reduce the order of residual to the same tolerance. This increase in

iterations at each displacement increment, ultimately makes the Saint Venant model more

computationally demanding.

4. Although not shown, numerical experiments indicated that the neo-Hookean model allows

larger deformation increments to be taken within the mesh movement process. This aspect

could be further investigated for computational savings.
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4.6 Conclusion

In this chapter, constitutive equations for three different types of materials are preliminarily

studied for mesh deformation, typically needed in fluid dynamic applications. Subsequently, the

mesh is treated as a linear and non-linear material and subjected to prescribed boundary motion.

The computational cost andmesh quality after large deformations are then compared. In this limited

study, with increased number of deformation increments, it appears that the use of linear elasticity

remains the more efficient approach for mesh movement. That is, although larger deformation

increments may be taken using the non-linear materials models, the computational cost associated

with the solution procedure is considerably higher.
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CHAPTER 5

CONSTITUTIVE EQUATIONS FOR TRANSVERSELY ISOTROPIC LARGE STRAIN

MATERIALS

In this chapter a set of constitutive equations for simulation of large strain transversely

isotropic materials are described. Validation of this material model is performed using examples

of composite beams undergoing large strains. Subsequently, the loading, geometry and material

properties for the simulation of the femur are described and the aforementioned constitutive equa-

tions are implemented to simulate the non-linear behavior of the bone.

5.1 Introduction

Because of the existence of fibers in biological soft and hard tissues, these materials exhibit

transversely isotropic behavior. This behavior is characterized by having different responses in the

fiber and perpendicular to the fiber directions. Biological soft tissues like muscle and flesh undergo

non-linear large deformations that yields large strains. With aging, the bone density diminishes and

the solid outer layer becomes thinner. This means that hard bones turn spongy, and spongy bones

turn spongier [49]. More than 220,000 proximal femoral fractures occur in the United States each

year, where 90 % of these fractures occur in patients older than 50 years [50]. Furthermore, in [51]
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the relation of sponginess of the bone with the fracture is established. This relationship illustrates

the necessity of using non-linear elasticity equations for the simulation of proximal femur failure.

Femur is the longest body bone and is a compound of two layers of cortical (or hard outer

layer) and cancellous (or inner or spongy) bone. The upper or proximal extremity part of femur

consists of a head, neck and the two trochanters. This bone has been found to exhibit transversely

isotropic behavior in different parts [52].

In the next section, the constitutive equations of non-linear materials for transversely

isotropic materials based on the proposed scheme from Bonet and Burton [3] is discussed. These

equations are implemented in the simulation of large strain composite materials for verification.

Material and morphological properties of the proximal femur is described and maximum strains of

the bone are compared using linear and non-linear analysis.

5.2 Constitutive equations for transversely isotropic linear and non-linear materials

In this section the general orthotropic materials and a sub-class of them, i.e. transversely

isotropic materials, are introduced. Furthermore, the constitutive equations of linear and non-linear

behavior for transversely isotropic materials are presented.

5.2.1 General orthotropic materials

In linear materials, the relation between stress and strain follows equation(2.16). As dis-

cussed, both the stress and strain in the equation are linear and the only difference between the

isotropic and transversely isotropic materials is embodied within the stiffness matrix K. This
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relation between the strain and stress is given as




ε11

ε22

ε33

2ε12

2ε13

2ε23




=



1
E1

−ν21
E2

−ν31
E3

0 0 0

−ν12
E1

1
E2

−ν32
E3

0 0 0

−ν13
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−ν23
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1
E3
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0 0 0 1
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0 0
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G13

0

0 0 0 0 0 1
G23






σ11

σ22

σ33

σ12

σ13

σ23




(5.1)

In the above relation, Ei, νi j and Gi j are the Young’s modulus, Poisson ratio and shear modulus in

the corresponding i and j directions. The matrix relating the strains to the stresses is referred to as

the compliance matrix. The matrix relating strain to stress is referred to as the compliance matrix.

The constitutive or the stiffness matrix of the general orthotropic material is symmetric and can be

obtained by inverting the compliance matrix.

5.2.2 Transversely isotropic linear materials

Aclass of orthotropicmaterials is called transversely isotropic, and exhibit similar properties

in the two directions perpendicular to the principal direction. Assuming the materials are aligned

in direction 3, the material properties of this type are

E1 = E2 = E, E3 = EA, ν12 = ν23 = ν13 = ν

G13 = G23 = G, G12 =
E

2(1+ν)

(5.2)
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Implementing these relations in the stiffness or elasticity matrix for transversely isotropic materials

yields




σ11

σ22

σ33

σ12

σ13

σ23




=


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




ε11

ε22

ε33

2ε12

2ε13

2ε23




(5.3)

where in the above relation n = E/EA, m = 1 − ν − 2nν2.

5.2.3 Transversely isotropic materials under large strains

Composite materials are typically regarded as transversely isotropic and when they experi-

ence large strains, for example in short and thick beams, the linear equations tend to under estimate

the deflections in the simulation. Thus, in the next section, the constitutive equations based on a

proposed method in [3] are considered. Constitutive equations for the non-linear neo-Hookean and

Saint Venant-Kirchhoff isotropic materials have been discussed in sections(2.2.2) and (2.2.3).

Considering A to be the material fiber direction in the un-deformed configuration, and thus

a = F.A to be the new material direction after deforming in the deformed configuration. The

material is isotropic in the two directions perpendicular to the principal direction A, which suggests

that the deformation energy density function is a function of three invariants of tensor C and two
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additional invariants I4 and I5. Therefore with w̄ = =(I1, I2, I3, I4, I5) [53], these two invariants are

I4 = A.C.A, I5 = A.C2.A (5.4)

The derivatives of these invariants with respect to tensor C are

∂I4

∂C
= A ⊗ A,

∂I5

∂C
= CA ⊗ A + A ⊗ CA (5.5)

Thus, similar to equation(2.10), the second Piola-Kirchhoff stress tensor may be expressed as

S =
2∂w̄
∂C
= 2

∂w̄

∂I1
I + 4C

∂w̄

∂I2
+ 2I3C−1 ∂w̄

∂I3
+ 2(A ⊗ A)

∂w̄

∂I4
+ 2(CA ⊗ A + A ⊗ CA)

∂w̄

∂I5
(5.6)

Similar to the discussed concerning isotropic materials, i.e. Saint Venant-Kirchhoff and neo-

Hookean constitutive equations, that for transversely isotropic materials is presented in the follow-

ing section.

5.2.3.1 Transversely isotropic Saint Venant-Kirchhoff materials

As discussed, deformation density function of transversely isotropic materials is also a

function of two additional invariants, namely I4 and I5. In these constitutive equations, the

deformation density function is a function of isotropic and transverse components expressed as

w̄ = w̄iso + w̄trans (5.7)

80



As a result, both stress and the elasticity tensors have two components, i.e. isotropic and transverse,

and may be written as

σ = σiso + σtrans

KEulerian = Kiso + Ktrans

(5.8)

In transversely isotropic Saint Venant-Kirchhoff materials the isotropic deformation density func-

tion and stress tensor are defined similar to isotropic materials in equations(2.27) and (2.28), thus

the elasticity tensor shall be defined as

Kiso = λI ⊗ I + 2µδikδ jl (5.9)

Transverse counterparts are defined as

w̄trans =
(
α + β (I1 − 3) + X (I4 − 1)

)
(I4 − 1) − 1

2α (I5 − 1)

Strans =
2∂w̄trans

∂C = 2β (I4 − 1) I + 2
(
α + β (I1 − 3) + 2X (I4 − 1)

)
A ⊗ A

−α (CA ⊗ A + A ⊗ CA)

Ktrans =
2Strans

∂C = 8XA ⊗ A ⊗ A ⊗ A + 4β (A ⊗ A ⊗ I + I ⊗ A ⊗ A) − 2αΥ

Υi j kl = Ai Alδ j k + A j Alδik

n = E
EA
, m = 1 − ν − 2nν2, ϑ = E(ν+nν2)

m(1+ν)

α = µ − GA, β =
Eν2(1−n)
4m(1+ν) , X =

EA(1−ν)
8m −

ϑ+2µ
8 +

α−2β
2

(5.10)

The summation of the isotropic and transverse components of the elasticity tensor in the defined

equations is nothing more than the transformation of the elasticity tensor to the direction of the
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material. Thus, the relation between the stress and strain is linear and the same set of equations as

equation(2.29) applies here for the stress tensor, namely

S = K : γ

σ = K : η (5.11)

5.2.3.2 Transversely isotropic neo-Hookean materials

Here, two sets of constitutive equations are described for transversely isotropic solids,

and are based on the neo-hookean material model. Similar to isotropic materials, Saint Venant-

Kirchhoff models are ideal for small to moderate strain ranges, despite the fact that linear elasticity

is only applicable for small strain regimes. In large strains, the neo-hookean definitions have more

validity. The equations for the isotropic components defined in equations(2.24) and (2.26) can be

used here. Defining the transverse stress and elasticity tensors in the following form gives a simple

neo-hookean set of equations

σtrans = J−1
*....
,

2β (I4 − 1) B + 2
(
α + β (I1 − 3) + 2X (I4 − 1)

)
a ⊗ a

−α (Ba ⊗ a + a ⊗ Ba)

+////
-

Ktrans = J−1 (
8Xa ⊗ a ⊗ a ⊗ a + 4β (a ⊗ a ⊗ B + B ⊗ a ⊗ a) − 2αΥ

)
Υi j kl = aialB j k + a j alBik

(5.12)

One should notice that equation(5.12) is nothing more than reinterpretation of equation(5.10) in the

deformed configuration, which is basically the linear anisotropic part. Adding this linear transverse
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part to the non-linear isotropic hyper-elastic formulation constitutes thismodel. Thus, the transverse

part of the stress and elasticity tensor might not behave fully non-linear in large strain regimes. To

this end, the following set of equations will be defined to better represent the non-linearity

w̄trans =
(
α + β ln J + X (I4 − 1)

)
(I4 − 1) − 1

2α (I5 − 1)

σtrans = J−1
*....
,

2β (I4 − 1) I + 2
(
α + 2β ln J + 2X (I4 − 1)

)
a ⊗ a

−α (Ba ⊗ a + a ⊗ Ba)

+////
-

Ktrans = J−1 (
8Xa ⊗ a ⊗ a ⊗ a + 4β (a ⊗ a ⊗ I + I ⊗ a ⊗ a) − αΥ − 4β (I4 − 1) ℘

)
Υi j kl = aialB j k + a j alBik

℘i j kl = δikδ jl

(5.13)

Appendix(A) illustrates how to transform the tensor notation to matrix notation for the elasticity

tensor. Additionally, to provide an example for calculating the stress tensors in a tensor notation, ex-

pansion and the implementation procedure of tensors in equation(5.13) is presented in appendix(B).

5.3 Implementation of the non-linear equations for multi-layer materials

Examples for the validation of the described schemes are presented in the CG finite element

platform. Different boundary conditions, material orientation, and loading are utilized to show

the ability of the constitutive equations in simulating multi-layered materials. To this end, two

examples are provided. One example for single layer lamina, and one two-layered laminae with

various boundary conditions are provided for the verification process. In all examples, all Dirichlet

boundaries are divided to 50 segments in the height of the plate. Accordingly, the number of
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points in the length are selected to create an equilateral triangular meshes. For these examples, a

graphite-epoxy plate with the following properties is assumed

EA/E = 25, G/E = 0.5, ν = 0.25

EA = 172.25 GPa (25 × 106 psi), E = 6.89 GPa (106 psi), G = 3.45 GPa(0.5 × 106 psi)
(5.14)

The material fiber is directed in the length of the plate (0 degree) for the single layer examples, as

for the double-layer plate it is (0/90 degrees) for the laminae. The material orientation for these

examples is shown in figur(5.1).

Figure 5.1 Material orientation for laminated structures
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5.3.1 Clamped-Clamped single layer laminate

In this example a graphite-epoxy plate with clamped-clamped edges under a sinusoidal

loading on the top surface is considered. The following traction vector is defined for the top surface

tX1 = 0, tX3 = −q0Sin(
πX1

L
) (5.15)

Figure 5.2 Geometry of the described laminate

The results of the current method are quantitatively compared with of [54] and classical

laminate theory in tables (5.1 and 5.2), where normalized transverse deflection, normal stress,

transverse shear stress, transverse normal stress and extension of normal (change of the thickness)

are given at various locations in the plate. Results in [54] are obtained using an analytical solution

of the cylindrical bending of a clamped-clamped, anisotropic plate of arbitrary span to thickness

ratio. Here again L and H denote the length and height of the plate respectively. As it can be seen,

the results are in excellent agreement with those presented in [54].
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Table 5.1 Comparison between the normalized transverse deflections, normal stresses, transverse
shear stresses obtained from the proposed method, classical laminated theory (CLT)
and Vel and Batra [54] for four aspect ratios

L/H 100EH3

q0L4 u3
(

L
2 ,

H
2

)
H2

q0L2σ11
(

L
2 , H

)
H

q0Lσ31
(

L
4 ,

H
2

)
[54] Present [54] Present [54] Present

4 -1.4946 -1.4941 -0.4887 -0.4887 -0.2765 -0.2764
10 -0.3402 -0.3401 -0.2716 -0.2694 -0.3246 -0.3245
20 -0.1652 -0.1652 -0.2338 -0.2349 -0.3356 -0.3356
60 -0.1122 -0.1118 -0.2223 -0.2206 -0.3374 -0.3372
CLT -0.1055 -0.2209 -0.3376

Table 5.2 Comparison between the transverse normal stresses and extension of normal (change
of the thickness) obtained from the proposed method, classical laminated theory (CLT)
and Vel and Batra [54] for four aspect ratios

L/H 1
q0
σ33

(
L
2 ,

H
2

)
10E
q0H

[
u3

(
L
2 , H

)
− u3

(
L
2 , 0

) ]

[54] Present [54] Present
4 -0.490 -0.499 -4.6238 -4.6246
10 -0.500 -0.499 -4.6731 -4.6730
20 -0.500 -0.500 -4.6750 -4.6750
60 -0.500 -0.500 -4.6750 -4.6750
CLT -0.500 -
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Figure(5.3) shows the distribution of normalized axial and shear stresses at different sections

of the thick transversely isotropic plate. Excellent agreement of the results with those provided

in [54] shows the applicability of the described equations for simulation of thick plates.

Since the loading is applied on the top surface of the plate, the plate exhibits asymmetry in

the shear stress along the thickness. The absolute value of the shear stress reaches its maximum in

the upper half of the plate. The shear stress at the boundaries increases sharply from zero at the

edges. Theoretically, the upper and lower surfaces are free of shear stress.
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Figure 5.3 Distribution of normalized axial and shear stresses at different sections of the thick
(L/H = 4) transversely isotropic plate

Figure(5.4) shows the distribution of normalized axial and shear stresses in a section L/4 far

from either of the clamped edges for a range of aspect ratios. Although not shown, these results are

87



similar to those presented in [54]. Furthermore, the effect of transverse shear in thick plates, which

causes comparatively larger slopes at the clamped supports, can be clearly seen. With increasing

aspect ratio the slopes at both supports vanish. This justifies the application of classical theory of

plates for high aspect ratios.

-0.25 0. 0.25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.25 0. 0.25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Σx H
2�q0L

2

y
�H

L�H=60

L�H=20

L�H=10

L�H=4

(a) Normalized axial stress at L/2

-0.3 -0.2 -0.1 0.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.3 -0.2 -0.1 0.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Τxz H�q0L

y
�H

L�H=60

L�H=20

L�H=10

L�H=4

(b) Normalized shear stress at L/4

Figure 5.4 The distribution of normalized axial and shear stresses of the plate with four different
aspect ratios

Figure (5.5) shows the distribution of normalized displacements in the mid surface of length

and height of the plate. The longitudinal displacement is nearly linear above an aspect ratio of 20

as seen in figure(5.5a). This is due to the vanishing Saint Venant effect at L/4.
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Figure 5.5 The distribution of normalized displacements of the plate with four different aspect
ratios

5.3.2 Clamped-Clamped two layer plate

Bending of a two layer clamped-clamped plate, studied in [47], is investigated in this

example. The material is again graphite-epoxy and fibers are arranged in the (0/90) degree

orientation for the layers. The plate is under sinusoidal load, the layers are assumed to have equal

thicknesses, and the loading is applied at the bottom of plate as

tt
X1
= 0, tt

X3
= 0, tb

X1
= 0, tb

X3
= −q0Sin(

πX1

L
) (5.16)

Normalized transverse normal, normal and shear stresses are shown and compared for two (L/H)

aspect ratios of 4 and 10 in figures(5.6), (5.7) and (5.8), respectively. Additionally, tables(5.3 and

5.4) reflect the values of normalized deflection, normal, transverse shear and transverse normal
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stress and extension of normal (change of the thickness) for these aspect ratios. In this table,

these values are quantitatively compared with those provided in [47]. Except for the value of

E
q0H

[
u3

(
3L
4 , H

)
− u3

(
3L
4 ,

H
2

) ]
for an aspect ratio of 4, all results are in good agreements with [47].

Reference [47] have used exponential basis functions for the simulations which is capable of captur-

ing large strains in thick multi-layered an-isotropic materials, but that method can only be applied

for rectangle laminates.
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Figure 5.6 The distribution of normalized transverse normal stress in example(5.3.2)
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Figure 5.7 The distribution of normalized normal stress in example(5.3.2)

The inter-laminar continuity of transverse normal stress σ33 is evident in figure(5.6). The

shear stress σ31 in figure(5.8) illustrates a discontinuity in slope between the two layers. Disconti-

nuity of normal or in-plane stress σ11 between the layers is obvious in figure(5.7), where the impact

of L
H can be clearly seen. This phenomenon reflects the concept of C0

z requirements for simulation

of laminar plates. Following [55], relations asserting the C0
z requirements are

uk,t
i = uk+1,b

i , σk,t
i3 = σk+1,b

i3

∂zu
k,t
i , ∂zu

k+1,b
i , ∂zσ

k,t
i3 , ∂zσ

k+1,b
i3

(5.17)

Equation(5.17) assume that the layers are arranged in the z direction as depicted in figure(5.1). b

and t reflect the bottom and top surfaces of the k + 1th and kth layer in the plate and assume that

91



these layers are perfectly bonded together.
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Figure 5.8 The distribution of normalized shear stress in example(5.3.2)

Table 5.3 Comparison between the normalized deflection, normal stress and transverse shear
in two layers for aspect ratios of 4 and 10 between the present study and Shamsaei-
Boroomand [47]

L/H 100EH3

q0L4 u3
(

L
2 ,

H
2

)
10H2

q0L2 σ11
(

L
2 , H

)
10H
q0L σ31

(
0.3L, 3H

4

)
[47] Present [47] Present [47] Present

4 2.5624 2.3227 1.0454 1.1731 0.9208 1.0490
10 0.8827 0.8715 0.7853 0.7879 0.7822 0.7671
L/H 100EH3

q0L4 u3
(

L
2 ,

H
2

)
10H2

q0L2 σ11
(

L
2 , 0

)
10H
q0L σ31

(
0.3L, H

4

)
[47] Present [47] Present [47] Present

4 2.5624 2.3227 -8.3595 -7.6705 3.8098 3.5874
10 0.8827 0.8715 -6.5255 -6.4574 4.1948 4.2163
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Table 5.4 Comparison between the transverse normal stress and extension of normal (change of
the thickness) in two layers for aspect ratios of 4 and 10 between the present study and
Shamsaei-Boroomand [47]

L/H 10
q0
σ33

(
L
2 ,

3H
4

)
E

q0H

[
u3

(
3L
4 , H

)
− u3

(
3L
4 ,

H
2

) ]

[47] Present [47] Present
4 -0.6595 -0.7269 -0.0215 -0.0685
10 -0.5556 -0.5444 -0.1540 -0.1684
L/H 10

q0
σ33

(
L
2 ,

H
4

)
E

q0H

[
u3

(
3L
4 ,

H
2

)
− u3

(
3L
4 , 0

) ]

[47] Present [47] Present
4 -6.4566 -6.6192 -0.2108 -0.2256
10 -6.3535 -6.3322 -0.2013 -0.2022

5.4 Morphological study of proximal femur

The femur is composed of a hard or outer layer and a soft, spongy or inner layer. These

layers are known as cortical and cancellous layers, respectively. The upper or proximal extremity of

the femur consists of a head, neck and the two trochanters. This region is the subject of the current

study. Transversely isotropic behavior has been observed in both of these two layers [52], thus

according to equation(5.2), material properties of each layer can be defined with four parameters

of E, EA, ν and G. In some studies these properties are asserted as a function of density of the

bone. Section(5.7) provides more detail about this functional dependence. This section is intended

to compare appropriateness of using linear and non-linear elasticity for simulating the proximal

femur. For this reason, two dimensional mediolateral view of proximal femur is investigated in

this section and morphological parameters for generating the finite element simulation is briefly

discussed.

There are several morphological studies for the femur e.g. [56] and [57]. These measure-

ments are usually made using computer aided design techniques on computed tomography (CT)
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scanned images of femurs and the provided data is typically used for designing standard femoral

stems for cementless insertion. The geometrical parameters are the femoral head offset(A), femoral

head diameter(B), femoral head relative position(C), neck diameter(N), mediolateral canal width 20

mm above the lesser trochanter(D), mediolateral canal width at the lesser trochanter(E), mediolat-

eral canal width 20 mm below the lesser trochanter(F), mediolateral canal width at the isthmus(G),

periosteal width at the isthmus(H) and the neck-shaft angle(J). Figure(5.9) is provided to reflect the

mean of the above parameters in the Indian population [56].

Figure 5.9 Morphological parameters for simulation of mediolateral section of proximal femur
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Readers are directed to the tables provided in [56] for the mean and standard deviation

of the parameters A, B, C, D, E, F, G, H and P in figure(5.9). Extension of canal diameter in

anteroposterior, lateral, internal oblique, and external oblique diameters of the medullary canal in

Indian population is also characterized in [58] for 10 different sections. In figure(5.9), th, tn, ts and

ti refer to cortical thickness in head, neck, shaft and isthmus sections, respectively. These values

are provided in [59], and are used to generate the finite element geometry for simulation of the

proximal femur. Additionally, the mean value of the neck diameter is specified in [57]. The finite

element mesh generated using the aforementioned data is shown in figure(5.10).
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(a) Cancellous section of proximal femur (b) Cortical section of proximal femur

Figure 5.10 Mediolateral finite element meshing for simulation of proximal femur

5.5 Proximal femur loading during the gait cycle

Analysis of the influence of the muscle groups on the internal loads of the femur can be

found in [60]. Description of the loading during 10%(heel strike), 30%(mid stance), 45%(push off)

and 70%(mid-swing) of the gait cycle is presented in appendix(C).
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5.6 Density distribution in proximal femur

Bone adaptation is a process in which bone mass is modified by both mechanical and

metabolic stimuli. The relationship betweenmechanical movement of the body and bone adaptation

was suggestedmore than 100 years ago. There are several mathematical theories for bone adaptation

that can be used to simulate bone changes during development, growth, adaptation and aging,

e.g. [61] and [62]. A generalized theory for bone remodeling simulation can be found in [63]. In

this research, a density distribution based on maximumVon-Mises strain in the bone during the gait

cycle is chosen for the cortical and cancellous bones. Figure(5.11) illustrates the notional density

distribution in the proximal femur.

Figure 5.11 Notional density distribution in the proximal femur
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5.7 Material properties of proximal femur

As discussed, many studies have clearly demonstrated the anisotropic behaviour of bone

[64, 65]. In the literature, finite element simulations have used isotropic properties [], and or-

thotropic or transversely isotropic properties in the linear regime []. In the current work, non-linear

transversely isotropic material models are used for the simulation of proximal femur. The study by

Rudy et al. shows that anatomic variation in the elastic inhomogeneity and anisotropy of human

femoral cortical bone tissue is consistent across multiple donors [66], for this reason, the data

provided by Wirtz et al. [67] is chosen to obtain the material properties for the finite element

simulation of the proximal femur. This requires specification of Young’s modulus, shear modulus

and Poisson ratio for cortical and cancellous layers of the bone. Compression, tensile and torsional

strength of these layers are quantified subsequently.

5.7.1 Young’s modulus

Young’s modulus in the axial and transverse directions to the material orientation is a

function of apparent density in both cortical and cancellous layers. The functional relations are

approximated in the axial load direction and the transverse load directions [67] as

EA, cortical = 2065ρ3.09

Ecortical = 2314ρ1.57

EA, cancellous = 1904ρ1.64

Ecancellous = 1157ρ1.78

(5.18)
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The Young’s modulus in equation(5.18) are in MPa or N/mm2 and the apparent density is defined

in g/cm3.

5.7.2 Poisson’s ratio

The cited values for Poisson’s ratio span over a large range, thus the average values are

regarded in this work. These values are between 0.2 and 0.5 with the average of 0.3 for cortical

section and between 0.01 and 0.35 with the average of 0.12 for the cancellous bone.

5.7.3 Shear modulus

The shear modulus of cortical femoral bone is assumed to be between 2840 and 4040 MPa

with the average of 3280 MPa [64]. For the cancellous bone the study in [68] shows that the shear

modulus is between 8 and 40 MPa with the average of 24 for apparent densities between 0.1 and

0.8 g/cm3.

5.7.4 Compressive strength, tensile strength and torsional strength

The compressive strength of the cortical and cancellous bones are a function of apparent

density. Defining these strengths in MPa or N/mm2, and the apparent density in g/cm3, the
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following is utilized

σA, cortical = 72.4ρ1.88

σcortical = 37ρ1.51

σA, cancellous = 40.8ρ1.89

σcancellous = 21.4ρ1.37

(5.19)

In equation(5.19), subscript A refers to the material direction and lack of this index indicates

the direction perpendicular. Studies show that the tensile strength in the cortical section is not a

function of density and defined as 150 MPa. However, in the cancellous section this value varies

linearly between 3 and 15 MPa for apparent densities between 0.2 and 0.5 g/cm3.

Torsional strength for the cortical section is between 49 to 68 MPa with an average of 58.5

MPa. Shear strength of the cancellous bone is not addressed in [67] and the data used in this

work is gathered from [69]. Torsional strength in the direction of the material and perpendicular to

this direction are possibly different in nature, however due to lack of data these two properties are

considered the same in this research.

5.8 Orientation of orthotropic material properties in a femur

Wolff’s law Postulates that trabecular structure pattern of the cancellous bone coincides

with the directions of the principal stresses. Because of the bone remodeling, effective material

properties such as stiffness and strength are higher in these directions, which are the direction of the

maximum stress. A procedure to orient orthotropic properties in a proximal femur finite element
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model using the directions of the principal stresses produced by a physiological load scheme is

developed in [52]. Reference [70] has also suggested that trabecular pattern is defined by extreme

loading directions. Following the same concept and procedure in [52], multiple sets of loading

during the gait cycle is used to adjust the maximum principal direction of each element to orient

the transversely isotropic direction in the bone. Figure(5.12) shows the excellent agreement with

the actual bone the results provided in [52]. This figure highlights trabeculae groups: (1) principal

compressive, (2) principal tensile, (3) secondary compressive, (4) secondary tensile and (5) greater

trochanteric.
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(a) Present study (b) Radiographic scan of the proximal femur with high-

lighted trabeculae groups [52]

Figure 5.12 Material orientation of bone using maximum principal direction

5.9 Analysis of proximal femur during the gait cycle

Loading of proximal femur during the gait cycle is tabulated in appendix(C). Figures(5.13),

(5.14), (5.15) and (5.16) depict the Von-Mises strain distribution in the proximal femur during the

gait cycle. These figures illustrate the difference in results between linear elasticity and non-linear

hyper-elastic simulation.
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(a) Linear elastic solution of Von-Mises strain (b) Non-linear hyper elastic solution of Von-Mises strain

Figure 5.13 Comparison of linear and non-linear elasticity in Von-Mises strain in 10% of gait
cycle

(a) Linear elastic solution of Von-Mises strain (b) Non-linear hyper elastic solution of Von-Mises strain

Figure 5.14 Comparison of linear and non-linear elasticity in Von-Mises strain in 30% of gait
cycle
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(a) Linear elastic solution of Von-Mises strain (b) Non-linear hyper elastic solution of Von-Mises strain

Figure 5.15 Comparison of linear and non-linear elasticity in Von-Mises strain in 45% of gait
cycle

(a) Linear elastic solution of Von-Mises strain (b) Non-linear hyper elastic solution of Von-Mises strain

Figure 5.16 Comparison of linear and non-linear elasticity in Von-Mises strain in 70% of gait
cycle
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As expected, the maximum strain occurs at 45% of the gait cycle. Additionally, these results

indicate that the maximum strain occurs in the bone neck, which is an indicator that the possibility

of fracture will occur in this region.

Differences between the linear elastic and non-linear neo-Hookean hyper elastic and Saint

Venant-Kirchhoff simulations of the 45% gait cycle are shown in figures(5.17) and (5.18) respec-

tively. The absolute difference is calculated as the value of linear elastic minus the non-linear

counterparts and the percentage values are the absolute values divided by the linear values. Results

indicate more strain (or plus sign difference) in the linear elasticity than the non-linear simulation

in the femoral neck and lesser trochanter, which are the places of interest in terms of the failure

analysis. This may be a potential cause of error to suggest a greater probability of failure in the bone

when linear elasticity is used for simulation. In generating the data for the percent differences in the

figures, the infinitesimal difference between the linear and non-linear and infinitesimal linear strains

are neglected and could cause artificial subtracting and rounding errors. In the figures, the percent

difference is between -0.5 to 0.5 in most of the domain with a color contrast that shows which area

is close to zero and which is further from zero. This difference is a measure that indicates that the

cancellous part is the softer material. This potentially justifies the use of non-linear simulation over

the linear simulation in aging bones that are regarded spongier or softer.
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(a) Absolute difference (b) Percent difference

Figure 5.17 Absolute and percent difference of linear and non-linear neo-Hookean hyper elasticity
in Von-Mises strain in 45% of gait cycle

(a) Absolute difference (b) Percent difference

Figure 5.18 Absolute and percent difference of linear and non-linear Saint Venant hyper elasticity
in Von-Mises strain in 45% of gait cycle
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CHAPTER 6

UNCERTAINTY QUANTIFICATION IN SIMULATION OF FAILURE IN PROXIMAL

FEMUR

In this chapter, the concept of uncertainty quantification(UQ) and the possibilities of using

UQ in simulations are discussed. With advances in the simulation techniques and computational

power, the investigation concerning the fidelity of the results, regarding the assumptions typically

made in the simulation process, is becomingmore necessary. With the ability to accurately quantify

errors and uncertainties, computer simulations will become much more powerful tools in robust

design procedures. The large variation of biomechanical properties in the human population justi-

fies the need for UQ in computational simulation. For this purpose, application of UQ in finding

an interval around the deterministic results where the true results are expected is discussed in sec-

tion(6.5.1). Ranking of the uncertainties through sensitivity analysis is illustrated in section(6.5.2),

and finally design and optimization based on UQ is discussed at section(6.6). Equations of failure

are defined in the composite materials and maximum failure strains are investigated in one section

of the femur. These techniques are susequently illustrated in simulation of proximal femur in

section(6.7)
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6.1 Introduction

The ability for producing an estimate of the uncertainties in a calculation is an essential

procedure in improving the design process. Because of the various assumptions made in the

computational simulation process, the calculated results are likely to be different than the substantive

outcome. Hence, the ability to introduce error bars or quantify the uncertainty in the simulation is

pivotal. These assumptions, and consequently the simulation outcome, may introduce unexpected

errors and sometimes unanticipated failure in the behavior of a system. Uncertainty quantification

is the procedure of quantitatively characterizing and reducing uncertainties in the simulation. In

computational modeling and simulation, uncertainty is regarded as a potential deficiency in any

phase or activity of the modeling process, and is due to a lack of knowledge [71]. Conversely, errors

are defined as deficiencies of the models or the algorithms employed, such as implementation or

round off errors.

Calculating possible differences between the actual and calculated results generates the

error bars for the simulation. These error bars can be used further for robust design or optimization

under uncertainty, which is a reliable device for managing and compromising between the optimal

performance and stability of performance. In spite of the wide spread use of modeling and simula-

tion tools, it remains difficult to provide objective confidence levels in the quantitative information

obtained from numerical predictions [72]. For this reason one of the main objectives in UQ is to

provide error bars on the simulations results. Some examples of using UQ in computational fluid

dynamics, and environmental and biological systems, can be found in [73] and [74], respectively.
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6.2 How to handle uncertainties?

Uncertainty quantification is comprised of two steps: understanding the sources of uncer-

tainties, and the propagation process of the uncertainties. These two issues are briefly addressed

in the next two sections. The concept of uncertainty analysis is described and the design and

optimization under uncertainties is addressed subsequently.

6.3 Sources of uncertainties

Uncertainties related to the physical description of the problem of interest [75] are due to

• initial or boundary conditions.

• geometric parameters of a problem.

• material properties of a problem and from

• mathematical models that describe physical processes.

Uncertainties are related to the physics of the problem of interest. Numerical errors associated with

numerical solution of the mathematical problem include

• discretization errors of differential equations governing the problem of interest,

• Finite precision floating point errors and

• residual errors associated with iterative solvers.

In [76] a classification of the uncertainties in the concept of risk assessment is presented. This

uncertainty taxonomy classifies uncertainty into epistemic and aleatory. Aleatory uncertainty or
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variability or stochastic uncertainty is the inherent variation of the physical system and cannot be

eliminated or reduced by collection of more information or data. Some examples of this kind

of uncertainty are material properties, operating conditions, and manufacturing tolerances. This

uncertainty can be defined in the probabilistic frame work.

Epistemic uncertainty is a potential inaccuracy in any phase or activity of the modeling

process that is because of lack of knowledge. Examples of this uncertainty, within fluid dynamics,

is the turbulence modeling assumptions, and can be reduced with an increased state of knowledge

or collection of more data. This uncertainty can be created from assumptions introduced in the

derivation of the mathematical model and can not be defined in the probabilistic framework.

Once the sources of uncertainties are quantified, one should determine how these uncertain-

ties propagate through the simulation. These quantities, also known as objective functions, are the

primary functions of interest in the simulation and provide information regarding the performance

of the system. They are functions of all the independent variables or design variables that describe

the sources of uncertainty.

6.4 Uncertainty propagation

As discussed in the previous section, uncertainty quantification involves two steps: deter-

mination of the uncertainty sources, and analysis of their propagation throughout the simulation.

Uncertainty propagation methods can generally be classified as intrusive and non-intrusive. Intru-

sive methods require the formulation and solution of a stochastic version of the original model,

110



while nonintrusive schemes require multiple solutions of the original model.

6.4.1 Intrusive propagation

Intrusive UQ methods require reformulating the mathematical equations and re-describing

the problem of interest with regard to the uncertainties. This propagation involves reformulation

of governing equations and modification to the simulation procedure to incorporate uncertainty

directly into the system. As this definition implies, this propagation is problem dependent and is

specific for each problem and discipline. Typical example of this type is the Polynomial Chaos

expansion based approaches, which represent a stochastic process with expansion of orthogonal

polynomials [77]. An example of using the intrusive method in failure analysis of bone described

in [78] is discussed later in this chapter. In the next section, some widely used non-intrusive

approaches, including Monte Carlo simulation method, Response Surface Methods and sensitivity-

based methods or Taylor series approximation are explained.

6.4.2 Non-intrusive propagation

Non-intrusive UQ methods use ensembles of simulations. Simulation ensemble members

are created by sampling the uncertain inputs according to various sampling schemes. In non-

intrusive approaches there is no need to modify the simulation code and these methods use the

computer simulation model as a black-box. The impact of the input uncertainties can then be

analyzed for the output quantities of interest or objective functions. For the non-intrusive schemes,
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Monte-Carlomethods, response surfacemethods and sensitivity based schemes are commonly used.

6.4.2.1 Monte-Carlo methods

Monte Carlo Simulation (MCS) methods are sampling-based procedures [79]. During this

procedure, repeated sampling and simulation to compute the statistics of the response quantities of

the simulation is performed. Level of accuracy of MCS is dependent on the number of samples and

simulations. Thus, MCS methods can give statistics of the results with arbitrary levels of accuracy.

For this reason MCS is usually used for validation of new uncertainty analysis techniques.

The basic MCS procedure with probabilistic uncertainties includes three steps:

1. A set of n data points are randomly sampled from the assumed distribution of the data.

Unbiased random sampling procedures are discussed in [80].

2. A simulation is performed for each data point or sample to obtain the corresponding system

response. This procedure forms n sample pairs [x(i), y(i)], where vector x is the vector of

design variables and y is the system response.

3. Analyzing the samples by defining the expected value of function ϕ
(
y
)
as

E = E
(
ϕ

(
y
))
=

∫
ϕ

(
f (x)

)
p (x) dx (6.1)

where in equation(6.1), y = f (x) with y being the simulation output and p(x) is the

probability density function of vector x. When ϕ
(
y
)
= y k , E is the estimate for the kth
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statistical moment. The integral in equation(6.1) can be approximated as

E ≈ ϕ̃ ≈
1
n

n∑
i=1

ϕ
(
y(i)

)
(6.2)

Thus in equation(6.2) if ϕ
(
y
)
= y , the sample average can be defined as

µ̄ ≈
1
n

n∑
i=1

y(i) (6.3)

And the variance is estimated as

σ2 ≈
1

n − 1

n∑
i=1

(
y(i) − µ̄

)2 (6.4)

The accuracy of the estimations in equations(6.3) and (6.4) is defined as the standard error or

standard error =
σ
√

n
(6.5)

Equation (6.5) indicates that the accuracy the MCS is a function of sample size, which is compu-

tationally problematic in complex simulations.

6.4.2.2 Response surface methods

Response Surface Methods (RSM) seeks to determine the relationship between several in-

put variables and one or more response variables or objective functions. The main idea of RSM
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is to use a sequence of designed experiments to obtain an optimal response. In this procedure,

an experimental design is used to select model inputs for developing a response surface replace-

ment for the original model. This response surface is used further in subsequent uncertainty and

sensitivity analyses. These methods have been widely studied in [81] and [82]. Both uncertainty

and sensitivity analyses are straightforward once the necessary response surface replacement has

been developed. Design of experiments or experimental design procedure to be used in response

surface fitting have been studied in [81]. In [83] iterative improvements in the response surface fit

is utilized. Difficulties in constructing appropriate response surface in problems with nonlinearities

or discontinuities may be considered as a drawback of the RSM [74]. It is not feasible to completely

present the background and research being conducted in this discipline. Moreover, reviews and the

relative merits of competing methods may be found within the cited literature.

6.4.2.3 Sensitivity-based methods

An alternative approach is to use sensitivity-based analysis for propagating this uncertainty

throughout the solution [84]. Use of this method offers significant reductions in computational

time which has significant benefits in problems with a large number of input variables and for those

that involve nonlinear models.

Local sensitivity analyses are mostly based on a Taylor series expansion to the model under

consideration. Second order Taylor series for a function of vector x around an adjacent vector x0 is
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defined as

y (x) ≈ f (x0) +
n∑

i=1

∂ f (x0)
∂xi

(xi − x0) +
1
2

n∑
i=1

n∑
j=1

∂ f 2 (x0)
∂xi∂x j

(xi − x0)
(
x j − x0

)
(6.6)

Furthermore, the expected value of y (x) can be defined as

µ̄ = E
(
y
)
≈

∫ ∞

−∞

y (x) p (x) dx (6.7)

On substitution of the equation(6.6) into equation (6.7) gives

µ̄ =

f (xµ)︷                   ︸︸                   ︷∫ ∞

−∞

f (x0) p (x) dx+
n∑

i=1

∂ f (x0)
∂xi

0︷                        ︸︸                        ︷∫ ∞

−∞

(xi − x0) p(xi) dxi︸                                                                         ︷︷                                                                         ︸
First Order

+

1
2

n∑
i=1

n∑
j=1

∂ f 2 (x0)
∂xi∂x j

∫ ∞

−∞

∫ ∞

−∞

(xi − x0)
(
x j − x0

)
p(xi)p(x j ) dxi dx j︸                                                                                     ︷︷                                                                                     ︸

Second Order

(6.8)

In equation (6.8), f
(
xµ

)
is the value of function y (x) at the mean values of variables in vector x.

The term associated with the second order Taylor series can be simplified to

1
2

n∑
i=1

n∑
j=1

∂ f 2 (x0)
∂xi∂x j

∫ ∞

−∞

∫ ∞

−∞

(xi − x0)
(
x j − x0

)
p(xi)p(x j ) dxi dx j =

1
2

n∑
i=1

n∑
j=1

∂ f 2 (x0)
∂xi∂x j

σi σ j

(6.9)

Implementing the computational equation for variance, the variance of y (x) is defined as

σ2 = E
((
y (x) − µ̄

)2)
= E

((
y (x)

)2)
− µ̄2 (6.10)
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and it can be shown that equation(6.10) reduces to

σ2 ≈

First Order︷                ︸︸                ︷
n∑

i=1

(
∂ f (x)
∂xi

σxi

)2

+

Second Order︷                                 ︸︸                                 ︷
1
2

n∑
i=1

n∑
j=1

(
∂ f 2 (x0)
∂xi∂x j

σxi σx j

)2

(6.11)

Following equations (6.11) and (6.8), if the perturbation is small the mean and variance of the

objective function only depends on the first derivative of the objective function y with respect to

the design variables xi. This derivative is referred to as the sensitivity of the objective function

with respect to a design variable [82].

A number of techniques exist to calculate these derivatives. Among them are direct differ-

entiation, discrete-adjoint variable approach, complex Taylor series expansion method and finite

difference. Description of these methods can be found in [85] and [4].

6.5 Uncertainty analysis

Uncertainty analysis seeks the interval around a result where the true result is expected to

lie with a certain degree of confidence. As discussed before, one application of the uncertainty

quantification is to define an error bar for computed solution that the true solution resides within.

While rooted in experimental procedures, the same techniques can be used to quantify uncertainty

in simulations.
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6.5.1 Mathematical interval

In general, for experimental uncertainty analysis [86], the result or objective function is

determined by a data reduction equation and is a function of k measured design variables.

y (x0) − ∆y ≤ y (x) ≤ y (x0) + ∆y (6.12)

The uncertainty in the result is then a function of the uncertainty in the measured variables, where

the true value for the result y is then assumed to lie in the interval. The predominant means

of characterizing uncertainty in physical processes is via probabilistic analysis, which requires

the probabilistic distributions of the uncertain input parameters or data. The common approach

adopted within experimental uncertainty analysis is to use the uncertainty in the input parameters

to quantify the uncertainty in the output responses as

∆y =

√√ n∑
i=1

(
∂ f (x0)
∂xi

∆xi

)2

(6.13)

Uncertainty propagation of this form has been addressed with interval mathematics [87]. Interval

mathematics, as the name implies, is an arithmetic defined on a set of intervals, as opposed to real

numbers. The purpose of such analysis is to estimate the bounds on computational output knowing

the bounds, or specified interval, of the input.
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6.5.2 Ranking of uncertainties

Another application of uncertainty quantification is to rank the uncertainty sources which

might dominate the response of the system, i.e. to find the design variables that affect the objective

functions the most. As is shown in equations (6.12) and (6.13), the bound of function y = f (x),

defined as ∆y , is a function of derivatives of y with respect to design variables. Also note that

large values of sensitivity derivatives do not necessarily translate into critical uncertainties. This is

because the input variability may be very small in a specific device of interest. Having found the

most influential design variables, the design procedure can be changed to be more robust. More

discussion about how to use uncertainty quantification in the design procedure is presented in the

next section.

6.6 Optimization under uncertainty

Another outcome of UQ is to estimate the likelihood of a behavior of a system of interest

based on the system uncertainties and the effect of the uncertainties on the specific behavior of the

problem. This knowledge can be used in the design procedure of a system or a device. Reliability

based optimization and robust design optimization are the twomainmotivating reasons for applying

the science of uncertainty quantification.

Parameters of interest are the system’s degree of tolerance to variation of a variable, thus

robustness is defined as the insensitivity of the system to the variable. Reliability is defined as

the likelihood that a system will perform its intended function for a specified time interval under

stated conditions [88], or the likelihood that a component or a complete system will perform its
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intended function without failure for a specified period of time under stated operating conditions.

Accordingly, there are two different uncertainty-based design optimization methods, i.e. robust

design and reliability-based design optimization.

Regarding these definitions, two methods for implementing UQ in the design process can

be defined. First is to improve the robustness or insensitivity of a system to an uncertain variable

represents the robust design process. The second scheme is to improve reliability of the design and

decrease the chance of function failure under potential critical conditions, hence to keep the system

in normal state with required level of likelihood under extreme events [72].

6.7 Sources of uncertainty in the simulation of proximal femur

Personalized computational simulation of proximal femur requires in vivo computed tomog-

raphy (CT) data that reflects the morphology of the bone. Taddei et al. [89] found that geometric

representation of the bone is a very important factor in calculating stresses and strains in the prox-

imal femur. This highlights the artifact error that might be generated during the CT procedure.

Another factor in the simulation is the personalized physiological loading conditions. Due to inter-

and intra-patient variations in the quantity and direction of the loading, these are regarded as im-

portant sources of uncertainties as well. Wille et al. [78] have discussed this effect using stochastic

hip contact force, representing realistic variability of experimental data. Determination of exact

material properties is regarded as another obstacle in the modeling process. These parameters

are highly variable in human tissues, for example due to inhomogeneous density distribution and

between patients because of differences in sex, age or physiological anatomy [90] and [91]. Finally,
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as previously discussed, constitutive equations for the simulation such as linear and non-linear

equations and iso/ortho-tropic behavior represent epistemic source of uncertainty in the simulation

which has not been studied.

An excellent overview of probabilistic studies performing uncertainty quantification for

computational modeling of the human femur can be found in [78]. The reference specifies the

sources of uncertainty and uncertainty propagation scheme exploited in each of the studies in the

litterature. There are three studies by Wille et al. [78], Laz et al. [90] and Taddei et al. [89] which

are devoted to uncertainty quantification of femurs without stems. In all of these studies single

layer, linear elastic, inhomogeneous isotropic material properties were assumed for the bone tissue.

In the current research, non-linear transversely isotropic multi-layer behavior of bone is utilized,

and uncertainties due to material selection are ascertained.

In all of the aforementioned studies, a stochastic relationship between density and modulus

of elasticity representing realistic variability of experimental data is considered. In the study by

Wille et al. [78], effect of stochastic hip contact forces is considered as well. In the present work, six

material properties consisting of density, the Poisson’s ratio, and the shear modulus of cancellous

and cortical layers as well as two geometric uncertainties of femoral head offset(A) and femoral

head relative position(C) are regarded as the uncertainties.

Monte-Carlo scheme and a probabilistic framework based on polynomial chaos are used

in [89] and [78] respectively. Furthermore a probabilistic modeling software is used in [90] for

the uncertainty propagation. In the present work, a sensitivity based First-Order Second-Moment

(FOSM) scheme is used for the uncertainty propagation. This scheme is computationally less
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expensive than the other methods listed above, but requires calculation of the sensitivity derivatives

of objective functions with respect to the uncertain parameters.

Maximum Von Mises stress, various descriptive statistics of the response variable, esti-

mates of its distribution e.g. probability density function, sensitivity parameters, and probabilities

of failure are investigated in the above mentioned references. The focus of this work is to use local

sensitivity analysis for the uncertainty propagation in the simulation of failure in proximal femur

using a sensitivity based FOSM scheme. The effect of sensitivities on deviation of failure analysis

of femur is sought. Thus, in the next section, the equations of failure in multi-layer orthotropic

materials are described. Mean, standard deviation and variance of failure modes are investigated

for loading in 45% of gait cycle. Sensitivity analysis is performed to identify the most influential

factors in the failure analysis. Solution mathematical interval of failure discussed in section(6.5.1)

is subsequently analyzed.

6.8 Failure analysis of proximal femur

Hip fracture is an important cause of invalidism in elderly. Annually over 800,000 total hip

replacements are conducted worldwide, and the cost of treatment in the United States is estimated

to be approximately $7.1 billion annually [92]. Sensitometry which is a common tool in prediction

of the hip fracture probability is the process of assessing a patient’s risk of hip fracture involving

local estimates of bone density. Prediction of femoral fracture load using automated finite element

modeling has been investigated in [93]. That study investigates whether automatically generated,

computed tomographic (CT) scan-based linear elastic isotropic finite element (FE) models can
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be used to estimate femoral fracture load in vitro. In contrast, in the present study, a non-linear

transversely isotropic finite element analysis is used in the failure analysis of the proximal femur.

6.8.1 Failure criteria

The proximal femur is a multi-layered composite material, thus the equations defined in [94]

are used for failure analysis of the bone. Failure criteria for composite laminates can be classified

into two groups, independent failure criteria and polynomial failure criteria.

6.8.1.1 Independent failure criterion

This criterion is based on the three modes of failure and failure is assumed to occur if any

of the following conditions are satisfied [94]:

First f ailure : |σ11/X | ≥ 1, Second f ailure :
√
σ2

13 + σ
2
13 ≥ σ f s

T hird f ailure : |σ22/Y | ≥ 1, Fourth f ailure :
√
σ2

21 + σ
2
23 ≥ σms

Fi f th f ailure : |σ33/Z | ≥ 1, Sixth f ailure :
√
σ2

31 + σ
2
32 ≥ σms

(6.14)

In these relations, direction 1 refers to the material direction and the other directions are perpendic-

ular to this direction. σms is the fiber shear strength and σ f s is the transverse shear strength. X , Y

and Z are the normal tensile or compressive strength in the 1, 2 or 3 directions depending on tensile

or compressive behavior of σii. Equation(6.14) shows six failure criteria. Three of these are in the

axial directions, and three represent shear failures. In two dimensional problems that disregard the
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normal plane, these modes diminish to four. Assuming that σms and σ f s are the same, the second

and fourth failure criteria will provide similar results.

6.8.1.2 Polynomial failure criterion

One particular form of of this criterion is the Tsai-Wu criterion [94], which is defined as:

Fiσi + Fi jσiσ j ≥ 1

F1 =
(

1
XT
− 1

XC

)
, F2 =

(
1

YT
− 1

YC

)
, F3 =

(
1

ZT
− 1

ZC

)
, F11 =

(
1

XT XC

)
, F22 =

(
1

YTYC

)
F33 =

(
1

ZT ZC

)
, F44 =

(
1
R2

)
, F55 =

(
1
S2

)
, F66 =

(
1

T2

)
, F12 = −

1
2

√
1

XT XCYTYC

F13 = −
1
2

√
1

XT XC ZT ZC
, F23 = −

1
2

√
1

YTYC ZT ZC

(6.15)

where subscripts T and C refer to tensile and compressive parameters and R, S and T represent

shear strengths in the 23,13 and 12 planes, respectively. This criteria shows the element failure,

and the failure mode is identified by the largest contributor to the failure criterion. For example, if

the maximum contribution to the failure is because of the term associated with σ11, then the mode

of failure is fiber breakage or Mode 1. Mode 2 of failure is due to transverse cracking and occurs

when σ22 or σ12 are dominant.
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6.9 Investigation of failure in 45% of the gait cycle in nonlinear simulation of proximal

femur

Non-linear hyper elastic constitutive equations discussed in chapter(5) are used to simulate

the proximal femur during the 45% of the gait cycle. Material parameters and geometry morphol-

ogy have additionally been described in the previous chapter.

6.9.1 Mean values of failure in maximum gait cycle

As shown in equation(6.7), the mean or expected value of the failure criteria are a function

of mean value of uncertainty parameters. Distribution of the first four failure criteria from equa-

tion(6.14) in the maximum gait cycle (45% of gait cycle) are shown in figure(6.1).

As figure(6.1) indicates, the first failure or mode 1 of failure is more likely to occur in the

femoral neck and head, while transverse failure caused from transverse axial or shear forces cause

inter- or sub-trochanteric failure. Figure(6.2) reflects the dominant failure criteria in the polynomial

failure criterion given in equation(6.15) in each element. This criterion illustrates the similar results

to figure(6.1). It can be observed that mode 1 of failure is more likely to occur during the gait cycle

in the head or neck, while inter- or sub-trochanteric failure is due to shear stresses. This indicates

that inter- or sub-trochanteric failure is more likely to occur when falling on the side.
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(a) First failure criterion (b) Third failure criterion

(c) Second failure criterion (d) Fourth failure criterion

Figure 6.1 Distribution of mean of failure criteria in a proximal femur section

125



Figure 6.2 Predominant failure criteria according to fifth failure criterion
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6.9.2 Sensitivity of failure to uncertain parameters

In sensitivity based methods described in section(6.4.2.3), derivative of objective functions,

i.e. failure criteria in the present study, with respect to the uncertain parameters are pre-requisite.

In the current work, central finite-difference is used to compute the sensitivities. The perturbation,

or step size, used within the finite-difference calculation was numerically studied to investigate

the effect on the accuracy of the sensitivity derivatives. Step sizes between 10e-5 and 10e-7

were selected, with no significant change in the derivatives observed. However, if the loading is

further increased and, therefore, more non-linearity is introduced, a more detailed step size study

is warranted.

Figures(6.3) and (6.4) illustrate the range of sensitivity of the first failure criterion with

respect to the uncertainties. As discussed these uncertainties include six material properties

consisting of density, the Poisson’s ratio, shear modulus of cancellous and cortical layers as well as

two geometric uncertainties of femoral head offset(A) and femoral head relative position(C). In a

direct comparison, the impact of uncertainties on the failure criteria may be ranked from the most

to least critical as density, Poisson’s ratio, geometry or femoral head offset and relative position and

shear modulus.
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(a) Sensitivity of first failure criterion to Poisson’s ratio
of cancellous section

(b) Sensitivity of first failure criterion to Poisson’s ratio
of cortical section

(c) Sensitivity of first failure criterion to density of can-
cellous section

(d) Sensitivity of first failure criterion to density of cor-
tical section

Figure 6.3 Sensitivity of first failure criterion to Poisson’s ratio and density of cancellous and
cortical sections
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(a) Sensitivity of first failure criterion to shear modulus
of cancellous section

(b) Sensitivity of first failure criterion to shear modulus
of cortical section

(c) Sensitivity of first failure criterion to femoral head
offset (A)

(d) Sensitivity of first failure criterion to femoral head
relative position (C)

Figure 6.4 Sensitivity of first failure criterion to shearmodulus of cancellous and cortical sections,
femoral head offset (A) and femoral head relative position (C) of figure(5.9)
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6.9.3 Statistical parameters of sensitivity of failure to uncertain parameters

Following the calculation of sensitivities of failure criteria with respect to the uncertain

parameters, equations(6.11) and (6.12) can be used to compute the distribution of variance, standard

deviation and maximum and minimum of the failure chance. It is assumed that standard deviation

or σxi and range of uncertainties or ∆xi is 0.2. In clinical studies these values can be quantified

more accurately, based on physical samples, which will produce more reliable results. Figures(6.5)

to (6.10) show the distribution of standard deviation, variance, maximum and minimum of first,

second and third failure criteria.

130



(a) Distribution of standard deviation (b) Distribution of variance

Figure 6.5 Distribution of standard deviation and variance of first failure criterion

(a) Distribution of minimum values (b) Distribution of maximum values

Figure 6.6 Distribution of minimum and maximum of first failure criterion
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(a) Distribution of standard deviation (b) Distribution of variance

Figure 6.7 Distribution of standard deviation and variance of second failure criterion

(a) Distribution of minimum values (b) Distribution of maximum values

Figure 6.8 Distribution of minimum and maximum of second failure criterion
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(a) Distribution of standard deviation (b) Distribution of variance

Figure 6.9 Distribution of standard deviation and variance of third failure criterion

(a) Distribution of minimum values (b) Distribution of maximum values

Figure 6.10 Distribution of minimum and maximum of third failure criterion
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6.10 Uncertainty analysis of proximal femur

The final product of this study is to show the effect of uncertainties on the function of

interest. To accomplish this, the proportional sensitivity analysis that shows the portion of each

uncertain parameter in equation(6.13) is performed. To do that, absolute values of each uncertain

parameter in equation(6.13) or ���
(
∂ f (x0)
∂xi
∆xi

) ��� is divided with the summation of all of these variables.

This analysis is carried out in elements with the most probability of failure regarding each failure

criteria. These elements are situated in the cancellous section of the bone. The analysis are

depicted in figures(6.11), (6.12) and (6.13) for first, second and third failure criteria. In these

figures, subscript 1 refers to cancellous section and 2 represents the cortical part, also ν, ρ and

g are the Poisson’s ratio, density and shear modulus. A and C are defined in figure(5.9) and are

defined as femoral head offset and femoral head relative position. As can be observed, there is

a large contribution from the cancellous density in the failure criteria, subsequently the Poisson’s

ratio and density of the cortical section and the Poisson’s ratio of the cancellous section have the

largest impact. The other uncertainties are negligible, and their total effect does not exceed four

percent of these dependencies.
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Figure 6.11 Proportional sensitivity of element with maximum first failure criterion to uncertain
parameters

Figure 6.12 Proportional sensitivity of element with maximum second failure criterion to uncer-
tain parameters
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Figure 6.13 Proportional sensitivity of element with maximum third failure criterion to uncer-
tainties

6.11 Conclusion

In this chapter, a brief description concerning uncertainties, uncertainty quantification, and

the procedure of utilizing UQ in simulation results are presented. The first two applications i.e.

mathematical intervals and ranking of uncertainties are post-hoc analysis that can be applied for

any problem. As an example, a sensitivity based scheme for uncertainty quantification of proximal

femur is investigated using the FOSMmethod. Mathematical interval, mean, variance and standard

deviation of failure equations based on uncertain data were illustrated. Sensitivity based analysis

such as ranking of the influential uncertain parameters in the failure criteria is performed thereupon.
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CHAPTER 7

SUMMARY AND FUTURE WORK

A computational structural framework for the simulation of biological tissues is developed

in this dissertation. Hard and soft biological tissues, may exhibit either linear or nonlinear material

responses and, therefore, the resultant theory and computational implementation are presented.

The simulation of linear behavior is presented in Continuous Galerkin (CG) and the Discontinuous

Galerkin (DG) finite element approaches, whereas the non-linear equations are solely discussed in

the CG platform. Two classes of hyper-elastic non-linear models, i.e. Saint Venant-Kirchhoff and

neo-Hookean hyper-elasticity are discussed for the simulation of the non-linear problems. As an

example, the hyper elastic formulation for the nonlinear, transversely isotropic behavior of soft and

hard tissue is utilized for the simulation and failure analysis of the proximal femur. Both linear and

nonlinear material results are compared.

Due to natural variations in biophysical properties from person to person, uncertainty quan-

tification may be used to ascertain the impact on deterministic simulation results when assuming

mean values of these properties. Thus, the uncertainty in the failure analysis due to the selected

biophysical properties is examined using the First-Order Second-Moment (FOSM) method.

Additionally, within Computational Fluid Dynamics (CFD) it is often necessary to adap-

tively move the mesh (e.g. moving boundary simulations, shape design optimization, generation
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of higher-order grids near curved boundaries, etc.). In these regards, linear elasticity is commonly

used for adaptation by viewing the mesh as a solid. In some cases, such as for anisotropic meshes

or for extremely large boundary movement, this approach to mesh movement has experienced

difficulties in producing valid grids for simulation purposes. Thus, using the developed capabil-

ity, the potential benefits of utilizing isotropic nonlinear material behavior for mesh movement is

additionally examined.

Although the non-linear material models are inherently formulated for the 3-dimensional

problems, these relations are used in 2-dimensions in this dissertation, opening the opportunity for

the usage of these relations in 3-dimensions. Also the DG formulations are implemented for the

linear simulations and further implementations of DG for the non-linear elasticity is suggested.

Having found the basis for the simulation of biological tissue, working with real human

sample data is suggested for more reliable simulation results. This process may require collabora-

tion with medical laboratories to obtain more accurate material properties and in vivo computed

tomography (CT) data that reflects the morphology of the tissues.
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APPENDIX A

Converting elasticity tensor to matrix

139



This realtion shows how to transfer the elasticity tensor T to elasticity matrix M .

M =
1
2



2T1111 2T1122 2T1133 T1112 + T1121 T1113 + T1131 T1123 + T1132

2T2222 2T2233 T2212 + T2221 T2213 + T2231 T2223 + T2232

2T3333 T3312 + T3321 T3313 + T3331 T3323 + T3332

T1212 + T1221 T1213 + T1231 T1223 + T1232

sym. T1313 + T1331 T1323 + T1332

T2323 + T2332



(A.1)
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APPENDIX B

Calculation of stress tensor in equation(5.13)
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pure function delta(i,j)

integer, intent(in) :: i,j

real(dp) :: delta

if(i == j) then

delta = 1.0

else

delta = 0.0

end if

end function delta

pure function elasticity_aniso_tensor2(gamma, beta, alpha, normal, ff,

bb, cc, JF)

real(dp), intent(in) :: bb(2,2), cc(2,2), ff(2,2), normal(3), gamma,

beta, alpha, JF

real(dp) :: elasticity_aniso_tensor2(3,3,3,3)

real(dp) :: ff3d(3,3), bb3d(3,3), cc3d(3,3), AA(3), ll, nnormal(3),

I1, I4

integer i, j, k, l

do i = 1, 3

do j = 1, 3

ff3d(i,j) = 0.0

bb3d(i,j) = 0.0
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cc3d(i,j) = 0.0

end do

end do

ff3d(3,3) = 1.0

bb3d(3,3) = 1.0

cc3d(3,3) = 1.0

do i = 1, 2

do j = 1, 2

ff3d(i,j) = ff(i,j)

bb3d(i,j) = bb(i,j)

cc3d(i,j) = cc(i,j)

end do

end do

ll = sqrt(normal(1)*normal(1) + normal(2)*normal(2) + normal(3)*

normal(3))

nnormal(1) = normal(1)/ll

nnormal(2) = normal(2)/ll

nnormal(3) = normal(3)/ll

do i = 1, 3

AA(i) = 0.0

do j = 1, 3

AA(i) = AA(i) + ff3d(i,j)*nnormal(j)

end do

end do
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I4 = AA(1)*AA(1) + AA(2)*AA(2) + AA(3)*AA(3)

I1 = cc3d(1,1) + cc3d(2,2) + cc3d(3,3)

do i = 1, 3

do j = 1, 3

do k = 1, 3

do l = 1, 3

elasticity_aniso_tensor2(i,j,k,l) = (8.0*gamma*AA(i)*AA(

j)*AA(k)*AA(l) &

+ 4.0*beta*( AA(i)*AA(j)*delta(k,l) + delta(i,j)*AA

(k)*AA(l) ) &

- 2.0*alpha*( AA(i)*AA(l)*bb3d(j,k) + bb3d(i,k)*AA(

j)*AA(l) ) &

-4.0*beta*(I4 - 1.0)*delta(i,k)*delta(j,l) )/JF

end do

end do

end do

end do

end function elasticity_aniso_tensor2
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APPENDIX C

Proximal femur loading during the gait cycle

145



Loading conditions at 10 percent gait cycle according to the coordinate system given in the text
with x pointing ventrally, y pointing laterally and z pointing proximally

Attachment [mm] Force at 10% gait cycle [N]
Name of force x y z x y z
Joint contact hip -7.93 -56.60 433.42 -510.63 665.76 -1131.89
Joint contact patella 27.71 -10.70 13.40 -123.18 65.61 -27.03
Joint contact knee
posterio-lateral1 -5.12 20.99 0.03 0.00 0.00 718.30
anterio-medial1 2.85 -20.04 -0.14 0.00 0.00 239.43
central 0.00 0.00 0.00 -99.66 60.75 -0.01
posterio-lateral2 2.67 24.96 -0.53 -339.36 0.00 0.00
anterio-medial2 2.89 -29.98 -0.29 476.24 0.00 0.00
posterio-medial -13.16 -16.08 -0.97 0.00 -339.36 0.00
anterio-lateral 24.92 12.84 1.58 0.00 110.34 0.00
Gluteus maximus 1 -5.72 10.25 407.51 71.13 -71.72 75.19
Gluteus maximus 2 -13.13 2.57 349.89 27.33 -58.78 75.97
Gluteus maximus 3 -11.63 10.88 392.17 36.06 -12.13 -27.76
Gluteus medius 1, 2, 3 -4.53 8.61 410.56 161.10 -118.59 149.10
Gluteus minimus 1, 2, 3 0.00 0.00 413.68 136.50 -92.37 36.25
Tensor fasciae latae 6.34 15.38 393.23 3.23 -51.09 -18.95
Piriformis 1.70 -7.48 413.66 22.71 -47.98 42.95
Obturator externus -5.70 -11.09 407.19 0.00 0.00 0.00
Quadratus femoris -17.75 -29.26 367.18 20.34 -22.79 32.46
Obturator internus,
Gemellus superior, inferior 0.86 -10.42 410.57 11.96 -18.98 20.66
Pectineus -16.52 -11.14 339.48 0.00 0.00 0.00
Vastus medialis 15.54 -21.93 180.83 82.90 -6.10 -259.22
Vastus intermedius 21.31 -16.80 199.26 0.00 0.00 0.00
Vastus lateralis 16.70 1.23 217.30 0.00 0.00 0.00
Gastrocnemius lateralis -17.85 26.80 11.43 -22.75 5.96 -52.93
Gastrocnemius medialis -24.70 -24.50 10.28 0.00 0.00 0.00
Biceps femoris, caput -0.91 -1.59 204.26 -0.10 9.17 -48.81
breve
Adductor magnus caudal 3.59 -27.65 41.85 6.44 -7.45 61.20
Adductor magnus cranial 1.42 -23.97 276.17 30.22 -49.77 63.83
Adductor minimus 7.39 -21.54 174.37 9.53 -20.47 51.26
Adductor longus -3.18 -5.67 216.09 0.00 0.00 0.00
Adductor brevis 1 -15.62 -6.94 339.59 0.00 0.00 0.00
Adductor brevis 2 -11.37 -11.32 311.71 0.00 0.00 0.00
Psoas major, iliacus -12.22 -33.50 370.43 0.00 0.00 0.00
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Loading conditions at 30 percent gait cycle according to the coordinate system given in the text
with x pointing ventrally, y pointing laterally and z pointing proximally

Attachment [mm] Force at 30% gait cycle [N]
Name of force x y z x y z
Joint contact hip -7.93 -56.60 433.42 -399.59 812.5 -1435.34
Joint contact patella 27.71 -10.70 13.40 -14.32 2.73 5.42
Joint contact knee
posterio-lateral1 -5.12 20.99 0.03 0.00 0.00 807.00
anterio-medial1 2.85 -20.04 -0.14 0.00 0.00 269.00
central 0.00 0.00 0.00 -98.36 108.58 -0.01
posterio-lateral2 2.67 24.96 -0.53 -280.31 0.00 0.00
anterio-medial2 2.89 -29.98 -0.29 475.18 0.00 0.00
posterio-medial -13.16 -16.08 -0.9 0.00 -280.31 0.00
anterio-lateral 24.92 12.84 1.58 0.00 -19.90 0.00
Gluteus maximus 1 -5.72 10.25 407.51 50.18 -87.92 90.85
Gluteus maximus 2 -13.13 2.57 349.89 10.05 -69.16 85.76
Gluteus maximus 3 -11.63 10.88 392.17 0.00 0.00 0.00
Gluteus medius 1, 2, 3 -4.53 8.61 410.56 128.07 -164.71 201.36
Gluteus minimus 1, 2, 3 0.00 0.00 413.68 152.51 -177.49 78.50
Tensor fasciae latae 6.34 15.38 393.23 35.26 -20.26 -26.34
Piriformis 1.70 -7.48 413.66 15.17 -77.90 68.03
Obturator externus -5.70 -11.09 407.19 0.00 0.00 0.00
Quadratus femoris -17.75 -29.26 367.18 0.00 0.00 0.00
Obturator internus,
Gemellus superior, inferior 0.86 -10.42 410.57 12.43 -36.77 39.19
Pectineus -16.52 -11.14 339.48 0.00 0.00 0.00
Vastus medialis 15.54 -21.93 180.83 0.00 0.00 0.00
Vastus intermedius 21.31 -16.80 199.26 0.00 0.00 0.00
Vastus lateralis 16.70 1.23 217.30 0.00 0.00 0.00
Gastrocnemius lateralis -17.85 26.80 11.43 -126.98 21.72 -159.16
Gastrocnemius medialis -24.70 -24.50 10.28 -6.77 2.30 -8.42
Biceps femoris, caput -0.91 -1.59 204.26 -4.00 10.97 -60.16
breve
Adductor magnus caudal 3.59 -27.65 41.85 0.00 0.00 0.00
Adductor magnus cranial 1.42 -23.97 276.17 0.00 0.00 0.00
Adductor minimus 7.39 -21.54 174.37 0.00 0.00 0.00
Adductor longus -3.18 -5.67 216.09 0.00 0.00 0.00
Adductor brevis 1 -15.62 -6.94 339.59 0.00 0.00 0.00
Adductor brevis 2 -11.37 -11.32 311.71 0.00 0.00 0.00
Psoas major, iliacus -12.22 -33.50 370.43 51.47 -24.37 44.32
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Loading conditions at 45 percent gait cycle according to the coordinate system given in the text
with x pointing ventrally, y pointing laterally and z pointing proximally

Attachment [mm] Force at 30% gait cycle [N]
Name of force x y z x y z
Joint contact hip -7.93 -56.60 433.42 -466.34 962.62 -1911.22
Joint contact patella 27.71 -10.70 13.40 -342.94 -34.41 164.95
Joint contact knee
posterio-lateral1 -5.12 20.99 0.03 0.00 0.00 1287.38
anterio-medial1 2.85 -20.04 -0.14 0.00 0.00 429.13
central 0.00 0.00 0.00 -134.61 113.43 -0.02
posterio-lateral2 2.67 24.96 -0.53 -137.02 0.00 0.00
anterio-medial2 2.89 -29.98 -0.29 797.97 0.00 0.00
posterio-medial -13.16 -16.08 -0.9 0.00 -137.02 0.00
anterio-lateral 24.92 12.84 1.58 0.00 -119.14 0.00
Gluteus maximus 1 -5.72 10.25 407.51 35.10 -87.87 90.95
Gluteus maximus 2 -13.13 2.57 349.89 0.08 -57.73 70.32
Gluteus maximus 3 -11.63 10.88 392.17 0.00 0.00 0.00
Gluteus medius 1, 2, 3 -4.53 8.61 410.56 111.23 -179.68 221.40
Gluteus minimus 1, 2, 3 0.00 0.00 413.68 186.22 -193.69 92.98
Tensor fasciae latae 6.34 15.38 393.23 51.42 -40.70 -40.04
Piriformis 1.70 -7.48 413.66 5.35 -77.90 67.03
Obturator externus -5.70 -11.09 407.19 0.00 0.00 0.00
Quadratus femoris -17.75 -29.26 367.18 0.00 0.00 0.00
Obturator internus,
Gemellus superior, inferior 0.86 -10.42 410.57 7.07 -35.18 37.20
Pectineus -16.52 -11.14 339.48 1.30 -1.01 1.12
Vastus medialis 15.54 -21.93 180.83 2.93 0.18 -8.09
Vastus intermedius 21.31 -16.80 199.26 9.13 5.01 -62.06
Vastus lateralis 16.70 1.23 217.30 69.58 -25.73 -215.72
Gastrocnemius lateralis -17.85 26.80 11.43 -292.75 -37.74 -247.83
Gastrocnemius medialis -24.70 -24.50 10.28 -5.71 0.04 -4.77
Biceps femoris, caput -0.91 -1.59 204.26 -15.09 11.31 -90.02
breve
Adductor magnus caudal 3.59 -27.65 41.85 0.00 0.00 0.00
Adductor magnus cranial 1.42 -23.97 276.17 0.00 0.00 0.00
Adductor minimus 7.39 -21.54 174.37 0.00 0.00 0.00
Adductor longus -3.18 -5.67 216.09 1.86 -1.90 2.81
Adductor brevis 1 -15.62 -6.94 339.59 0.00 0.00 0.00
Adductor brevis 2 -11.37 -11.32 311.71 0.00 0.00 0.00
Psoas major, iliacus -12.22 -33.50 370.43 115.24 -62.89 114.51
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Loading conditions at 70 percent gait cycle according to the coordinate system given in the text
with x pointing ventrally, y pointing laterally and z pointing proximally

Attachment [mm] Force at 30% gait cycle [N]
Name of force x y z x y z
Joint contact hip -7.93 -56.60 433.42 68.12 4.94 -47.79
Joint contact patella 27.71 -10.70 13.40 -15.95 -8.09 30.49
Joint contact knee
posterio-lateral1 -5.12 20.99 0.03 0.00 0.00 -22.08
anterio-medial1 2.85 -20.04 -0.14 0.00 0.00 -7.36
central 0.00 0.00 0.00 -14.49 -34.95 -0.01
posterio-lateral2 2.67 24.96 -0.53 -22.84 0.00 0.00
anterio-medial2 2.89 -29.98 -0.29 56.00 0.00 0.00
posterio-medial -13.16 -16.08 -0.9 0.00 25.71 0.00
anterio-lateral 24.92 12.84 1.58 0.00 22.84 0.00
Gluteus maximus 1 -5.72 10.25 407.51 0.00 0.00 0.00
Gluteus maximus 2 -13.13 2.57 349.89 0.20 -0.45 0.55
Gluteus maximus 3 -11.63 10.88 392.17 0.00 0.00 0.00
Gluteus medius 1, 2, 3 -4.53 8.61 410.56 3.57 -4.89 5.53
Gluteus minimus 1, 2, 3 0.00 0.00 413.68 22.29 28.45 7.97
Tensor fasciae latae 6.34 15.38 393.23 6.43 -3.00 -5.58
Piriformis 1.70 -7.48 413.66 2.89 -6.42 5.44
Obturator externus -5.70 -11.09 407.19 0.55 -0.41 0.07
Quadratus femoris -17.75 -29.26 367.18 0.00 0.00 0.00
Obturator internus,
Gemellus superior, inferior 0.86 -10.42 410.57 2.15 -3.92 4.14
Pectineus -16.52 -11.14 339.48 2.38 -1.06 1.32
Vastus medialis 15.54 -21.93 180.83 0.00 0.00 0.00
Vastus intermedius 21.31 -16.80 199.26 0.00 0.00 0.00
Vastus lateralis 16.70 1.23 217.30 0.00 0.00 0.00
Gastrocnemius lateralis -17.85 26.80 11.43 -19.04 -3.33 -4.72
Gastrocnemius medialis -24.70 -24.50 10.28 0.00 0.00 0.00
Biceps femoris, caput -0.91 -1.59 204.26 -0.64 0.17 -2.21
breve
Adductor magnus caudal 3.59 -27.65 41.85 0.00 0.00 0.00
Adductor magnus cranial 1.42 -23.97 276.17 0.00 0.00 0.00
Adductor minimus 7.39 -21.54 174.37 0.00 0.00 0.00
Adductor longus -3.18 -5.67 216.09 11.45 -7.62 13.25
Adductor brevis 1 -15.62 -6.94 339.59 0.40 -0.29 0.26
Adductor brevis 2 -11.37 -11.32 311.71 0.37 -0.28 0.31
Psoas major, iliacus -12.22 -33.50 370.43 32.41 -7.41 20.43
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