382 research outputs found

    Bodies of Knowledge: The Presentation of Personified Figures in Engraved Allegorical Series Produced in the Netherlands, 1548-1600

    Get PDF
    During the second half of the sixteenth century, engraved series of allegorical subjects featuring personified figures flourished for several decades in the Low Countries before falling into disfavor. Designed by the Netherlandsâ?? leading artists and cut by professional engravers, such series were collected primarily by the urban intelligentsia, who appreciated the use of personification for the representation of immaterial concepts and for the transmission of knowledge, both in prints and in public spectacles. The pairing of embodied forms and serial format was particularly well suited to the portrayal of abstract themes with multiple components, such as the Four Elements, Four Seasons, Seven Planets, Five Senses, or Seven Virtues and Seven Vices. While many of the themes had existed prior to their adoption in Netherlandish graphics, their pictorial rendering had rarely been so pervasive or systematic. Focusing on the period from 1548, when Hieronymus Cock opened his influential print publishing house in Antwerp, to 1600, when such series declined in popularity, I focus on the function of engraved allegorical series with personified figures in contemporary Netherlandish culture, particularly in Antwerp but also in Haarlem. Divided according to presentational format, the chapters explore the mental habits and cultural practices that informed contemporary readings of the imagery by an erudite audience of collectors. By considering the relation of form and content and by situating such imagery within the larger social and historical context of the Low Countries, this study elucidates how these images operated within contemporary culture and provides crucial insight into the nature of visual knowledge in the Netherlands during the late sixteenth century. As a form of visual rhetoric linked to other cultural practices, engraved allegorical series played a pivotal role in mediating and schematizing immaterial ideas for an educated elite in the Low Countries

    Interest on the Balances of Checking Accounts

    Get PDF
    If a promissory note payable to a solvent commercial bank made by one not a customer were discounted for the maker by the bank and the price though due were not demanded by the maker, the financial and legal consequences would be those of a demand loan by maker to bank. If bullion, coins, bank notes, or deposit currency were sold by one not a customer to a bank and the price not demanded when due, the consequences would be those of a demand loan. Similarly, if the discounted note matured but were permitted by the bank to run, the 6ank would be making a demand loan to the solvent maker

    The Ties That Bind: An Examination of Outgroup Relationships as a Deviant Behavior

    Get PDF
    Contact programs, such as Seeds of Peace, subscribe to the assertion that an essential element to co-existence between groups with a violent history is to provide situations in which out-group members are encouraged to form new relationships. Although the individual may have positive feelings toward out-group members at the conclusion of the program, he or she must return home to existing social networks, which may not hold the same tolerant attitudes. This research explores what happens when individuals present new out-group relationships to existing peer groups. Under what circumstances, if any, can participants sustain new relationships when they return to their respective communities where they face the pressures and constraints of their previous networks and neighborhoods

    Non-parametric inversion of gravitational lensing systems with few images using a multi-objective genetic algorithm

    Full text link
    Galaxies acting as gravitational lenses are surrounded by, at most, a handful of images. This apparent paucity of information forces one to make the best possible use of what information is available to invert the lens system. In this paper, we explore the use of a genetic algorithm to invert in a non-parametric way strong lensing systems containing only a small number of images. Perhaps the most important conclusion of this paper is that it is possible to infer the mass distribution of such gravitational lens systems using a non-parametric technique. We show that including information about the null space (i.e. the region where no images are found) is prerequisite to avoid the prediction of a large number of spurious images, and to reliably reconstruct the lens mass density. While the total mass of the lens is usually constrained within a few percent, the fidelity of the reconstruction of the lens mass distribution depends on the number and position of the images. The technique employed to include null space information can be extended in a straightforward way to add additional constraints, such as weak lensing data or time delay information.Comment: 9 pages, accepted for publication by MNRA

    Minimum-weight triangulation is NP-hard

    Full text link
    A triangulation of a planar point set S is a maximal plane straight-line graph with vertex set S. In the minimum-weight triangulation (MWT) problem, we are looking for a triangulation of a given point set that minimizes the sum of the edge lengths. We prove that the decision version of this problem is NP-hard. We use a reduction from PLANAR-1-IN-3-SAT. The correct working of the gadgets is established with computer assistance, using dynamic programming on polygonal faces, as well as the beta-skeleton heuristic to certify that certain edges belong to the minimum-weight triangulation.Comment: 45 pages (including a technical appendix of 13 pages), 28 figures. This revision contains a few improvements in the expositio

    Validity and worth in the science curriculum: learning school science outside the laboratory

    Get PDF
    It is widely acknowledged that there are problems with school science in many developed countries of the world. Such problems manifest themselves in a progressive decline in pupil enthusiasm for school science across the secondary age range and the fact that fewer students are choosing to study the physical sciences at higher levels and as careers. Responses to these developments have included proposals to reform the curriculum, pedagogy and the nature of pupil discussion in science lessons. We support such changes but argue from a consideration of the aims of science education that secondary school science is too rooted in the science laboratory; substantially greater use needs to be made of out-of-school sites for the teaching of science. Such usage should result in a school science education that is more valid and more motivating and is better at fulfilling defensible aims of school science education. Our contention is that laboratory-based school science teaching needs to be complemented by out-of-school science learning that draws on the actual world (e.g. through fieldtrips), the presented world (e.g. in science centres, botanic gardens, zoos and science museums) and the virtual worlds that are increasingly available through information and communications technologies (ICT)

    Computational Method for Phase Space Transport with Applications to Lobe Dynamics and Rate of Escape

    Full text link
    Lobe dynamics and escape from a potential well are general frameworks introduced to study phase space transport in chaotic dynamical systems. While the former approach studies how regions of phase space are transported by reducing the flow to a two-dimensional map, the latter approach studies the phase space structures that lead to critical events by crossing periodic orbit around saddles. Both of these frameworks require computation with curves represented by millions of points-computing intersection points between these curves and area bounded by the segments of these curves-for quantifying the transport and escape rate. We present a theory for computing these intersection points and the area bounded between the segments of these curves based on a classification of the intersection points using equivalence class. We also present an alternate theory for curves with nontransverse intersections and a method to increase the density of points on the curves for locating the intersection points accurately.The numerical implementation of the theory presented herein is available as an open source software called Lober. We used this package to demonstrate the application of the theory to lobe dynamics that arises in fluid mechanics, and rate of escape from a potential well that arises in ship dynamics.Comment: 33 pages, 17 figure

    Hardness of Approximate Nearest Neighbor Search

    Full text link
    We prove conditional near-quadratic running time lower bounds for approximate Bichromatic Closest Pair with Euclidean, Manhattan, Hamming, or edit distance. Specifically, unless the Strong Exponential Time Hypothesis (SETH) is false, for every δ>0\delta>0 there exists a constant ϵ>0\epsilon>0 such that computing a (1+ϵ)(1+\epsilon)-approximation to the Bichromatic Closest Pair requires n2δn^{2-\delta} time. In particular, this implies a near-linear query time for Approximate Nearest Neighbor search with polynomial preprocessing time. Our reduction uses the Distributed PCP framework of [ARW'17], but obtains improved efficiency using Algebraic Geometry (AG) codes. Efficient PCPs from AG codes have been constructed in other settings before [BKKMS'16, BCGRS'17], but our construction is the first to yield new hardness results

    Double-slit interference pattern from single-slit screen and its gravitational analogues

    Full text link
    The double slit experiment (DSE) is known as an important cornerstone in the foundations of physical theories such as Quantum Mechanics and Special Relativity. A large number of different variants of it were designed and performed over the years. We perform and discuss here a new verion with the somewhat unexpected results of obtaining interference pattern from single-slit screen. This outcome, which shows that the routes of the photons through the array were changed, leads one to discuss it, using the equivalence principle, in terms of geodesics mechanics. We show using either the Brill's version of the canonical formulation of general relativity or the linearized version of it that one may find corresponding and analogous situations in the framework of general relativity.Comment: 51 pages, 12 Figures five of them contain two subfigures and thus the number of figures is 17, 1 Table. Some minor changes introduced, especially, in the reference
    corecore