203 research outputs found

    Whole-genome analysis of a daptomycin-susceptible Enterococcus faecium strain and its daptomycin-resistant variant arising during therapy

    Get PDF
    Development of daptomycin (DAP) resistance in Enterococcus faecalis has recently been associated with mutations in genes encoding proteins with two main functions: (i) control of the cell envelope stress response to antibiotics and antimicrobial peptides (LiaFSR system) and (ii) cell membrane phospholipid metabolism (glycerophosphoryl diester phosphodiesterase and cardiolipin synthase [cls]). However, the genetic bases for DAP resistance in Enterococcus faecium are unclear. We performed whole-genome comparative analysis of a clinical strain pair, DAP-susceptible E. faecium S447 and its DAP-resistant derivative R446, which was recovered from a single patient during DAP therapy. By comparative whole-genome sequencing, DAP resistance in R446 was associated with changes in 8 genes. Two of these genes encoded proteins involved in phospholipid metabolism: (i) an R218Q substitution in Cls and (ii) an A292G reversion in a putative cyclopropane fatty acid synthase enzyme. The DAP-resistant derivative R446 also exhibited an S333L substitution in the putative histidine kinase YycG, a member of the YycFG system, which, similar to LiaFSR, has been involved in cell envelope homeostasis and DAP resistance in other Gram-positive cocci. Additional changes identified in E. faecium R446 (DAP resistant) included two putative proteins involved in transport (one for carbohydrate and one for sulfate) and three enzymes predicted to play a role in general metabolism. Exchange of the “susceptible” cls allele from S447 for the “resistant” one belonging to R446 did not affect DAP susceptibility. Our results suggest that, apart from the LiaFSR system, the essential YycFG system is likely to be an important mediator of DAP resistance in some E. faecium strains

    Data publication with the structural biology data grid supports live analysis

    Get PDF
    Access to experimental X-ray diffraction image data is fundamental for validation and reproduction of macromolecular models and indispensable for development of structural biology processing methods. Here, we established a diffraction data publication and dissemination system, Structural Biology Data Grid (SBDG; data. sbgrid. org), to preserve primary experimental data sets that support scientific publications. Data sets are accessible to researchers through a community driven data grid, which facilitates global data access. Our analysis of a pilot collection of crystallographic data sets demonstrates that the information archived by SBDG is sufficient to reprocess data to statistics that meet or exceed the quality of the original published structures. SBDG has extended its services to the entire community and is used to develop support for other types of biomedical data sets. It is anticipated that access to the experimental data sets will enhance the paradigm shift in the community towards a much more dynamic body of continuously improving data analysis

    Dimerization of FIR upon FUSE DNA binding suggests a mechanism of c-myc inhibition

    Get PDF
    c-myc is essential for cell homeostasis and growth but lethal if improperly regulated. Transcription of this oncogene is governed by the counterbalancing forces of two proteins on TFIIH—the FUSE binding protein (FBP) and the FBP-interacting repressor (FIR). FBP and FIR recognize single-stranded DNA upstream of the P1 promoter, known as FUSE, and influence transcription by oppositely regulating TFIIH at the promoter site. Size exclusion chromatography coupled with light scattering reveals that an FIR dimer binds one molecule of single-stranded DNA. The crystal structure confirms that FIR binds FUSE as a dimer, and only the N-terminal RRM domain participates in nucleic acid recognition. Site-directed mutations of conserved residues in the first RRM domain reduce FIR's affinity for FUSE, while analogous mutations in the second RRM domain either destabilize the protein or have no effect on DNA binding. Oppositely oriented DNA on parallel binding sites of the FIR dimer results in spooling of a single strand of bound DNA, and suggests a mechanism for c-myc transcriptional control

    Functional Roles of the N- and C-Terminal Regions of the Human Mitochondrial Single-Stranded DNA-Binding Protein

    Get PDF
    Biochemical studies of the mitochondrial DNA (mtDNA) replisome demonstrate that the mtDNA polymerase and the mtDNA helicase are stimulated by the mitochondrial single-stranded DNA-binding protein (mtSSB). Unlike Escherichia coli SSB, bacteriophage T7 gp2.5 and bacteriophage T4 gp32, mtSSBs lack a long, negatively charged C-terminal tail. Furthermore, additional residues at the N-terminus (notwithstanding the mitochondrial presequence) are present in the sequence of species across the animal kingdom. We sought to analyze the functional importance of the N- and C-terminal regions of the human mtSSB in the context of mtDNA replication. We produced the mature wild-type human mtSSB and three terminal deletion variants, and examined their physical and biochemical properties. We demonstrate that the recombinant proteins adopt a tetrameric form, and bind single-stranded DNA with similar affinities. They also stimulate similarly the DNA unwinding activity of the human mtDNA helicase (up to 8-fold). Notably, we find that unlike the high level of stimulation that we observed previously in the Drosophila system, stimulation of DNA synthesis catalyzed by human mtDNA polymerase is only moderate, and occurs over a narrow range of salt concentrations. Interestingly, each of the deletion variants of human mtSSB stimulates DNA synthesis at a higher level than the wild-type protein, indicating that the termini modulate negatively functional interactions with the mitochondrial replicase. We discuss our findings in the context of species-specific components of the mtDNA replisome, and in comparison with various prokaryotic DNA replication machineries

    High-affinity RNA binding by a hyperthermophilic single-stranded DNA-binding protein

    Get PDF
    Single-stranded DNA-binding proteins (SSBs), including replication protein A (RPA) in eukaryotes, play a central role in DNA replication, recombination, and repair. SSBs utilise an oligonucleotide/oligosaccharide-binding (OB) fold domain to bind DNA, and typically oligomerise in solution to bring multiple OB fold domains together in the functional SSB. SSBs from hyperthermophilic crenarchaea, such as Sulfolobus solfataricus, have an unusual structure with a single OB fold coupled to a flexible C-terminal tail. The OB fold resembles those in RPA, whilst the tail is reminiscent of bacterial SSBs and mediates interaction with other proteins. One paradigm in the field is that SSBs bind specifically to ssDNA and much less strongly to RNA, ensuring that their functions are restricted to DNA metabolism. Here, we use a combination of biochemical and biophysical approaches to demonstrate that the binding properties of S. solfataricus SSB are essentially identical for ssDNA and ssRNA. These features may represent an adaptation to a hyperthermophilic lifestyle, where DNA and RNA damage is a more frequent event.Publisher PDFPeer reviewe

    Improving the use of research evidence in guideline development: 4. Managing conflicts of interests

    Get PDF
    BACKGROUND: The World Health Organization (WHO), like many other organisations around the world, has recognised the need to use more rigorous processes to ensure that health care recommendations are informed by the best available research evidence. This is the fourth of a series of 16 reviews that have been prepared as background for advice from the WHO Advisory Committee on Health Research to WHO on how to achieve this. OBJECTIVES: We reviewed the literature on conflicts of interest to answer the following questions: 1. What is the best way to obtain complete and accurate disclosures on financial ties and other competing interests? 2. How to determine when a disclosed financial tie or other competing interest constitutes a conflict of interest? 3. When a conflict of interest is identified, how should the conflict be managed? 4. How could conflict of interest policies be enforced? METHODS: We searched PubMed, the Cochrane Methodology Register and selectively searched for the published policies of several organizations, We did not conduct systematic reviews ourselves. Our conclusions are based on the available evidence, consideration of what WHO and other organisations are doing and logical arguments. KEY QUESTIONS AND ANSWERS: What is the best way to obtain complete and accurate disclosures on financial ties and other competing interests? • Although there is little empirical evidence to guide the development of disclosure forms, minimal or open-ended formats are likely to be uninformative. We recommend the development of specific, detailed, structured forms that solicit as much information as possible about the nature and extent of the competing interests. How to determine when a disclosed financial tie or other competing interest constitutes a conflict of interest? • There is no empirical evidence to suggest that explicit criteria are preferable to ad hoc committee decisions when deciding if a disclosed financial tie is a conflict of interest. However, explicit criteria may make decision-making easier. When a conflict of interest is identified, how should the conflict be managed? • Descriptive studies suggest that appropriate management strategies are best determined on a case-by-case basis. Thus, WHO should use a wide range of management strategies to address disclosed conflicts of interest, with public disclosure of conflicts associated with each meeting as a minimum and recusal of conflicted individuals as the other extreme. How could conflict of interest policies be enforced? • Although there are no empirical studies of the enforcement of conflict if interest policies, descriptive studies of other organizations and institutions suggest that WHO convene a standing committee to review all financial disclosure statements prior to the commencement of committee meetings/hearings and to make management recommendations when necessary. A standard policy requiring all financial ties to be made public (i.e., recorded into the meeting minutes) should reduce the number of problematic cases. In instances where the conflicts seem intractable, a recommendation of recusal may be necessary to protect the greater interests of WHO and its constituents
    corecore