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Whole-Genome Analysis of a Daptomycin-Susceptible Enterococcus
faecium Strain and Its Daptomycin-Resistant Variant Arising during
Therapy

Truc T. Tran,a,c Diana Panesso,a,d Hongyu Gao,f Jung H. Roh,a Jose M. Munita,a,e Jinnethe Reyes,a,d Lorena Diaz,a,d

Elizabeth A. Lobos,f* Yousif Shamoo,g Nagendra N. Mishra,h,i Arnold S. Bayer,h,i Barbara E. Murray,a,b George M. Weinstock,f

Cesar A. Ariasa,d

Department of Internal Medicine, Division of Infectious Diseases,a and Department of Microbiology and Molecular Genetics,b University of Texas Medical School at
Houston, Houston, Texas, USA; University of Houston College of Pharmacy, Houston, Texas, USAc; Molecular Genetics and Antimicrobial Resistance Unit, Universidad El
Bosque, Bogota, Colombiad; Clínica Alemana, Universidad del Desarrollo School of Medicine, Santiago de Chile, Chilee; Washington University at St. Louis, St. Louis,
Missouri, USAf; Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, USAg; Division of Infectious Diseases, Los Angeles Biomedical Research
Institute at Harbor—University of California at Los Angeles (UCLA) Medical Center, Torrance, California, USAh; David Geffen School of Medicine at UCLA, Los Angeles,
California, USAi

Development of daptomycin (DAP) resistance in Enterococcus faecalis has recently been associated with mutations in genes en-
coding proteins with two main functions: (i) control of the cell envelope stress response to antibiotics and antimicrobial peptides
(LiaFSR system) and (ii) cell membrane phospholipid metabolism (glycerophosphoryl diester phosphodiesterase and cardiolipin
synthase [cls]). However, the genetic bases for DAP resistance in Enterococcus faecium are unclear. We performed whole-genome
comparative analysis of a clinical strain pair, DAP-susceptible E. faecium S447 and its DAP-resistant derivative R446, which was
recovered from a single patient during DAP therapy. By comparative whole-genome sequencing, DAP resistance in R446 was
associated with changes in 8 genes. Two of these genes encoded proteins involved in phospholipid metabolism: (i) an R218Q sub-
stitution in Cls and (ii) an A292G reversion in a putative cyclopropane fatty acid synthase enzyme. The DAP-resistant derivative
R446 also exhibited an S333L substitution in the putative histidine kinase YycG, a member of the YycFG system, which, similar
to LiaFSR, has been involved in cell envelope homeostasis and DAP resistance in other Gram-positive cocci. Additional changes
identified in E. faecium R446 (DAP resistant) included two putative proteins involved in transport (one for carbohydrate and
one for sulfate) and three enzymes predicted to play a role in general metabolism. Exchange of the “susceptible” cls allele from
S447 for the “resistant” one belonging to R446 did not affect DAP susceptibility. Our results suggest that, apart from the LiaFSR
system, the essential YycFG system is likely to be an important mediator of DAP resistance in some E. faecium strains.

The rise of Enterococcus faecium as an important nosocomial
pathogen in the last few decades has led to treatment chal-

lenges in clinical settings, particularly after the emergence of mul-
tidrug-resistant isolates. The current FDA-approved therapies for
vancomycin-resistant E. faecium (VRE), namely, quinupristin-
dalfopristin and linezolid, have important limitations for the
treatment of serious E. faecium infections due to their intrinsic
bacteriostatic effects, toxicity profiles, problems with administra-
tion, and emergence of resistance (1). Daptomycin (DAP) is a
lipopeptide antibiotic with potent in vitro bactericidal activity
against VRE. Many clinicians use DAP as first-line off-label ther-
apy in VRE endovascular infections despite the lack of FDA ap-
proval, and that efficacy is supported only by retrospective data
(2–4). However, the main challenge when using DAP against VRE
appears to be development of resistance during therapy, which has
been extensively documented (5–10) (although the accepted term
is “DAP nonsusceptibility,” we use the term “DAP resistance”
throughout for ease of presentation).

The main mechanism of action of DAP involves interactions
with the cell membrane in a calcium-dependent manner (11), and
our initial genomic studies in Enterococcus faecalis (12) provided
compelling evidence for the involvement of mutations in two
groups of genes in the development of DAP resistance. The first
group include genes encoding a three-component regulatory sys-
tem (designated LiaFSR for lipid-II interacting antibiotics) that

has been characterized in other Gram-positive bacteria (13–18)
and is involved in the homeostasis of the cell envelope. Moreover,
we recently examined the liaFSR genes in clinical E. faecium
bloodstream isolates and found that a high proportion (ca. 80%)
of isolates with DAP MICs of 3 to 4 �g/ml had mutations in liaFSR
(19). Furthermore, 3 of 6 fully DAP-resistant clinical isolates of E.
faecium exhibited point mutations in liaFSR (12), suggesting that,
like in E. faecalis, the LiaFSR locus may well be important in the
development of DAP resistance in E. faecium.

The second group of genes that appear to be involved in en-
terococcal DAP resistance encodes enzymes participating in cell
membrane phospholipid metabolism, since mutations in genes
causing amino acid deletions in two enzymes, a glycerophospho-
ryl diester phosphodiesterase (GdpD) and cardiolipin synthase
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(Cls), were associated with DAP resistance (12). Indeed, using an
allelic replacement strategy, we were able to show that concomi-
tant mutations in liaF and gdpD were sufficient to increase the
DAP MIC above the clinical breakpoint (12). Moreover, an
R218Q substitution in the putative Cls was also recently shown to
influence DAP susceptibility when the mutated allele was overex-
pressed in a laboratory strain of E. faecalis (20).

Previous DNA sequence analyses of liaFSR in a clinical pair of
DAP-susceptible and DAP-resistant E. faecium strains (S447 and
R446, respectively) recovered from a single patient indicated that
substitutions in LiaFSR were absent in R446 (12). In the same pair,
an R218Q substitution in the putative Cls enzyme was identified
in the DAP-resistant derivative R446 (12, 20). In this work, we
present whole-genome comparative analysis of this strain pair
and, using allelic replacements, evaluate the role of the Cls substi-
tution in DAP resistance.

MATERIALS AND METHODS
Bacterial isolates and MIC determinations. Bacterial strains used in this
study are shown in Table 1. Vancomycin-resistant, DAP-susceptible E.
faecium S447 was recovered from the urine of a patient upon admission.
The DAP-resistant derivative R446 was recovered from the same patient’s
bloodstream after 17 days of DAP therapy (7). These isolates exhibited
resistance to vancomycin mediated by the vanA gene cluster (7) and had
identical pulsed-field gel electrophoresis (PFGE) patterns. Both isolates
also had ampicillin MICs of �128 �g/ml. After identifying genetic
changes in the putative YycG protein in the DAP-resistant derivative R446
and not in the predicted LiaFSR system (see below), we sought to deter-
mine whether mutations in YycG were also present in a clinical strain
set of DAP-susceptible E. faecium isolates (TX0133a and derivatives
[Table 1]) that were recovered sequentially from the bloodstream of a
patient with endocarditis who failed initial DAP monotherapy and have
been described before (21). TX0133a (the first isolate recovered from the
patient) harbors two subpopulations of vancomycin-susceptible and van-
comycin-resistant bacteria (21) (Table 1). DAP MICs were determined by
Etest on cation-adjusted Mueller-Hinton agar. Results were interpreted
based on breakpoints recommended by the CLSI (22).

Genome sequencing, comparative analysis, and sequence confirma-
tion. Whole-genome analysis of the E. faecium strain pair (S447 and
R446) (7) and TX0133a and derivatives (21) was performed by generating
paired-end sequence readings on the Illumina Genome Analyser IIx at
Washington University Genome Center, producing 100 base reads and
assembled using Velvet (23). In order to predict coding genes, Glimmer 3
(24) and GeneMark (25) were used. Prediction of tRNA, rRNA, and non-

coding RNA genes was performed by using tRNAScan (26), RNAmmer
(27), and RFAM/internal (28). Gene annotation was performed by a gene
annotation pipeline at Washington University Genome Center. BWA/
samtools (29) was used to call single nucleotide polymorphisms (SNPs)
directly from the Illumina reads, and Nucmer (an algorithm of MUMmer
3.0) was applied to identify SNPs from the contigs. The variants detected
were rechecked, and the high-quality ones were included. The SNPs were
annotated using ANNOVAR (30). A mutation was defined as a nucleotide
change that results in a change of an amino acid in a specific position that
is not present in the same position in any of the genomes publicly available
(strains that are presumed to be daptomycin susceptible). PCR sequenc-
ing of both strands in each gene region was used to confirm the predicted
nucleotide changes by Sanger dideoxy-terminator sequencing. Mutations
were compared with enterococcal genomes available at http://www.ncbi
.nlm.nih.gov/genomes/lproks.cgi (last accessed 12 October 2012) using
genome BLAST.

Allelic replacements of cls encoding cardiolipin synthase in the dap-
tomycin-susceptible E. faecium strain S447. In order to study the role of
the cls mutation that had been previously implicated in DAP resistance in
E. faecalis (20), we replaced the native gene encoding the Cls enzyme of E.
faecium S447 with that of E. faecium R446, which harbors the predicted
R218Q substitution. We used the p-chloro-phenylalanine (p-Chl-Phe)
sensitivity counterselection system (PheS*) to deliver the mutated alleles
using plasmid pHOU3, which confers resistance to chloramphenicol, as
described previously (31, 32). Briefly, primers 5=-GCTCTAGAGGAGGA
ACATTTTTGTGGTA (forward) and 5-CGGGGATCCAGCCAGTTAAA
CATTTCCTTG (reverse) 500 bp upstream and downstream of the cls
mutation, respectively, were used for PCR amplifications using the
genomic DNA of R446 (DAP resistant) as the template. PCR products
were cloned into pHOU3 using XbaI and BamHI. The plasmid constructs
were electroporated into E. faecalis CK111 (31) and subsequently deliv-
ered to E. faecium S447 by conjugation (32). First-recombination inte-
grants were selected on plates containing chloramphenicol (15 �g/ml)
and vancomycin (32 �g/ml). In order to obtain the desired replacement,
first-event integrants were grown on p-chloro-phenylalanine and colonies
were subsequently tested by replica plating in the presence and absence of
chloramphenicol (32). Chloramphenicol-susceptible mutants were char-
acterized by PFGE and sequencing of the entire cls open reading frames
(ORFs). MIC determination was performed by Etest on Mueller-Hinton
agar (19).

RESULTS
Genomic analysis of DAP-susceptible (S447) and DAP-resistant
(R446) E. faecium clinical strain pair. Table 2 summarizes the
changes identified in our comparative genomic analysis. Using

TABLE 1 E. faecium strains, MICs, and genotypes

Strain Source

Etest MIC (�g/ml)d

YycG
change

LiaFSR
changec ReferenceDAP VAN

S447a Urine 3 256 No No 7
R446a Blood 16 16 Yes No 7
S447ClsR218Q Allelic replacement of cls in S447 3 256 No No This work
TX0133ab Blood 3 256 Yes Yes 21
TX0133a.4 In vitro derivative of TX0133a obtained outside the

inhibition zone of a vancomycin Etest strip
3 1 Yes Yes 21

TX0133a.1 In vitro derivative of TX0133a obtained within the
inhibition zone of a vancomycin Etest strip

4 512 No Yes 21

TX0133bb Blood after DAP therapy 4 2 No Yes 21
TX0133cb Blood after VAN therapy 3 512 No Yes 21
a Clinical strain pair from a patient who developed urinary tract infection (S447) and bacteremia (R446) (7).
b Clinical strain set of DAP-susceptible isolates from a different patient with E. faecium endocarditis who failed DAP monotherapy (21).
c S105N substitution in LiaS.
d DAP, daptomycin; VAN, vancomycin.
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genome analysis, we were able to confirm that, as opposed to
previously described DAP-resistant E. faecalis strains, the DAP-
resistant E. faecium derivative R446 had no predicted nucleotide
substitutions in the genes encoding the LiaFSR system (Table 1)
(12). Instead, we were able to identify an S333L substitution in the
putative YycG protein (Table 2), which is predicted to be a sensor
histidine kinase from the YycF/YycG two-component regulatory
system (Fig. 1A). Point mutations in the latter regulatory system
have been previously associated with DAP resistance in Staphylo-
coccus aureus (33–36). The substitution was located in the pre-
dicted PER-ARNT-SIM (PAS) sensor domain (Fig. 1B). PAS do-
mains were first found in eukaryotes and were named after
homology to the Drosophila melanogaster period protein (PER),

the aryl hydrocarbon receptor nuclear translocator protein
(ARNT), and the Drosophila single-minded protein (SIM) (37,
38). They are widespread components of signal transduction pro-
teins serving as universal signal sensors and interaction hubs. Our
data suggest that changes in the sensing activity of the YycG histi-
dine-kinase are likely to play a role in DAP resistance.

In order to evaluate if mutations in the Yyc system were also
present in additional E. faecium strains, we had available a strain
set of vancomycin-resistant E. faecium isolates (TX0133 series
[Table 1]), three of which were sequentially recovered from the
bloodstream of the same patient with endocarditis after DAP ther-
apy (21). Of note, DAP monotherapy (6 mg/kg) against the initial
isolate (TX0133a [Table 1]) failed to clear the organism from the

TABLE 2 Summary of amino acid changes in E. faecium R446 (DAP-resistant) isolate compared to S447 (DAP susceptible)

Predicted gene
product

Nucleotide change
in R446

Predicted amino
change in R446 Comments

Cls C¡T Arg218¡Gln A transmembrane protein predicted to be involved in phospholipid metabolism;
the mutation is within the phospholipase D domain (two conserved
phospholipase D domains are usually present in these enzymes)

YycG C¡T Ser333¡Leu Putative histidine kinase of an essential two-component regulatory system that is
conserved in most Firmicutes and is involved in cell wall homeostasis

Cfa C¡G reversion Ala292¡Glya Cyclopropane synthase, which catalyzes the conversion of a double bond in a
fatty acid to a cyclopropane ring (39)

RrmA A¡C Ser76¡Tyr 23S rRNA methyltransferase (70)
SulP C¡T His71¡Tyr Putative sulfate transporter and anti-sigma factor antagonist (STAS) domain (71)
XpaC C¡G reversion His198¡Aspb Putative protein that mediates the hydrolysis of 5-bromo-4-chloroindolyl-

phosphate bonds
PTS-EIIA member

protein
T¡A reversion Asn118¡ Lysc Member of the phosphoenolpyruvate:sugar phosphotransferase system (PTS),

which plays a role in the uptake of carbohydrates (64)
Protein with an HD

domain
A¡G Arg57¡His The HD domain defines a superfamily of enzymes that may possess

phosphohydrolase activity and may be involved in nucleic acid metabolism
and signal transduction (41)

a The amino acid change in R446 is an apparent reversion to the wild type, since the consensus sequence in position 292 of putative Cfa enzymes from other E. faecium strains
whose genomes have been sequenced is glycine.
b The amino acid change in R446 is also a reversion to the wild type, since the consensus sequence in position 198 of the predicted XpaC enzyme from other E. faecium strains
whose genomes have been sequenced is aspartate.
c The amino acid change in R446 is also a reversion to the wild type, since the consensus sequence in position 118 of the PTS transporters from other E. faecium strains whose
genomes have been sequenced is lysine.

FIG 1 The Yyc system in E. faecium. (A) Structural organization of the orthologous yyc gene cluster in E. faecium; transmembrane coding regions are marked as
black bars. Annotations are based on a published report by Türck et al. (49). (B) Predicted domain architecture of the putative YycG histidine kinase and changes
found in E. faecium R446, TX0133a, and TX0133a.4, with black arrows denoting the localization of the predicted amino acid changes. Numbers indicate the
corresponding amino acids spanning each domain. The HAMP domain is predicted to promote communication between the input and output domains; the PAS
sensor domain was named for homology to the PER-ARNT-SIM proteins of D. melanogaster; HisKA, phosphoacceptor domain of histidine kinases; HATPase_c,
histidine kinase-like ATPase. The scheme was based in part on published data from Dubrac et al. (56).
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bloodstream of the patient, although it had a DAP MIC within the
susceptibility range (Table 1). Furthermore, TX0133a was previ-
ously shown to harbor two subpopulations of vancomycin-resis-
tant and vancomycin-susceptible cells due to the loss of the vanA
gene cluster (designated TX0133a.1 and TX0133a.4, respectively
[Table 1]) (21). Using whole-genome analysis, we found that un-
like E. faecium S447, all TX0133 isolates harbored a substitution in
the predicted LiaS protein (S105N, compared to other putative
LiaS proteins from E. faecium strains whose genomes are se-
quenced) but not in Cls. Additionally, we found that TX0133a had
a prominent change in the putative YycG, which resulted in a
deletion of 12 amino acids in the PAS sensor domain of the histi-
dine kinase. Interestingly, subsequent derivative isolates of
TX0133a recovered from the same patient (namely, TX0133b and
TX0133c [Table 1]) had DAP MICs of 4 and 3 �g/ml, respectively,
but harbored no deletions in YycG and retained the LiaS substitu-
tion.

Apart from the previously described R218Q substitution in the
putative Cls (12, 20), we were also able to identify a change in a
gene predicted to be involved in the synthesis of cyclic fatty acid
(CFA). The predicted enzyme, designated Cfa synthase (for cyclo-
propane fatty acyl synthetase) belongs to the family of enzymes
that catalyze the addition of a methylene group from S-adenosyl-
L-methionine to a double bond of unsaturated fatty acyl chains in
membrane phospholipids (39) to produce cyclic fatty acids; of
note, this gene also participates in the synthesis of mycolic acids in
Mycobacterium spp. Interestingly, the consensus amino acid in
position 292 of predicted Cfa enzymes from those E. faecium iso-
lates whose genomes have been sequenced is glycine. However, an
alanine was identified in the parental DAP-susceptible S447 (in-
stead of glycine). Thus, the “consensus wild-type” Gly292 was
found in the DAP-resistant derivative R446, which suggests that
this isolate reverted to the consensus wild-type after exposure to
DAP. Interestingly, we also found a mutation in the putative Cfa
(T299S) in TX0133a, which was recovered from a patient who
failed DAP therapy (but not subsequent isolates [Table 1]). Taken
together, our findings confirm that genes associated with cell
membrane phospholipid metabolism are strongly associated with
development of in vivo DAP resistance in enterococci.

Our genomic analyses (confirmed by PCR sequencing) also
revealed 5 additional mutations in R446 compared with the DAP-
susceptible parental strain S447 (Table 2). Most of these genes
have not been previously associated with DAP resistance, and se-
quence comparisons yielded predicted functions that have no ob-
vious relationship with the DAP mechanism of action. Two of
these genes encode transporters: (i) sulP, which codes for a puta-
tive sulfate transporter that has 9 predicted transmembrane heli-
ces and harbors a H71Y substitution located seven amino acids
after the end of the second predicted transmembrane domain, and
(ii) a gene encoding a member of the phosphoenolpyruvate-de-
pendent sugar phosphotransferase system (PTS EIIA 2), which
has an N118K “reversion to wild type” in a hydrophilic domain of
the predicted protein (40) (Table 2). The remaining three genes
appear to encode putative proteins involved in general metabo-
lism (Table 2) including a putative methyltransferase (RrmA with
an S77Y substitution); XpaC, which is predicted to be a 5-bromo-
4-chloroindolyl phosphate hydrolysis protein that is involved in
amino acid metabolism (H198D reversion); and a predicted met-
al-dependent phosphohydrolase that harbors an R57H substitu-
tion in the HD domain that has been implicated in nucleic acid

metabolism (41) (Table 2). Interestingly, we found no mutations
in the above homologous genes belonging to the TX0133 isolates
except for a predicted N88D substitution in XpaC, which is pres-
ent in only one other E. faecium strain whose genome has been
sequenced (E. faecium E1679).

The R218Q substitution in cardiolipin synthase (Cls) does
not affect DAP susceptibility. The R218Q substitution in cardio-
lipin synthase was previously linked with DAP resistance in an in
vitro-derived DAP-resistant E. faecalis (20) and in clinical isolates
of DAP-resistant E. faecium (12). Thus, we first sought to evaluate
the role of this substitution alone in the DAP-susceptible E. fae-
cium S447. Thus, we delivered the mutated cls allele from R446 to
the chromosome of S447 using the PheS* counterselection sys-
tem. This strategy was chosen in order to maintain the gene in its
native location in the chromosome without increasing the copy
number and directly investigate the actual effect of the mutation
on DAP susceptibility. As shown in Table 1, introduction of the
mutated allele encoding the mutated Cls enzyme did not have any
effect on DAP susceptibility in E. faecium S447, indicating that the
single R218Q substitution is not sufficient to confer DAP resis-
tance.

DISCUSSION

We previously reported that development of the DAP resistance
phenotype among in vivo-selected E. faecalis was associated with
two predicted amino acid substitutions (12). The first was a dele-
tion of Ile in position 177 of the predicted transmembrane protein
LiaF, a member of a three-component regulatory system involved
in cell envelope responses to antibiotics and antimicrobial pep-
tides in B. subtilis (42). The second change was a deletion of Ile in
position 170 in a putative GdpD enzyme, which is likely to affect
phosphatidylglycerol metabolism, a crucial component of cell
membranes and involved in phospholipid metabolism (12). Ad-
ditionally, a third mutation in a gene encoding a putative Cls
enzyme that is also likely to participate in cell membrane phos-
pholipid metabolism, was also identified (deletion of Lys61), al-
though the role of this specific substitution in DAP resistance has
not been studied. Palmer et al. (20) showed that a different Cls
mutation (R218Q), located in the phospholipase D domain of the
enzyme, affected DAP susceptibility when it was overexpressed in
a laboratory strain of E. faecalis. Furthermore, the same R218Q
substitution was found in other unrelated clinical isolates of DAP-
resistant E. faecium (12), supporting the notion that this enzyme
also contributes to DAP resistance in enterococci.

In order to determine the overall genetic basis of DAP resis-
tance in E. faecium, we performed whole-genome comparison of a
clinical strain pair of DAP-susceptible (S447) and DAP-resistant
(R446) isolates of E. faecium recovered from the same patient
before and after DAP therapy (7). We and others (12, 20) had
shown that the DAP-resistant isolate R446 harbored the R218Q
substitution in the putative Cls enzyme but lacked changes in the
predicted LiaFSR system or in the GdpD enzyme; our current
results confirmed those previous observations. Thus, we sought to
further investigate the contributory role of the Cls R218Q substi-
tution in DAP resistance by performing an allelic replacement of
the “susceptible” cls in S447 with that belonging to the DAP-resis-
tant isolate, R446. Interestingly, the allelic switch had no effect on
DAP susceptibility in the S447 derivative, with DAP MICs being
identical to that of the parental S447 (Table 1). This finding is
consistent with our previous observations in E. faecalis, which

Tran et al.

264 aac.asm.org Antimicrobial Agents and Chemotherapy

 on M
arch 8, 2014 by W

ashington U
niversity in S

t. Louis
http://aac.asm

.org/
D

ow
nloaded from

 

http://aac.asm.org
http://aac.asm.org/
http://aac.asm.org/


indicated that a single mutation in the gene encoding another
phospholipid enzyme (GdpD) did not affect DAP susceptibility
(12), suggesting that amino acid changes in enzymes regulating
phospholipid metabolism may not be sufficient to confer DAP
resistance unless they are accompanied by additional mutations in
other genes (i.e., genes controlling cell envelope homeostasis). An
alternative scenario is that the mutated allele is not properly tran-
scribed. However, since we placed the allele in its native location
on the chromosome (without modifying the locus), it is unlikely
that transcription was affected. Of note, our results are in conflict
with those of Palmer et al. (20), who showed that the R218Q
substitution in Cls was sufficient to change DAP susceptibility.
The discrepancy may be due to the fact that Palmer et al. overex-
pressed the mutated allele in a multicopy plasmid in the back-
ground of a laboratory strain that harbors a “wild-type” cls copy in
the chromosome. This differential expression may have caused
important changes in cell membrane metabolism that might not
be physiological, although their results suggest that increased pro-
duction of the enzyme affects the susceptibility to DAP. Our mu-
tagenesis strategy placed the mutated allele in the original chro-
mosomal location, which represents a more accurate reflection of
the change that occurred during therapy. Another important dif-
ference between our work and that of Palmer et al. is that the effect
of the Cls substitution may be different in E. faecium and in E.
faecalis since membrane phospholipid composition has been
shown to differ in the two species (43). Indeed, we recently showed
that the phospholipid content of E. faecalis membranes is more
complex than that of E. faecium, with E. faecalis containing three
different species of amino-containing phospholipids (only lysyl-
PG was identified in E. faecium). Of note, striking reductions in
PG content were associated with development of DAP resistance
in both species (43).

Additionally, we found another gene difference between S447
and R446 in an enzyme that may affect phospholipid metabolism,
namely, an A292G change in a cyclopropane fatty acid synthase
(Cfa), an enzyme that is involved in the synthesis of cyclic fatty
acids (CFA). CFA are important components of cell membrane
phospholipids that may affect fluidity and stabilization of the cell
membrane (44) and could well alter DAP’s interaction with its
main cell membrane target. The substitution found appears to be
a reversion to the wild type in the DAP-resistant isolate R446,
which may have led to a significant increase in cyclic fatty acid in
cell membrane of R446 (43), suggesting that the change may have
occurred as a compensatory response following DAP exposures
(perhaps due to alterations in cardiolipin cell membrane compo-
sition or distribution). Indeed, CFA may alter the biophysical
properties of the membrane and have been implicated in the re-
sponse to (i) acid stress in Escherichia coli (44) and (ii) the presence
of environmental toxic compounds in Pseudomonas aeruginosa
(45); in addition, CFAs are essential for cell viability, drug resis-
tance, and cell wall integrity in Mycobacterium tuberculosis (46).
Interestingly, CFA deficiency has been associated with a decrease
in viability in the presence of low pH and increasing concentra-
tions of NaCl in E. faecalis (47, 48).

Since our allelic swap strategy indicated that the cls mutation
alone was not sufficient to affect DAP susceptibility and that the
DAP-resistant isolate R446 did not exhibit mutations in liaFSR,
we hypothesized that other genes involved in cell envelope ho-
meostasis may play a role in the evolution of the DAP resistance
phenotype in our E. faecium clinical strain pair. Using the whole-

genome comparisons, we were able to identify and confirm an
S333L substitution in the putative PAS-sensing domain of the
histidine kinase YycG (Fig. 1B) of R446. yycG is a member of the
yyc system, an essential cell envelope regulon that has been iden-
tified in most clinically important Gram-positive organisms with
low G�C content (49). The genes encoding YycFG proteins are
part of this regulon and regulate a two-component regulatory sys-
tem; YycF is the response regulator and YycG is the histidine ki-
nase sensor of the system. Apart from these two genes, the yyc gene
locus in our E. faecium clinical strain pair has additional open
reading frames that encode orthologs of putative proteins desig-
nated YycH, YycI, and YycJ (Fig. 1A), similar to what has been
shown previously in E. faecalis (49). The E. faecium YycG homo-
logue contains (i) a HAMP domain (for a domain present in his-
tidine kinases, adenylyl cyclases, methyl-accepting proteins, and
phosphatases), which promotes two-way conformational com-
munication between the input and output domains of many bac-
terial signaling proteins (50), (ii) a PAS domain, (iii) a histidine
kinase domain, and (iv) an ATPase domain (Fig. 1B). Interest-
ingly, in nongrowing Bacillus subtilis cells, the kinase activity of
YycG is inhibited by the transmembrane proteins YycH and YycJ
(51–55). In actively growing B. subtilis cells, YycG is dissociated
from YycH and YycI and localized in the nascent septum with the
cell wall machinery (52, 53). Moreover, in S. aureus, YycG appears
to coordinate cell wall homeostasis by affecting the autolysin tran-
scription (51, 52, 56, 57) and also to respond to changes in mem-
brane fluidity (49). Furthermore, mutations in yycG and yycH
have been associated with development of both vancomycin and
DAP resistance (33, 58–60) in S. aureus. Additionally, the Yyc
system, unlike LiaFSR, is essential for bacterial growth. Therefore,
it is tempting to speculate that the Yyc system in E. faecium is an
alternative pathway to LiaFSR to orchestrate cell envelope changes
triggered by the attack of antimicrobial peptides; thus, modula-
tion of this system may be associated with development of in vivo
DAP resistance in some strains of E. faecium.

In order to support the above hypothesis, we analyzed the pu-
tative Yyc system of previously characterized isolates of vancomy-
cin-resistant E. faecium that were recovered from a single patient
with endocarditis who failed DAP monotherapy (TX0133 deriva-
tives [Table 1]) (21). Of note, the initial isolate TX0133a exhibited
heterogenous resistance to vancomycin (Table 1) and initial ther-
apy with DAP monotherapy failed to clear the patient’s blood-
stream, but the patient subsequently responded to the combina-
tion of DAP (8 mg/kg), ampicillin, and gentamicin (21).
Interestingly, DAP MICs of all isolates were within the suscepti-
bility range but ranged from 3 to 4 �g/ml on Mueller-Hinton
(Etest). A novel mutation in LiaS (S105N substitution) was iden-
tified in all isolates belonging to the TX0133 series. Additionally,
our genomic analyses of these isolates revealed that TX0133a (the
first isolate recovered from the patient before exposure to DAP
therapy) and TX0133a.4 (vancomycin-susceptible derivative)
harbor a deletion of 12 amino acids in the PAS domain of the
predicted YycG histidine kinase, whereas the remaining isolates
lacked mutations in yycG (Table 1). Moreover, we were able to
detect a mutation in the putative Cfa enzyme in TX0133a. Thus,
our findings provide some evidence that, similar to LiaFSR, mod-
ulation of the Yyc system with changes in enzymes associated with
phospholipid metabolism may be an alternative pathway for de-
veloping DAP resistance in enterococci, and this also supports our
previous hypothesis that E. faecium isolates with DAP MICs be-

Genetic Basis of Daptomycin Resistance in E. faecium

January 2013 Volume 57 Number 1 aac.asm.org 265

 on M
arch 8, 2014 by W

ashington U
niversity in S

t. Louis
http://aac.asm

.org/
D

ow
nloaded from

 

http://aac.asm.org
http://aac.asm.org/
http://aac.asm.org/


tween 3 and 4 �g/ml by Etest on Mueller-Hinton agar (close to the
breakpoint) are likely to harbor genetic changes that may predis-
pose to DAP failure (19). The Yyc system appears to also be essen-
tial in E. faecium since repeated attempts to produce disruptions in
this system in S447 were unsuccessful (data not shown), similar to
what has been previously reported in B. subtilis, S. aureus, and E.
faecalis (61–63).

Five other ORFs were altered in DAP-resistant R446 compared
to the DAP-susceptible S447 (Table 2). The role of these muta-
tions is less clear, although they may reflect changes in cell metab-
olism and transport that optimize the global cellular response to
antimicrobial lipopeptide exposures. Since the predicted func-
tions of most of these genes are not directly associated with the
main membrane target of DAP and they have not been associated
with DAP resistance, they are likely to play a more minor role in
development of in vivo DAP resistance in enterococci, if at all.
Nonetheless, changes in the HD domain (which define proteins
that may possess phosphohydrolase activity and may be involved
in nucleic acid metabolism and signal transduction) (41) of a
transmembrane protein were previously described after in vitro
selection of DAP resistance in E. faecalis (20). Similarly, the phos-
phoenolpyruvate:sugar phosphotransferase system (PTS), which
plays a role in the uptake of carbohydrates (64), has been associ-
ated with bacteriocin resistance in Listeria monocytogenes and E.
faecalis (65–68) (Table 2).

Of note, recent whole-genome comparison of three clinically
isolated strains of E. faecium obtained before and after DAP ther-
apy also identified mutations in cls and genes encoding compo-
nents of the phosphoenolpyruvate:sugar phosphotransferase sys-
tem associated with DAP resistance, although no changes in yycFG
and liaFSR were identified (69). However, comparison of the
liaFSR and yycFG sequences of the E. faecium isolates with other E.
faecium genomes publicly available was not performed, and thus it
is difficult to determine if the initial isolate harbored variations
from the wild-type consensus sequences of LiaFSR and/or YycFG
systems. Thus, the role of genes regulating cell envelope homeo-
stasis is less clear in this set of isolates. It is unknown whether the
observed genetic changes are strain specific and/or related to con-
ditions of DAP exposure at the site of infection (e.g., bloodstream
and/or urine).

In summary, the major pathway for development of DAP re-
sistance in our E. faecium clinical strain pair is likely to be the result
of changes in an essential two-component regulatory system
(YycFG) that regulates cell envelope homeostasis and division
(analogous to LiaFSR), concomitant with mutations in genes en-
coding enzymes involved in cell membrane phospholipid metab-
olism. Our findings suggest that a common strategy for develop-
ment of DAP resistance in enterococci is to modulate genes that
orchestrate changes in the cell envelope plus cell membrane phos-
pholipid metabolism, although alternative genetic and biochem-
ical pathways may exist in order to fully express the resistant phe-
notype.
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