5 research outputs found

    Distributed memory diesel engine simulation using transputers

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:DX93556 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Blockchain based auditable access control for distributed business processes

    Get PDF
    The use of blockchain technology has been proposed to provide auditable access control for individual resources. However, when all resources are owned by a single organization, such expensive solutions may not be needed. In this work we focus on distributed applications such as business processes and distributed workflows. These applications are often composed of multiple resources/services that are subject to the security and access control policies of different organizational domains. Here, blockchains can provide an attractive decentralized solution to provide auditability. However, the underlying access control policies may be overlapping in terms of the component conditions/rules, and simply using existing solutions would result in repeated evaluation of user’s authorization separately for each resource, leading to significant overhead in terms of cost and computation time over the blockchain. To address this challenge, we propose an approach that formulates a constraint optimization problem to generate an optimal composite access control policy. This policy is in compliance with all the local access control policies and minimizes the policy evaluation cost over the blockchain. The developed smart contract(s) can then be deployed to the blockchain, and used for access control enforcement. We also discuss how the access control enforcement can be audited using a game-theoretic approach to minimize cost. We have implemented the initial prototype of our approach using Ethereum as the underlying blockchain and experimentally validated the effectiveness and efficiency of our approach

    Blockchain based auditable access control for business processes with event driven policies

    Get PDF
    The use of blockchain technology has been proposed to provide auditable access control for individual resources. Unlike the case where all resources are owned by a single organization, this work focuses on distributed applications such as business processes and distributed workflows. These applications are often composed of multiple resources/services that are subject to the security and access control policies of different organizational domains. Here, blockchains provide an attractive decentralized solution to provide auditability. However, the underlying access control policies may have event-driven constraints and can be overlapping in terms of the component conditions/rules as well as events. Existing work cannot handle event-driven constraints and does not sufficiently account for overlaps leading to significant overhead in terms of cost and computation time for evaluating authorizations over the blockchain. In this work, we propose an automata-theoretic approach for generating a cost-efficient composite access control policy. We reduce this composite policy generation problem to the standard weighted set cover problem. We show that the composite policy correctly captures all the local access control policies and reduces the policy evaluation cost over the blockchain. We have implemented the initial prototype of our approach using Ethereum as the underlying blockchain and empirically validated the effectiveness and efficiency of our approach. Ablation studies were conducted to determine the impact of changes in individual service policies on the overall cost
    corecore