

University of Bath

PHD

Distributed memory diesel engine simulation using transputers

Shamail, Shafay

Award date:
1990

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. May. 2019

DISTRIBUTED MEMORY
DIESEL ENGINE SIMULATION

USING TRANSPUTERS

Submitted by Shafay Shamail,
B.Sc.(Electrical), M.Sc.(EIectronics)

for the degree of
Doctor of Philosophy

of the University of Bath
1990

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author. This
copy of the thesis has been supplied on condition that anyone who consults it is
understood to recognise that its copyright rests with its author and no information
derived from it may be published without the prior written consent of the author.

This thesis may be made available for consultation within the University library and
may be photocopied or lent to other libraries for the purpose of consultation.

UMI Number: U029804

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U029804
Published by ProQuest LLC 2014. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

— 1ir '" i ' 'T r n —

IIHtVERS'TV G f 3ATH
LISHAaV

I 2QAUCmi Iq.qI
— W - ‘"U

5 0 5 4 0 D -

To My Parents

Summary

In this thesis, a multicylinder turbocharged Diesel engine simulation using a

distributed memory, transputer based parallel computer is presented. The new

simulation has a flexible data entry mechanism which allows the user to change

different parameters of the engine and which allows their effects observed without

changing the actual code. The simulation results are compared with the results of an

equivalent simulation. A comparison is also made between the simulated results from

an engine. Different parallel methods to increase computation speed are discussed.

Acknowledgements

I would like to express my gratitude to Mr. A. R. Daniels and Dr. R. W. Dunn for

their encouragement and support in supervising this work. I would also like to thank

Dr. S. J. Charlton for his invaluable help on Diesel engine models.

I would also like to acknowledge the assistance of my colleagues in the Department

of Electrical Engineering, University of Bath, in particular Dr. T. Berry, Mr. V. S.

Gott and Mr. C. G. Selwyn for their advice and help throughout this project.

The permission to study in the School of Electrical Engineering by Professor F.

Eastham and the grant by Government of Pakistan is also gratefully acknowledged.

Finally I wish to thank my mother whose patience and prayers were always an

inspiration for me during the course of this research.

ii

Contents

Summary i

Acknowledgements ii

List of principal symbols viii

1 Introduction 2

1.1 The Technological Revolution 2

1.2 The Computer 3

1.3 Parallel Processing 3

1.4 Diesel Engine Simulation 4

1.5 About This Thesis 5

2 The Diesel Engine Model 8

2.1 Introduction 8

2.2 The Control Volume Gas State Equations 11

2.2.1 Rate of Change of Mass 11

2.2.2 Rate of Change of Fuel to Air Ratio 12

2.2.3 Rate of Change of Temperature 12

2.3 The Cylinder Control Volume Equations 12

2.3.1 Scavenge 13

2.3.2 Induction 13

2.3.3 Compression and Power 14

2.3.4 Exhaust 15

2.3.5 Combustion 16

2.4 The Manifold Control Volume Equations 16

iii

2.4.1 Inlet Manifold 17

2.4.2 Exhaust Manifold 17

2.5 Sub Models 18

2.5.1 Gas Properties Model 18

2.5.2 The Heat Release Models 19

2.5.3 The Heat Transfer Models 24

2.5.4 Cylinder Volume and Rate of Change of Volume 27

2.5.5 Junction Flow Models 28

2.6 The Engine Dynamics 33

2.6.1 The Engine Crankshaft 33

2.6.2 The Turbocharger Shaft 35

2.6.3 The Control Actuators 35

2.7 Summary 37

3 The Bath University Transputer Based Parallel Computer (BUTPC) 46

3.1 The BUTPC for Diesel Engine Simulation 46

3.2 The T800 Processing Node 47

3.3 The Input/Output System 52

3.4 The Backplane 53

3.5 Bus Arbitration 54

3.6 Inter Rack Connection 55

3.7 Summary 56

4 The System Software 71

4.1 Introduction 71

4.2 Helios: The Operating System 73

4.2.1 The Nucleus 74

iv

4.2.2 The Server 77

4.2.3 The Posix Library 79

4.2.4 The User Interface 79

4.3 Communication Methods in Helios 79

4.3.1 The Language Level IO 80

4.3.2 The Posix Level IO 80

4.3.3 The System Level IO 80

4.3.4 The Kernel Level IO 81

4.4 New Communication Routines for the PDESIM 84

4.4.1 The Backplane Routines 85

4.4.2 Packets 86

4.5 Data Communication and Synchronisation 91

4.6 Summary 92

5 Parallel Numerical Integration 106

5.1 Introduction 106

5.2 Geometric Parallelism 106

5.3 Algorithmic Parallelism 109

5.4 Power Series Expansions 112

5.5 Single Cylinder Implementation on Transputers 113

5.5.1 Single Cylinder Implementation Using the MEPCM 114

5.5.2 Single Cylinder Implementation Using the BIOSM 116

5.5.3 Single Cylinder Implementation Using the BIPCM 118

5.6 Synchronisation Mechanism for the Block Methods 120

5.6.1 Four Point Synchronisation Using Rags 120

5.6.2 Four Point Synchronisation Using BPSignal and BPWait 121

5.7 Summary 122

v

6 A Multi Cylinder Diesel Engine Simulation 144

6.1 Introduction 144

6.2 The DISC 144

6.3 The PDESIM on the BUTPC 146

6.3.1 Task Creation and Initialisation 147

6.3.2 Data File Format 148

6.3.3 Data Communication and Synchronisation 149

6.3.4 Open and Closed Loop Connections 152

6.4 Speed Performance of the PDESIM 154

6.5 Summary 155

7 Engine Simulation Results and their Validation 167

7.1 Introduction 167

7.2 The Engine Cycle Parameters 167

7.2.1 The Engine Cycle Variables 168

7.2.2 The Derived Engine Parameters 172

7.3 Collection and Presentation of Engine Cycle Parameters 175

7.4 Validation of Results 178

7.4.1 The Ley land TL11 Diesel Engine 178

7.4.2 The FJH Model 180

7.4.3 The TL11 Engine 181

7.5 Summary 182

8 Application of the Engine Simulation 207

8.1 Introduction 207

8.2 Simulation as a Design Tool 207

vi

8.3 Condition Monitoring and Fault Diagnosis 208

8.4 Engine Control 209

8.5 Summary 209

9 Conclusions 211

10 Further Work 214

References 217

Appendices 223

A Solution of Ordinary Differential Equations

Using Power Series 224

B An Example Data File for Processor Allocation 232

C Data Preparation for the PDESIM 233

D An Example Engine Data File 248

vii

List of Principal Symbols

A Cross Sectional Area of Valves

BDC Bottom Dead Centre

BDCST Broadcast

BIOSM Block Implicit One Step Method

BIPCM Block Implicit Predictor Corrector Method

BOOTLOC Boot Location

BUTPC Bath University Transputer based Parallel Computer

C Speed of Sound

C Thermal Capacitance

calval Calorific Value

CPU Central Processing Unit

cr Compression Ratio

crl Connecting Rod Length

CSR Control and Status Register

DISC Distributed Iteration Step Communication

DMA ' Direct Memory Access

DRAM Dynamic Random Access Memory

EVENTREG Event Register

FBR Fuel Burning Rate

FAEM Filling and Emptying Method

fmep Friction Mean Effective Pressure

viii

GSP General Server Protocol

h Step Length

ho Specific Enthalpy

htc Heat Transfer Coefficient

I^C Inter-Integrated Circuit

IC Integrated Circuit

IO Input/Output

IOC Input/Output Controller

J Inertia

1 Fuel Pipe Length

LG Link Guardian

LSB Least Significant Bit

m Mass

mf Mass of Fuel

MCB Message Control Block

MEPCM Modified Euler Predictor Corrector Method

MSB Most Significant Bit

ODEs Ordinary Differential Equations

P Pressure

PDESIM Parallel Diesel Engine Simulation

PNUM Processor Number

Pm Mean pressure

ix

Q Quantity of Heat

r Stroke/2

R Gas Constant

R Thermal Resistance

RGB Red, Green, Blue

RK Runge-Kutta Method

ROM Read Only Memory

SA Surface Area

SASI Shugart Associates Systems Interface

SCSI Small Computer Systems Interface

SEMTAB Semaphore Table

t Time

T Temperature

TAS Test and Set Semaphore

TDC Top Dead Centre

TFM Task Force Manager

Tm Mean Temperature

u Specific Internal Energy

V Volume

VLSI Very Large Scale Integration

VSC Video and System Controller

p Mode of Burning Factor

e Maximum Allowable Error

7 Ratio of Specific Heats

11 Efficiency

X Fuel to Air Ratio

e Angle

X Torque

0) Mean Piston Speed

CO Angular Speed

Subscripts

amb ambient

c compressor

calval calorific value

cl closed cycle period

crit critical

cyl ' cylinder

d downstream

e engine

e exhaust

ea exit port to exhaust manifold

em exhaust manifold

eng engine

fb fuel burnt

xi

g gas

gw gas to wall

i inlet

ia entry port to inlet manifold

ic intercooler

igd ignition delay

im inlet manifold

in induction period

inj injection

max maximum

pis piston

r ratio

sc scavenge period

sub subsonic

sup ' supersonic

t turbine

tc turbocharger

u upstream

w wall

wc wall to coolant

xii

Chapter 1

Introduction

"It took five months to get word back to Queen Isabella about the

voyage of Columbus, two weeks for Europe to hear about Lincoln’s

assassination, and only 1.3 seconds to get the word from Neil

Armstrong that man can walk on the moon [1].”

1.1 The Technological Revolution

It took man thousands of years to progress from the stone age to the atomic age, but it

took him less than a century to advance from the early era of valves and tubes to the

present day era of electronic technology.

Discovering the power of electricity by Edison was like the ’’taming of the shrew",

once tamed, rapid improvements followed and electrical power moved from the

experiments of the laboratories to the essentials of everyday life. New technologies

emerged. Germanium and silicon were discovered as bases for thin layer electronic

devices. Transistors replaced valves and were themselves then replaced by the

integrated circuits [2].

The advent of technology triggered a chain reaction; new fabrication techniques

followed new devices, which in turn followed new techniques. Very large scale

integration (VLSI) techniques helped pack large number of individual components

onto a single chip. The transistor density per package increased from one to one

million [3].

2

1.2 The Computer

All these advancements brought a parallel revolution in the world of computing. The

helping aids for mathematicians changed their shape from the ABACUS to pocket

calculators [4] and from the analytic engine of Charles Babbage [5] to the digital

computers of the present day world.

The decade of the 1940s saw the evolution of the first generation of stored program

computers based on valve technology, like ENIAC [6] and EDS AC [7]. Later in the

late 1970s and early 1980s, emergence of a new type of integrated circuit (IC), called

a microprocessor, and developments in the field of memory devices changed the

shape of digital computers and made them cheaper, smaller and reliable.

In recent years, it has become possible to pack a central processing unit (CPU), a

floating point processor, some memory and input/output (IO) channels on a single IC

chip. This kind of microprocessor makes it possible to realise that parallel computers

could be constructed from a large number of identical units, each with its own

processing unit, memory and communications.

This flood of new technology made it possible to experiment in different directions,

diverting from the initially defined Von Neumann computer architecture to other

novel architectures [8].

1.3 Parallel Processing

Although parallel computing is not a new idea, the earliest reference to parallelism is

thought to be by Charles Babbage [5], the first general purpose computer that

contained parallel features was ACE [9], whose commercial derivative DEUCE [10]

3

could perform multiplication or division in parallel with data transfer to or from

memory.

As the technology developed, the demand to solve more difficult problems increased.

To fulfil this demand, uniprocessor systems were proving to be inefficient and costly.

It was thought that a multiprocessor system, consisting of 'n' processors would, in

theory, compute 'n' times faster than a uniprocessor system. The problem, however, is

to use these processors effectively and efficiently at the same time to solve a variety

of different problems.

Parallel processing is finding its way into a number of applications very rapidly; from

database search applications [11] to radar control in military applications [12], and, of

course, in the field of simulation [13]. In this thesis, for example, parallel processing

has been used in the field of Diesel engine simulation.

1.4 Diesel Engine Simulation

The Diesel engine is recognised especially for its efficiency and reliability which

explains its well established position in commercial vehicles and industrial

applications. In recent years, Diesel engineering is becoming a fast growing applied

engineering discipline designed to meet exacting demands for designing Diesel

engines optimized in relation to greater efficiency and power, low noise, acceptable

emissions, fuel economy and greater maintainability.

Because of the complexity of the physical phenomena involved in the Diesel engine

processes, the design of engines has been a complex and demanding problem, and to

get necessary 'know how’ for this purpose extensive testing of prototypes has been a

necessary prerequisite to all engine development. Engine simulation can be used to

4

systematize the knowledge obtained through this expensive engine testing. It can also

reduce the amount of engine testing by narrowing the range of variables that must be

studied experimently. Engine simulation can help predict the behaviour of the engine

for those variables for which little is known and in this way new experiments may be

carried out and results predicted well before a prototype design is suggested [14]. For

example, SPICE, the simulation program for internal combustion engines [15], can be

used for a number of prototype designs before an internal combustion engine is

physically built. Similarly DEEDS, the Diesel engine expert diagnostic system [16],

which is an integration of engine simulation programs and expert system techniques,

has been developed for maritime engine condition monitoring and fault diagnosis.

Once designed, a steady performance can be obtained by the Diesel engine if it is

maintained properly. For this purpose, new electronic controls are being employed.

These may include a single microprocessor control system or a number of

microprocessors monitoring a number of parameters of the engine simultaneously,

providing a possible parallel computer engine control system [17,18, 19].

1.5 About This Thesis

In this thesis the work carried out to simulate a Diesel engine on a transputer based

parallel computer is described.

Chapter 2 describes the 'filling and emptying' method on which the Parallel Diesel

Engine Simulation (PDESIM) developed in this thesis is based. This chapter also

describes the state equations relating cylinders, manifolds, various junctions, actuators

and shafts. A dynamic engine model is described at the end of the chapter.

5

In chapter 3 the Bath University Transputer based Parallel Computer (BUTPC) which

is used for the PDESIM is outlined.

Chapter 4 is a description of the operating system for the BUTPC. Some of the

communication limitations are discussed and new communication mechanisms are

proposed to achieve higher data transfer rate for the PDESIM.

Chapter 5 discusses different parallel algorithms. It also describes implementation of

these algorithms on the BUTPC.

Chapter 6 describes the simulation of a six cylinder Diesel engine on the BUTPC. It

also describes the new technique applied in order to make the simulator more flexible

as compared with the previous implementations by Jones [20] and Haysom [21].

In chapter 7 a brief description of a Leyland TL11 experimental Diesel engine is

provided. A comparison of the FJH Model [21] results and the simulated results from

the PDESIM is also discussed with the help of a number of engine performance maps

generated using the data obtained from the FJH Model and the PEDSIM.

Chapter 8 discusses possible applications of the PDESIM developed in this thesis.

Chapter 9 concludes the work carried out for this thesis, and chapter 10 gives

suggestions for the possible future work in the Parallel Diesel Engine Simulation area.

6

Chapter 2

The Diesel Engine Model

2.1 Introduction

A model is a mathematical representation of a complicated physical situation. It is

formulated by selecting the properties of a system which are important in determining

the required information. A model should represent the behaviour of the system itself

and the behaviour of its boundaries as well. A Diesel engine is essentially a

thermodynamic system. Hence to describe the Diesel engine system behaviour, a

thermodynamic model is needed.

There are a number of engine models available that range from semi-empirical

matching calculations to comprehensive analysis of the fluid and thermodynamic

processes that take place in the engine. The usefulness, accuracy and running costs of

these models vary tremendously. These models can be classified in three basic

groups[22]:

zero dimensional

quasi dimensional

multi dimensional

The zero dimensional models assume that:

o a homogeneous mixture of ideal gases exists at all times and at all

points within the system; perfect mixing,

o the instantaneous state of the gaseous mixture can be defined by

pressure, temperature and fuel to air ratio; thermodynamic equilibrium,

o fuel mixes and bums instantaneously as it enters the cylinder,

o unbumt fuel vapours do not affect the ignition delay or the combustion

process.

8

0 quasi steady state flow occurs between the control volumes.

The quasi dimensional models:

o account for finite rate effects due to injection, vaporization, mixing and

combustion.

o divide the fuel injected into the combustion chamber into several

zones.

o account for the jet deflection by the surrounding air in the combustion

chamber.

The multidimensional models:

o account for the temporal and spatial variations of the fluid flow,

temperature, gas composition, pressure and turbulence within the

combustion.

o consider the injected fuel as droplets sprayed inside the combustion

chamber and hence the effects of gas phase turbulence on the liquid

driblets.

In this thesis, the zero dimensional models are used in conjunction with 'filling and

emptying' method (FAEM) to model the Diesel engine to be simulated. The FAEM

views a Diesel engine as a set of interconnected thermodynamic control volume

models. Each of the control volumes represents one of the cylinder or manifold

volumes of the engine. These control volumes are interconnected by the valve and

port models. The turbine and compressor are viewed as connections between the

manifolds and the atmosphere with the flow through them being modelled by the

compressor and turbine characteristics.

9

The FAEM can be explained as follows:

o Air enters into the inlet manifold either via an orifice or via a

compressor.

o Heat transfer occurs between the gas and the walls of the inlet

manifold.

o Gas leaves the inlet manifold via the inlet valves to the cylinder.

o When the inlet valve is open, gas enters the cylinder.

o Fuel is injected into the cylinder when both, the inlet and exhaust

valves are closed.

o Heat transfer occurs between the cylinder walls and the gas mixture in

the cylinder.

o Useful work is transferred to the shaft via the piston.

o Gases leave the cylinder when the exhaust valve is open to the exhaust

manifold.

o The exhaust manifold receives hot gases from the cylinder when the

exhaust valves are open.

o Heat is transferred from the hot gases to the exhaust manifold walls.

o Exhaust gases leave the exhaust manifold, either via the orifice or

through a turbine.

Figure 2.1 shows how the thermodynamic behaviour of a six cylinder turbocharged

Diesel engine is represented using a FAEM.

In the following sections, the state equations representing changes in the control

volume mass, the fuel to air ratio and the temperature are discussed alongwith the

10

submodels that describe different chemical and physical processes within a particular

control volume.

2.2 The Control Volume Gas State Equations

The state of the gas in a control volume can be represented at any instant of time by

its temperature, mass and composition. The three state equations that represent rates

of change of these parameters, can be derived by applying laws of conservation of

mass, energy and fuel species to the mixture contained in a control volume [21]. and

are given below.

where dm/dt is the overall rate of change of mass of the gases inside a control

volume, dmj/dt is the rate of change of mass associated with the jth port connected to

the control volume and dm^/dt is the rate of change of fuel burnt in the control

volume.

2.2.1 Rate of change of mass

Hm Hm •
2.1

2.2.2 Rate of change of fuel to air ratio

dX (1+X)
2.2

dt m

where dX/dt is the rate of change of fuel to air ratio inside the control volume, and

(Aj/(l+Aj)dmj/dt) is the fractional change in the fuel to air ratio associated with the jth

port connected to the control volume. The terms containing dm^/dt and dm/dt

represent change in the fuel to air ratio caused by the burnt fuel and the change in

total mass of the control volume respectively.

2.2.3 Rate of change of temperature

dT 1 p dV ^ dQw drrij dm ^ dm 5u dA, ,
= L "p * " l*oj *■ hcalval u “m J

dt m5u/5T dt dt dt dt dt 8 X dt

where dT/dt is the overall rate of change of temperature within the control volume.

The term containing PdV/dt represents the useful work done by the control volume

gases, and dQw/dt is the loss of energy in the form of heat exchange to the walls of

the control volume. The term containing h0jdmj/dt represents the amount of enthalpy

associated with the mass entering or leaving through a port connected to the control

volume and hcajvaj.dm^)/dt is the representation of the amount of enthalpy entering

the control volume due to the fuel burnt inside the system. The remaining terms

containing u represent the specific internal energy of the mixture.

2.3 The Cylinder Control Volume Equations

The above state equations are general in nature and can be applied to any control

volume. But there are some terms which are not needed during certain stages of the

Diesel engine cycle. Which can then be simplified for the six stages of the cylinder

cycle: scavenge, induction, compression, combustion, power stroke and exhaust.

All these stages depend upon the position of the crankshaft with respect to a

reference. In this thesis, the top dead center (TDC) is taken as a reference. The

relationship between crankshaft position and time is defined by equation 2.4.

0 = fcoedt+0o 2.4

12

where 0O is the angular position of the crankshaft in radians with respect to the TDC

at t=0, and coe is the engine speed in radians per second.

The equations for individual sections of the Diesel engine cycle are derived for the

case of one inlet and one exhaust valve per cylinder and are given in the following

sections.

2.3.1 Scavenge

The scavenge period is defined when both the inlet and the exhaust valves are open.

During this period no combustion takes place. Hence

dmfb
— = 0 2.5a
dt

dmsc dmj dme
 = 2.5b
dt dt dt

d^Sc l-*"̂ r / dmj k ^ dm^ Adm<,q
 = — L d - M) J 2.5c
dt m 1+Xj dt 1+A,e dt dt

dTsc 1 r dV dQw dmj dme dmsc 8u dXsc-.
 = ----- [-P --+ 2ww — + h0jum........... J 2.5d
dt m8u/8T dt dt dt dt dt 8k dt

2.3.2 Induction

During the induction period, only the inlet valve is open and no combustion takes

place. Hence

dmfu dm-
 = 0; = 0 2.6a
dt dt

13

drriin dmj
2.6b

dt dt

dXjj| p y Xj dm j . Xdmjn
 [(1+x>(------)- J
dt m 1+Xj dt dt

dTjn 1 j- dV n dQw dmj dmj^ 8u dAĵ j
 = ----- [-P - - .+ 2^w — + ho i.........u -m --------- J
dt m5u/5T dt dt dt dt bX dt

2.6c

2.6d

These equations represent normal conditions when gases flow from the inlet manifold

to the cylinder via the inlet valve. But, if at some stage, the pressure in the inlet

manifold is less than the pressure in the cylinder during the induction period, then

reverse flow occurs. Under these conditions

dXjn
 = 0 2.6e
dt

2.3.3 Compression and Power

The compression and power strokes are defined when both the inlet and exhaust

valves are closed and no combustion occurs. Hence the simplified state equations are

dmfu dm: dnu
= 0; - - ' = 0 ; — *=0 2.7a

dt dt dt

dmri
 = 0 2.7b
dt

c&ci
 = 0 2.7c
dt

14

dTc, 1 dV _ dQ
 = L -P -— + 2.IW — J 2.7d
dt m.8u/8T dt dt

2.2.4 Exhaust

Exhaust period is defined when only the exhaust valve is open. There is no

combustion during the exhaust period. Hence the simplified state equations that

represent normal exhaust stroke are

dmfb dmj
 = 0; = 0 2.8a
dt dt

timex dme
 = ------- 2.8b
dt dt

 0 2.8c
dt

dTex 1 p dV y dQw time dmex ,
 ----- [-P — + jL w u J 2.8d
dt m8u/8T dt dt dt dt

But, if reverse flow occurs during an exhaust stroke due a low pressure inside the

cylinder compared with the pressure inside the exhaust manifold, then the rate of

change of fuel to air ratio and that of temperature are given as

d̂ ex i+̂ r / dme \ d̂mex
.)
dt m 1+Xe dt dt

dTex 1 r dV y dQw dme dmex 8u dXex-.
 ----- [- P — + Z«fw + u-.......m --------- J 2.8f
dt mSu/ST dt dt dt dt 8A, dt

2.8e

15

2.3.5 Combustion

Fuel is injected into the cylinder when both the inlet and the exhaust valves are

closed. Fuel is considered to be a liquid before combustion and therefore assumed to

have no effect on the gas of the cylinder before combustion. Thus, during combustion

period, the state equations become

drrij dme
 = 0; = 0 2.9a
dt dt

dnicb dmfb
 = ----- 2.9b
dt dt

dXcb 1+* dmfb
 = 2.9c
dt m dt

dTcb 1 r dV _ dQw dm dmcb 8u dXcb
 = [- P — + Zrfw -----+ hcalval.........u ------- m --------- J 2.6d
dt m5u/ST dt dt dt dt SX dt

2.4 The Manifold Control Volume Equations

The general FAEM state equations may be simplified for the inlet and the exhaust

manifold control volumes as no combustion is assumed to occur in any of the

manifold control volumes, and also a manifold has a constant volume. Hence

drrifb dV
 = 0; = 0; 2.10
dt dt

16

2.4.1 Inlet Manifold

Neglecting heat transfer to the walls of the inlet manifold, the three state equations

that represent an inlet manifold are

dmim dm^ v dmj
 = Id j 2.11a
dt dt dt

d̂ irn 1+̂ r / îa ^mia v t̂mi \ t
L a+ x)(L { ; j m b

dt m 1+Xja dt 1+Xj dt dt

^ im * r ^mia y ^mi ^ im ^iim
 = ----- L hoia + A ho i.........um " J 211c
dt m5u/5T dt dt dt 8A, dt

where the subscript ia represents an entry port to the inlet manifold, which may be

either an orifice or a compressor.

2.4.2 Exhaust Manifold

dmem y *"« ^ e a

dt dt dt
2.12a

1+V / ^ea dmga \ ^ merrn
 = [(i+X) (+) J 2.12b
dt m 1+A.ga dt 1+Xe dt dt

^em * r dQw ^ e a y ^ em ^em-j
_____ s — _— I 2) _ h o e a ——— + —__ - u —— - m - ______ I

dt m5u/5T dt dt dt dt bX dt

2.12c

where the subscript ea represents an exit port from the exhaust manifold, which may

be an orifice or a turbine.

17

2.5 Sub Models

In order to evaluate the state equations, their constituent terms are either calculated

using the thermodynamic laws or empirical models derived from the experimental

data are used where these laws are not directly applicable. The following sections

describe the equations representing the terms in the state equations.

2.5.1 Gas properties model

This model calculates the values of the following quantities for use by the engine

model in the state equations.

u the specific internal energy of the gas

8u/5T partial derivative of specific internal energy with respect to

temperature

b u / b k partial derivative of specific internal energy with respect to fuel to air

ratio

R the gas constant

y ratio of specific heat at constant pressure to the specific heat at

constant volume

ho specific enthalpy of the gas mixture

The empirical relations used to calculate these quantities are derived by Charlton [15]

from the tabulated data for the internal energy and the gas constant for the equilibrium

combustion products of a hydrocarbon and air. In this model the gas dissociation

effects are ignored and the specific internal energy becomes a function of only the

temperature and the gas composition. The gas constant is defined as a function of gas

composition only. Hence

18

u = f(T,X) 2.13a

R * f(A,) 2.13b

The gas model expressions for the lean fuel to air ratio mixtures are:

Ka- Kb X
u = ----------- 2.14a

1 + X

Ka = 696T+0.89465e-3T2+102.512e-6T345.52e-9T4+6.22e-12T5 2.14b

Kb = 722.903T+1.57193T2-523.84e-6T3+116.61e-9T4-12.533e-12T5 2.14c

270.21 + 288.294 X
r = -------------------- 2.14d

1 + X.

5u
— = (101.4663-2.5223T-1.055e-3T2+l .7569e-7T3) X + 920.7128-0.2806T-5.4939e-5T2 - R
5T

2.14e

8u 26.053T+1.57104T2-626.352e-6T3+162.1283e-9T4-18.75e-12T
— = --- 2.14f
6X (1+X)2

R
y = 1 + ------- 2.14g

8u/6T

ho = u + R.T 2.14h

2.5.2 The heat release models

Combustion is one of the most complex processes carried out in a Diesel engine and

is responsible for the useful work output from the engine. It may be considered to

commence when fuel is dynamically injected into the cylinder. It comprises of an

ignition delay followed by a period of heat release.

19

Once ignition takes place, the combustion mechanisms accelerate, resulting in a rapid

rate of pressure rise. The first appearance of a flame following ignition is of the non-

luminous, pre-mixed type. The highest rate of heat release is normally associated with

this relatively short period of uncontrolled burning.

At the high temperatures corresponding to the main period of combustion, which

follows the pre-mixed burning stage, the burning rate is controlled by the mixing

pattern, which is dependent on purely mechanical and physical processes. This stage

is called the diffusion burning stage, subsequent to which the diffusivity of the fuel

becomes low and the rate of heat release becomes dependent upon chemical kinetics

of the mixture and the amount of oxygen left in the combustion chamber. All these

four stages of chemical combustion are shown in figure 2.2.

In the following sections, along with a model for ignition delay, two different models

are represented to calculate combustion processes in the Diesel engine.

It should be noted that in the simulations developed by Jones [20] and Haysom [21], a

fixed combustion model was used which could not be exchanged with any other

model. But in the simulation presented in this thesis two different combustion models

are given, either of which can be selected at the start of the simulation as explained in

chapter 5.

2.5.2.1 The Ignition delay model

The fuel when injected into the engine cylinder, does not ignite instantaneously. The

time interval between the start of fuel injection and the start of its ignition is termed

as ignition delay. The duration of this period greatly affects the intensity of the

20

subsequent burning, hence the rate of pressure rise, maximum cylinder pressure and

the indicated mean effective pressure [23].

Wolfer [24] derived a semi-empirical relationship to calculate the ignition delay by

considering a number of factors, such as:

amount of air

amount of fuel

shape of combustion chamber

shape of fuel nozzle

injection pressure

turbulence and mixing inside the combustion chamber

fuel temperature

He found that the ignition delay was a function of the mean temperature and pressure

during the ignition delay period. This Wolfer ignition delay relation, given in equation

2.15 was used to calculate the ignition delay with coefficients suggested by Watson

[25].

453.4638 e2100/Tm
q j = ---------------------- 2.15

g Pm 1-022

2.5.2.2 Watson heat release model

The first model used to describe the fuel burning rate is due to Watson et al [26]. It

assumes that

0 the combustion consists of two main parts, the pre-mixed and the

diffusion combustion.

21

o both these parts start at the same time at ignition,

o the overall combustion correlation is due to the individual

contributions from these two parts.

Equation 2.16a represents the pre-mixed combustion whereas equation 2.16b

represents the diffusion combustion.

FBRp(x) = 1 - (1 - xCp!)Cp2 2 16a

FBRd(x) = 1 - exp(-Cdl xCd2) 2.16b

The overall combustion correlation is:

FBR(x) = P FBRp(x) - (1 - P) FBRd(x) 2.17

where p is defined as the 'mode of burning’ which expresses the cumulative fuel burnt

during pre-mixed combustion as a fraction of the total fuel injected. The constants

Cpl» Cp2 ’ Cjjj, and are called the shape factors.

Equation 2.17 gives the rate of fuel burning as the sum of two weighted distributions

which are non-dimensionalised with respect to the amount of fuel injected into the

cylinder and the nominal time of the combustion.

The shape factors, Cpj, Cp2 » and and the mode of burning, p, are

dependent on the engine operating conditions. For the purpose of this model these

values were taken from Watson [25] and are given in equation 2.18 as

Cpx = 2.0 + 44.549 (tigd to^2-4 2.18a

Cp2 = 5000.0 2.18b

Cdl = 2.5463 \ - ° - m 2.18c

22

1.0- 0.4125 A.0-37
Cdo = ---------------------- 2.18d

•igd“ 6

If is the amount of fuel injected during a combustion period 'Acom^' then the

rate of fuel burning may be given by equation 2.19 in the form

dmfb FBR(t) mfin:
— - ---------------- 2.19

^comb

e -©i © - ©j
where t = -------= -------

0e - 0 j ^comb

and 0j = angle with respect to TDC at which ignition starts.

0e = angle with respect to TDC at which ignition ends.

2.S.2.2 Wiebe heat release model

The second heat release model is based on the Wiebe function [25], which is a simple

algebraic formula for the fuel burnt as a fraction of the total fuel injected. It is given

in equation 2.20.

FB(t) = 1 - exp(-K2 t k1+1) 2.20

Differentiating with respect to t gives

dFB(x)
 = K2 (K1 + 1) xK1 exp(-K2 xK l + l) 2.21
dx

23

where FB is the fraction of fuel burnt per total fuel injected per cycle per cylinder,

FBR is the non-dimensional fuel burning rate, K1 is the shape factor and K2 is the

combustion factor.

2.5.3 The Heat Transfer Models

Heat is transferred from the gas in a control volume by convection at the control

volume walls and by the radiation from flame and luminous carbon particles. Heat

entering the walls is passed through the coolant with forced convection. As the forced

convective heat transfer at the gas-to-wall interface has a more important impact on

the heat transfer than conduction through the wall or transfer from wall to coolant, the

heat transfer due to conduction is assumed to be negligible. Also, as the significance

of the contribution of radiation may vary between 0% to 30% [27], its effects on the

overall heat transfer are ignored in this thesis.

Hence a convective, gas-to-wall heat transfer model may be defined by the equation

2.22.

dQ
— = SAhtc(Tg -Tw) 2.22
dt

where dQ/dt is the rate of heat transfer across the surface area SA. Tg and Tw are the

temperatures of the control volume gas and wall respectively and the proportionality

constant 'htc' is known as the heat transfer coefficient.

24

The surface area, SA, of the control volume is calculated from the knowledge of the

geometry of the control volume. In case of a cylinder, shown in figure 2.3, it is given

by equation 2.23, whereas it is a constant quantity for a manifold.

SAgyj = SA^ix: + nd(l + r(l - cosG) - sqrt(l - A iiA)) 2.23

For a manifold, the htc is taken as a constant quantity [20]. But in case of a cylinder,

as the heat transfer primarily depends on the flow conditions within the cylinder

which are difficult to predict, the calculation of htc is not a linear problem. In the

following sections two different empirical methods are described to calculate the

value of the htc.

2.5.3.1 Hohenberg heat transfer model

Hohenberg [28] derived a semiempirical heat transfer model assuming only the

convective heat transfer conditions. The htc due to Hohenberg, given in equation

2.34, depends upon the cylinder temperature, pressure, volume and the mean piston

speed. The two empirical constants, and depend upon the operating

conditions inside the cylinder and ideally should be determined from the heat transfer

measurements on the engine being modelled.

htc = Chl P0-8 (upis + Ch2)0'8 V"0-06 T ° a 2.24

where Vpjs = 2rcoe/7t

2.53.2 Woschni heat transfer model

The heat transfer model derived by Woschni [29] is based on the experiments on

motored and fired engines and a constant volume bomb. It describes two different

25

heat transfer coefficients; one for the scavenge period and the other for the rest of the

cycle. Equation 25 gives the hts as defined by Woschni.

hie = c wl p0 » d-0-2 r°-53 [Cw2 V s + c w3cw4cw5]0.8

Cwl = 12.99 10-3

2.25a

2.25b

Cw2 = 6.18 (during scavenge) 2.25c

Cw2 = 2.28 (during compression and expansion) 2.25d

Cw3 = 3.24 10-10 m/sec °C

Cw4 = Vtotai / (Va t jnj Pat_inj)

C\v5 = P " ^motoring

2.25e

2.25f

2.25g

where Pmotoring *s cylinder pressure corresponding to the current volume under

motoring conditions.

2.5.3.3 Control volume surface temperature

A simple model is used to calculate the surface temperature of the wall of the control

volume. Figure 2.4 shows the model. The thermal resistance, RgW, between the gas

and the wall is calculated from the heat transfer coefficient, and is given in equation

The thermal resistance Rwc and the thermal capacitance Cwc, which represent the

heat transfer model for the heat flow from the control volume wall surface to the

engine coolant, can be estimated by having a knowledge of the bulk properties of the

wall of the control volume. From this model, the rate of change of wall temperature is

given by

2.26.

Rgw = (SA htc)'1 2.26

26

dTo.

di

sa 1 dQ V Tw

C dt Cwc
2.27

2.5.4 Cylinder volume and rate of change of volume

The cylinder trapped volume is a function of the crank angle and is calculated using

the information about the cylinder geometry as shown in figure 2.3. Equation 2.28

gives the cylinder trapped volume.

V = 0.25ml2 [crl + r(l-cosG) - sqrt(crl2 - r2sin20) + 2r / (cr - 1)] 2.28

where 'crl' is the connecting rod length and 'cr' is the compression ratio of the

cylinder.

Differentiating equation 2.28 with respect to t yields the rate of change of volume and

is given in equation 2.29.

dV p d0 r2sin0cos0 d0 -.
— = 0.25ml2 [rsin0 — + - J 2.29a
dl di sqrt(crl2 - r2sin20) dt

dV p r2sin0co$0
— = 0.25ml2G)e [rsin0 + ---------------------- J 2.29b
dt sqrt(crl2 - r2sin20)

where dO/dt = coe = engine speed in radians per second.

27

2.5.5 Junction flow models

In this thesis, three types of junctions are modelled; a poppet valve, a compressor with

an intercooler and a turbine. The models representing flow through these junctions are

discussed in the following sections.

2.5.5.1 The poppet valve

A poppet valve connects a cylinder control volume to a manifold control volume. The

rate of mass flow through the valve is a function of the pressure ratio across the valve,

the effective cross-sectional area of the valve throat, local geometrical effects, heat

transfer, flow separation and other secondary effects. In this thesis, the mass flow

through the valves is considered to be quasi-steady, one-dimensional and isentropic.

These assumptions highly simplify the resultant model. Some account of secondary

flow effects is taken by introducing an empirical quantity called the discharge

coefficient into the model.

Two different types of flow occur through the valves; supersonic and subsonic. These

depend upon the pressure, Pp ratio across the junction, defined by equation 2.30.

^upstream
Pr = ------------- 2.30

^downstream

The pressure ratio at which the transition between the two flow types occurs is known

as the critical pressure ratio, and is given by equation 2.31.

2.31

where y is the ratio of specific heats of the upstream gas mixture.

If the pressure ratio Pr is less than the critical value, then the flow is subsonic and is

calculated using equation 2.32a. Otherwise the flow is supersonic and is calculated

using equation 2.32b.

^sub r ^Yu ✓ 1 1 \ - i
 ---- = Cd APu sqrt [--------- (.........) J 2.32a
dt RuTu(yu-l) pr(2/yu) pr(ya-l)/-yu

dm y 2 CYu+1)/Cyu-1)sup \ i
 = Cd APu sqrt [̂ ----------) J 2.32b
dt RUTU (yu+1)

Here Cd is the discharge coefficient and the product C^A is the effective cross-

sectional area of the valve.

The general valve area A is given to the engine model in tabular form as a function of

the crankangle. A constant area valve can be simulated by providing a constant area

for all the possible values of the crankangle.

2.5.5.2 The turbocharger

In this thesis, a turbocharger consisting of a conventional centrifugal compressor and

a fixed geometry turbine, is modelled. The compressor is connected to an intercooler

which cools the compressed air before it enters the inlet manifold.

The model evaluates the rate of mass flow through the compressor and turbine units.

It also calculates the torque developed by the turbine and that required to drive the

compressor via the turbocharger shaft.

29

As quasi-steady flow of gas is assumed through the compressor and turbine junctions,

the flow and efficiency characteristic maps of the compressor and the turbine based

on their steady flow performance data, obtained experimently or provided by the

manufacturer, are used to interpolate the required mass flow parameters.

Compressor and turbine models are discussed below.

The compressor

The steady state performance map of a compressor manufactured by Garrett is shown

in figure 2.5. The mass flow rate through the compressor and the compressor

efficiency can be calculated by interpolating this map, provided the pressure ratio

across the compressor, the rotational speed of the turbocharger and the upstream

temperature and pressure known.

^compressor ûpstream
---------------- = CompMassFlowParameter 2.33
dt sqrt(TUpStream)

Once the compressor efficiency is known, the exit temperature can be calculated

using equation 2.34.

Td = Tu + ~ U [(- !) . ,]
Pu

Equation 2.35 gives the torque required to drive the compressor.

(^oin" ̂ oout)

dt co,
xc = 2.35

JLC

30

where hOjn-hoout is the change in enthalpy of gas after passing through the

compressor.

The intercooler

The air from the compressor passes through an intercooler before entering the inlet

manifold, which absorbs heat from the compressed air and hence increases the air

density. The efficiency of the intercooler is defined as the ratio between the actual

temperature drop across athe cooler to the theoretical pressure drop due to the cooling

water. Equation 2.36 gives the value of this effectiveness.

Tin" Tout
T|ic= 2.36

Tin" Tcoolant

From this equation the exit temperature can be calculated as given in equation 2.37.

Tout= (1" “Hie) Tin + ̂ ic Tcoolant 2.37

There is also a pressure drop associated with the intercooler due the resistance offered

by the cooling surface. Due to this pressure drop APjc, the pressure ratio across the

intercooler is given by equation 2.38.

poutic + ^ ic
pric = ---------------- 2-38

P- • r mic

The total pressure ratio across the combination of the compressor and the intercooler

used to calculate compressor mass flow is given by equation 2.39.

poutic' ^ i c
Pf = ----------- 2.39

p.Mncomp

31

In this research, a value of 0..9 for the intercooler effectiveness and a value of 10000

N/m^ for the pressure drop across the intercooler was used [21].

The turbine

The model of the turbine is divided into two imaginary parts, each of which is

connected to an exhaust manifold. This assumption is made in order to model the

turbocharger of the experimental Leyland TL11 Diesel engine which has two exhaust

manifolds and a multi entry turbine.

Both imaginary turbines are constrained to rotate at the same speed, and their mass

flow performances are scaled so that their combined mass flow is equal to that of the

real turbine.

Figure 2.6 shows the map of Garrett turbine. The rate of mass flow through the

turbine can be calculated by interpolating this map and then using equation 2.40.

^turbine ^upstream
 = TurbMassFlo wParameter----------------------------------- 2.40

sqrt(T Upstream)

The exit temperature is calculated using equation 2.41 by using the interpolated

turbine efficiency.

The resultant torque developed by the turbine is the sum of the individual turbine

torques produced by each imaginary turbine. It is given by equation 2.42.

V ^mtj / ôinj " ôoutj \
Tt = “ j \ / 2.42

dt co^

where h0inj"^ooutj *s c^ange in enthalpy of gas after passing through the jth

turbine.

2.6 The Engine Dynamics

The model described above for combustion, heat transfer, cylinder geometry and

junction flows represent steady state engine operation. But if dynamic models that

describe parameters such as shaft speed, mass of fuel injected and fuel injection

timing are used, then the dynamic responce of the diesel engine can be modelled

using the FAEM. These dynamic models are described below.

2.6.1 The engine crankshaft

The engine crankshaft connects all the cylinders together and is responsible for the

transfer of the power, genereated by the engine, to the outside world. The acceleration

of the crankshaft depends upon the torque produced by the cylinders, the demanded

torque from the load on the engine, and the inertia of the crankshaft and that of the

load. Equation 2.43a represents the engine acceleration as a function of these

parameters, whereas equation 2.43b gives the engine speed calculated using

acceleration.

33

dco £ xcyl,brake" xload
= L ---------------- 2.43a

d* ^eng' hoad

dcoe
coe = ----- 2.43b

dt

The indicated cylinder torque that is a function of cylinder pressure, is given by

equation 2.44.

dVcyl
xcyl,ind = ^ c y l’ ^crankcase) ®e .̂44

dt

Some of this torque is lost in order to overcome the primary friction which is present

between the sliding surfaces of the cylinder and the crankshaft bearings, and some

torque is used up by secondary friction which is caused by driving engine auxilaries

such as water and oil pumps.

Chen and Flynn [30] have proposed a friction model for a turbocharged Diesel engine

It is based on the mean piston speed and the maximum cylinder pressure for each

engine cylinder and provides the friction mean effective pressure as given in eq 2.45.

fmep = Cj + C2 Pmax + C3 upis 2.45

The constants Cl, C2 and C3, which should ideally be obtained from motoring

experiments, were used, for this research, as proposed by Chen ans Flynn.

Cl = 13.7 C2 = 0.005 C3 = 16.2

Hence the brake cylinder torque generated by each cylinder is given by equation 2.46.

34

dVcyl I dVcyl I
xcyl,brake = (^cyl' ^crankcase) we ' ̂ihiep we * 2.46

dt I dt I

Another fixed fmep model is also provided which reads a fixed value of fmep from

the data file and stops dynamic calculation of fmep.

2.6.2. The turbocharger shaft

This shaft connects the turbine to the compressor and transfers power generated by

the turbine to the compressor. It is assumed that the friction offered to the

turbocharger rotor is proportional to the turbine torque. Hence the resultant torque

that accelerates the turbo rotor is a function of the turbocharger efficiency, rjtc.

Therefore the turbocharger acceleration is given by:

d®tc T|tc ^ xt ” xc
-- 2.47

dt Jte

where £ t t is the friction adjusted torque produced by all the imaginary turbines

and xc is the torque required to drive the compressor. Jtc is the inertia of the

turbocharger.

2.6.3 The control actuators

Three different control inputs were modelled by Jones [20]:

o to control the fuel rack position,

o to get time of fuel injection,

o to define the turbine nozzle restriction for a variable entry turbine.

35

The third control input is not considered in this research as a constant geometry

turbine fixed to the TL11 Diesel engine which was used as a test engine for this

research. The first two actuators are discussed below.

2.6.3.1 Rack position

Jones found that the hydraulic actuator dynamics were predominancy second order in

nature. The general equations that describe the engine actuators are given in equation

2.48.

t f (xactuafcor < xslew)

xactuator k wn^

xdemand + 2 £ con s + con^

else

xactuator = xdemand ^.48

where x is the displacement from the normal zero position and x is the velocity at

which the actuator will move under a disturbance. Table 2.1 gives the values used in

these equations.

Table 2.1:The control actuator model constants

Actuator Gain Damping Natural Slew
ratio frequency rate

(k) (0 (con, rad/sec) (m/sec)

Fuel rack 0.98 0.55 174 0.1

Fuel injector 1.00 0.70 125 0.2

36

2.63.2 Injection timing

The static angle 0S at which fuel is injected, is determined from the actuator

dynamics, whereas the dynamic angle at which fuel actually enters the cylinder is

determined by considering the length of the fuel pipe, engine speed and the speed of

fuel pressure wave which travels at the speed of sound. The dynamics injection angle

is given by equation 2.49.

0(j = 0S + ltoe /C 2.49

Once the dynamic injection angle is known the amount of fuel injected into the

cylinder at that angle may be found by interpolating the fuel injector characteristic

map shown in figure 2.7.

2.7 Summary

In this chapter the state equations that represent the thermodynamic engine processes

are described. These state equations are based on a ’filling and emptying' method,

which considers a Diesel engine as a thermodynamic system consisting of cylinder

and manifold control volumes, junctions that interconnect these control volumes, and

shafts that transfer power generated by the engine. Hence, the parallelism is achieved

by solving each control volume as a separate task. The next chapter describes the

hardware features of a parallel computer on which the above Diesel engine model is

implemented.

37

Intercooler Compressor

Fuel Injector

Load

Inlet Manifold

Crank Shaft

Cylinders
Junctions ~~ J® ■ Je ~Je —Je --Je --Je

Exhaust Manifolds

Turbo Shaft

Turbine

Figure 2.1 Filling and emptying model representation of a six cylinder Diesel engine

dmf/dt

Combustion
tail

Diffusion
burning
phase

Premixed
burning
phase

time

I dynamic injection
static injection

Figure 2.2 The cylinder combustion phases

39

bore

TDC

stroke

BDC

connecting rod

ca

Figure 2.3 Cylinder geometry

4 0

Tgas Rgw Twall Rwa Tambient

Cwa

Rgw = Thermal resistance between control volume gas contents and wall

Rwa = Thermal resistance between wall and atmosphere surrounding it

Cwa = Thermal capacitance between wall and atmosphere surrounding it

Figure 2.4 A control volume heat transfer model

41

1.0 \

• , O0' r,eA a'
c°<te

, s ^ (<eŜ>°
CO^

Pr
es

su
re

ra

tio

3.6

3.4

3.2

3.0

2.4

2.2

15 20105 25 30 35 40 45
m/T/519
---------- Corrected air flow (lb/min)P/29.92

F igu re 2.6 T h e Garrett turbocharger sw a llo w in g curve for m atched f lo w

43

44

Chapter 3

The Bath University Transputer Based
Parallel Computer (BUTPC)

3.1 The BUTPC for Diesel Engine Simulation:

To achieve higher throughput for the diesel engine simulation, a new parallel

computer was needed. The options available were:

redesign the existing Motorola 68020 based processing nodes [31] and

the backplane using new high speed components,

use an upgraded version of the same family of processors, for example

a Motorola MC68030.

use the Intel 80286 processor available at that time.

use the INMOS transputer and redesign the new parallel computer

around it.

The choice of modifying the existing MC68020 processing node or going for the

MC68030 did not promise sufficiently higher throughput. Similarly Intel’s 80286 in

conjunction with a mathematics coprocessor gave lower performance figures

compared with that of the transputer. Hence it was decided to build a transputer based

parallel computer for the diesel engine simulation.

Now the question was the selection of the communication mechanism for the new

BUTPC. The main means of communication available in a transputer system are the

transputer links. Although an INMOS T800 transputer has sufficient power, for

example a T800-30 running at 30 Mhz clock speed may achieve floating point

performance of 2.25 Mflops (for 64 bit operations) and a throughput of possibly 15

Mips [32], it was the communication bandwidth available from the transputer links

that was not sufficient to allow efficient use of this processing power for the diesel

engine simulation [33, 34]. The other option was to use shared memory. For this

46

purpose, a fast backplane multiprocessor bus was designed along with the transputer

link bus, hence providing a more flexible parallel computer.

Having decided that a T800 transputer based parallel computer with both links and a

shared memory architecture was required for the diesel engine simulation, the next

question was whether to buy a commercially available system such as the Meiko

computing system [35] or buy plug in boards and use a standard host system such as a

PC or build our own system at the Bath University. The first two options meant

higher costs in terms of initial installation and maintenance, particularly if a shared

memory architecture was used. It was, therefore, necessary to build another in-house

parallel machine based on the Inmos T800 transputer. A block diagram of this

machine is given in figure 3.1.

3.2 The T800 Processing Node

The BUTPC is housed in several 19 inch racks and has sixteen transputer based

processing nodes per rack. Each processing node consists of an INMOS T800

transputer, one megabyte of dynamic ram, a multiprocessor bus interface, local and

multiprocessor bus arbiter logic and high speed line drivers to connect the transputer

links to other boards via the backplane.

A transputer is a single VLSI device with on chip memory, a central processing unit

and communication links for direct connections to other transputers [36]. The T800

used in the BUTPC has a 32 bit bus, 4 Kbytes of on chip memory and a 64 bit floating

point processor, and four direct memory access (DMA) controlled serial links. Figure

3.2 shows a block diagram of the T800 transputer.

The transputer exploits fast on chip memory by having only a small number of

registers and simple instructions. Only six registers are used in the execution of a

47

sequential process as shown in figure 3.3. The A, B and C registers form an

evaluation stack and are the sources and destinations of most of the arithmetic and

logical operations. Loading a value into the stack pushes B into C and A into B,

before loading A. Storing a value from A, pops B into A and C into B. The workspace

register points to an area of store where local variables are kept. The instruction

pointer points to the next instruction to be executed and the operand register is used in

the formation of instruction operands.

The T800 uses multiplexed address and data signals on its 32 bit memory bus. A built

in memory controller provides DRAM control and refresh timing. The internal

processor speed is link selectable and is generated by a 5 Mhz external clock.

The T800 transputer can be booted either from a communication link or from a ROM.

All the processing nodes in the BUTPC are booted via links. A block diagram of the

T800 processing node is shown in figure 3.4. Figure 3.5 shows the T800 processing

board itself.

Each T800 processing node consists of two different communication paths. The T800

links are directly available for data communication between adjacent transputers and

connected to the backplane link bus, whereas the 32 bit transputer bus is connected to

the shared memory bus via bus transceivers.

There are three main types of memory access cycles:

i) Local memory access by the on-board T800.

ii) Off-board memory access by the on board T800.

iii) Local memory access by an off-board T800.

When an on-board memory access cycle is initiated by the local T800, the local

decoder signals the local arbiter which enables the local access buffers and disables

48

the external to local cycle buffers so that during an internal memory access no

external transputer should access the local memory.

But if the access cycle is for off-board memory, then the local arbiter disables the

local access buffers, so that, if any off-board transputer wants to access the local

memory, it could do so. The local decoder hands over the control to the bus arbiter

which looks at the bus arbitration signals, and if the bus is available, enables the local

to external cycle buffers so that the local to external cycle can be completed. The bus

arbitration is explained later in this chapter.

The third type of memory cycle consists of a memory request from an off-board

transputer for the local memory. The local arbiter waits if the local memory access is

in progress, and then disables the local access buffers while allowing the external to

local cycle buffers to put the external data on the local memory bus.

The memory map for the T800 processing node is shown in figure 3.6. It extends

form 00000000H to ffffffffH. A 1 Mbyte slot is used by the 'Helios’ operating system

[37], out of which the 4 Kbytes is the on chip memory. Rest of the 1 Mbyte is paged

onto the memory page starting at 80000000H and ending at 800fffffH, because the

T800 recognizes the memory address 80000000H as its base address [32]. The 4

Kbytes from 80000000H to 80000fffH is not known to the Helios and can safely be

used outside the Helios environment.

The top 4 Kbytes of the transputer 1 Mbyte memory page contain special purpose

registers. These are:

Boot location (BOOTLOC)

Control and status register (CSR)

Test and Set semaphore (TAS)

Processor number (PNUM)

49

Event register (EVENTREG)

Semaphore table pointer register (SEMTAB)

The boot location is the register that is used to provide the jump location if a

transputer is to be bootstraped from ROM. If the BootFromRom pin of the transputer

is connected to logical high, the transputer starts bootstraping immediately by

executing code located at the memory address given at BOOTLOC; otherwise it waits

for the first bootstrap message to arrive at any of its links [32].

The control and status register is used to flag the system of special functions. These

special functions are:

Disable the on chip ram of the transputer.

Enable the T800 analyse mode.

Signal the transputer to boot from ROM.

Enable broadcasting, a special feature’discussed later in the chapter.

Send a signal to the link topology controller to set new link topology

of the system [38].

Set an error flag if an event failure occurred.

Set an error signal if a processor error occurred.

These special flags are shown in figure 3.7. These flags enable the particular

operation related to these when the CSR is set to their value. These special operations

are disabled when the CSR is cleared to zero.

Another special feature provided is an indivisible Test-and-Set (TAS) bit location on

each T800 board. Whenever a read cycle is initiated for TAS location it is set to

logical 1 in one indivisible read-test-write cycle. It is cleared by explicitly writing

logical zero to this location. This TAS semaphore was one of the main features

50

exploited extensively for the inter processor communications in the diesel engine

simulation, explained in the next chapter.

The PNUM register provides the complete bus which, when read, gives the full

backplane address of the processing node. This location has another role as well.

When written, it sets up the timeout for all shared memory accesses so that if the

multiprocessor bus is not available within that time interval a retry could be initiated.

The ENVENTREG generates an event whenever data is written into i t It blocks any

further writes into itself until the previous data has been read, i.e. the previous event

has been handled by the transputer.

The last register SEMTAB provides a location at which a pointer to a semaphore table

can be held. This semaphore table can be used to simulate a number of TAS

semaphores by locking the table using the TAS.

Since the BUTPC has a shared memory architecture, it is necessary to have a unique

address for each memory location in the system as seen by an off-board processor.

This is achieved by assigning a unique number to the rack that houses the transputer

processing nodes. This provides a unique page within the whole memory span of the

transputer. Within this page, each processing node has its own unique identity

number. The most significant byte of the address bus presents the rack number and

the third most significant nibble gives the identity number of the processing node.

Since there are 16 processing nodes per rack at the most, hence all of the processing

nodes in the system have a unique memory address in the system. For example, for a

rack number 2 the memory page would be 02xxxxxxH. The processing node zero

within this area would have a 1 Mbyte memory page starting at location 02000000H,

the processing node one would have a memory page starting at 02100000H and so on.

51

The input/output (10) facilities to the system are provided by a standalone computer

developed by Hafeez [39] which consists of an IO board and a graphics board both

connected to the same backplane as the other transputer boards via links.

3.3 The Input/Output System

The Input/Output (IO) system developed by Hafeez [39] is based on the Philips

SCC68070 microprocessor. A block diagram of the IO board is shown in figure 3.8.

The SCC68070 has an on chip memory management unit, a two channel DMA

controller, a serial interface, an inter-integrated circuit (I^C) bus interface and a timer.

The IO system built around it exploits these features of the processor to connect to

external devices such as disk drives, printer, and the console.

The floppy disk controller DP8474 uses DMA channel 2 on the SCC68070, whereas

DMA channel 1 is connected to the Shugart Associates Systems Interface (SASI) bus

which is a parallel bus and provides a data transfer rate of approximately 4 Mbytes

per second. The SASI bus is the lowest level implementation of the Small Computer

Systems Interface (SCSI) and connects a hard disk and a tape streamer to the system.

The I^C interface provided on the SCC68070 is a serial bus and operates

independently of the centralised bus arbiter. It is a bidirectional, two wire bus

comprising of the 'Serial Clock' and 'Serial Data' lines. It is used to connect the

SCC68070 to a real time clock PCF8583, and also to an 10 expander, PCF8574, used

to provide a parallel centronics interface for a printer. Since the BUTPC is based on

the T800 transputer, in order to connect the IO board to other T800 based boards in

the system a bidirectional, two wire data link consisting of an IMSC012 link adapter

is provided.

52

The graphics board consists of a T800 transputer, a Philips SCN66470 Video and

System Controller (VSC), a Philips 68070 microprocessor, keyboard and mouse

interfaces, a colour palette and two different banks of memory. A block diagram of

the graphics board is shown in figure 3.9. The 4 Mbyte local memory is provided to

run the Helios' operating system and is refreshed by the T800. The other memory

bank is controlled by the VSC and is used for video and display data. The T800 reads

and writes to this memory via a handshake on the VSC's coprocessor interface [39].

The T800 updates the picture information in the video memory whereas the VSC uses

this information from the video memory to display the pixels onto the graphics screen

[39]. The colour palette is a lookup RAM that is connected to the lower byte of the

T800 data bus. It translates the pixel output into Red, Green and Blue (RGB) signals

which may drive the 75 ohm inputs of a video monitor [39].

3.4 The Backplane

The backplane used in the BUTPC has two different physical buses, one is a 32 bit 80

Mbytes per second multiprocessor bus shared by only the T800 processing nodes and

the other is the link bus for the transputer links. As mentioned before, the bandwidth

offered by the transputer links was not sufficient to handle the communication for the

diesel engine simulator so that a new architecture for the shared data bus was

implemented. This bus structure does not use any asynchronous handshakes or

address or cycle validation signals and is not tailored to any specified processor.

Each processor node in the system is supplied with input and output latching address

and data buffers. The information appears on the bus during an inter processor write

cycle, only long enough to be latched by all the processor nodes which are ready to

latch that information at that instant of time. When an inter processor read is initiated

by a processor, the data return is allowed as a separate cycle and can occur at an

indeterminate interval after the initiation of the cycle. This allows a variable access

53

time for read cycles. At a clock speed of 20 MHz, there is about a 500 nanosecond

interval between the address and data phases [33]. This allows around 10 other bus

accesses to be started and/or finished on the same bus signal wires during this time.

The interleaved bus access can give rise to the possibility of many bus access attempts

to the same processor. Two signals, SUCCESS and FAIL, are provided on the

backplane bus to cope with this problem. All processors decode the address of a cycle

that appears on the backplane. Only one of them responds and, if it has latched the

information and is capable of carrying out the cycle, it sets the SUCCESS signal;

otherwise it sets the FAIL signal. A failure causes the initiating processor to

automatically re-send the cycle 250 nanoseconds later.

All these features do not involve the T800 processor which can carry on its

processing. These features are handled by a specialised hardware involving the

backplane.

3.5 Bus Arbitration

In order to achieve optimum arbitration speed to decide which processor gets the next

access to the bus, the arbitration mechanism has to be as fast as the multiprocessor

bus access mechanism. Instead of using a standard centralised bus arbiter, a

specialised distributed arbiter was developed. Limited priority shifting is provided for

processors that are having difficulty getting time on the bus.

In figure 3.10, the arbiter control signals are shown. The four least significant bits are

used for fixed priority. Their level is set by the geographical position of the processor

node in a nineteen inch rack. The three most significant bits, DATA, BDCST and

FAIR, are provided to change the priority level under certain conditions.

54

The DATA bit ensures that the returning data phase accesses are always high priority

as a processor is waiting to receive the data. The FAIR bit is used to signal that a

processor has been unsuccessfully trying to access the bus for more than sixteen time

slots and the BDCST bit is used to ensure the quick completion of a new type of

cycle, called a broadcast cycle.

The broadcast cycle involves all the processors connected to the bus. When a

broadcast cycle is initiated by a processor, all other processors decode the current

write cycle as if it is for them and reply on the SUCCESS and FAIL signals. If any

FAIL occurs, then the sender resends the cycle. A processor that succeeds in

capturing the cycle ignores subsequent broadcast cycles until a completely successful

cycle occurs. Because of the involvement of all the processors, a broadcast cycle is

always of high priority.

3.6 Inter Rack Connection

There are physical constraints on the number of processing nodes that can

simultaneously operate within a single backplane. Therefore the expansion of the

system is possible only by connecting racks together by a communication method that

does not introduce significant additional overheads.

As described earlier, each rack has its own graphics board plugged into it, with extra

links to the outside world. Hence to connect two racks together, the simplest solution

is to use two links on the respective graphics boards of each rack. This provides a

connection of two clusters of transputers which communicate with each other via

transputer links. But this is relatively slow and would introduce large overheads.

55

Since the BUTPC has shared memory architecture as well, it was necessary to provide

a connection between the busses of the two racks as well. This is achieved by

providing a high speed buffered optical fibre link running at 125 Mbits per second

[33] between the two racks together. Any bus access that does not belong to any one

of the local processors is passed through the optical link to another rack. If the system

consists of more than two racks then, if the cycle does not belong to a given rack, it is

passed higher up the rack tree structure until it reaches a rack that has the desired

processing node down another branch of the tree. The bus access is then passed down

the tree by the direct path to the desired processing node. The maximum latency to

traverse all the optical fibre links for a tree structure of three levels is three micro

seconds provided there is no other load on the system bus [33]. The figure 3.11 shows

a two rack system.

For a 32 bit parallel bus the total address space is 4 Gbyte. In the current system each

processor has an address space of 1 Mbyte thus giving a total number of 4095 shared

memory slots. This provides a total of 256 racks that can be connected in a three level

tree structure as shown in figure 3.12. But increasing the number of racks affects the

bus bandwidth. Having a high bandwidth of 80 Mbytes per second on each backplane

increases the overall bus bandwidth in proportion to the number of processors. The

advantage of having a number of racks can be achieved by implementing programmes

which use clusters of processors, with frequent access to the processors local to a

given cluster and infrequent access to the processors in remote clusters via the optical

fibre system.

3.7 Summary

In this chapter, the hardware features of the Bath University Transputer based Parallel

Computer used to simulate the diesel engine simulator are described. The next chapter

56

introduces the operating system implemented on the BUTPC and describes the

communication mechanisms developed for the diesel engine simulator.

57

32 bit 80 Mbyte pier second Multiprocessor Bus

Optical Fibre
Expansion
Board

Bus
Interlace

Bus
Interface

1 MByte
DRAM

1 MByte
DRAM Graphics

Board
T800 T800

Board
Links

Transputer Link Bus

RGB
Links
KeyBoard
Mouse

Floppy Disk Drive
Hard Disk Drive & Streamer
Terminal
Printer

Figure 3.1 Block diagram of the BUTPC

58

64 Bit Floating Point Unit

System Services

Timers

4 KBytes
On-Chip
Ram

External
Memory
Interface

15

32 Bit
Processor

Link Services

4 Link
Interfaces

Event

Figure 3.2 Block diagram of the INMOS T800 transputer

59

Local
Stack

Transputer
Registers

c

B

A

Workspace
Pointer

(WSP)

Next
Instruction

(Nl)

Operand

(OP)

Program
Instructions

Figure 3.3 The T800 registers

60

Bus
Control
Signals

Local
Bus

LocExtReq

ExtLocAck
LocAcc Loc Ext

Event

Control and Arbitration Signals
T800

Local
Arbiter

Bus
Arbiter

Local
Decoder

Local
Register
Set

Local
Access
Buffers

1 MByte
Local
Memory

External To Local
Cycle Buffers

Local To External
Cycle Buffers

Shared Memory Bus Buffers

Transputer Link Bus

Multiprocessor Bus

Figure 3.4 Block diagram of the T800 processing node.

61

Figure 3.5 The T800 processing node

62

Page Number

800FFFFF,
BOOTLOC

800FFFFC
Top 4 KBytes

CSR
800FFFF8

TAS
800FFFF4

PNUM
I00FFFF0

EVENTREG
iFFFEC

SEMTAB
800FFFE8

Transputer page
Bottom 4 KBytes

80000000

Special Purpose Registers

02f00000
Off-board

shared memory

page
02100000

02000000

Figure 3.6 The memory map

63

Masking Flags Values (Hex)

IRAMENB M 01
ANALYSE M 02
RAMBOOT M 04
SHRMEMENB M 08
BRDCSTENB M 10
LNKTOPREQ M 20
EVNTERR M 40
PROCERR M 80

Figure 3.7 The Control and Status Register Masking Flags.

64

System Data
and Address Bus

38070

Memory Data
and Address Bu:

RS232

I2C Bus

128 KB *— 1MB DRAM
ROM

10
Expander

SASI BUS
Interface

Floppy Disk
Interface

Link
Adapter

RS232-C
Level
Translator

Parallel
Centronics
Interface

Day/Date
Clock

To Hard Disk Drive &
Tape Streamer

To Floppy Disk Drive

Link Out

Link In

To the Terminal

To the Printer

Figure 3.8 Block diagram of the IO board

65

Links (in/out)

To The
Mouse

System To The
Keyboard

Bus

RGB
Output

68070

T800

1MB
DRAM

Control
Circuit

VSC

Keyboard
Interface

Colour
Palette

Video
DRAM

Mouse
Interface

Data
Buffers/
Latches

Info
Buffers/
Latches

Figure 3.9 Block diagram of the graphics board

Least Significant Bits

OATA b3BOCST FAIR b2 bO

M ost Significant Bits

Figure 3.10 The arbitor control bits

67

Figure 3.11 A two rack system (The BUTPC)

68

0733

Link Connections

Top Level Rack

Rack 0, 16 T800s Rack 15, 16T800SRack 1,16 T800s

First Level Rack 0 First Level Rack 15

Figure 3.12 Expanded rack based parallel computer system

Chapter 4

The System Software

4.1 Introduction

Every computer hardware system requires an operating system to coordinate the

resources offered by it An operating system is a set of programmes that controls the

operation of the hardware resources, utilises them efficiently and manages the data

flow within the computer system.

At Bath University, a generation of parallel computers have been built around the

Motorola MC68000 [40] and the MC68020 [41]. The operating system TRIPOS [42,

43,44] was ported to these machines. TRIPOS is a single-user, multitasking operating

system for small computers, originated in the University of Cambridge. It was

modified by Dale to be used as a multiprocessing, multiplier system. TRIPOS is

written in BCPL and supports a BCPL compiler. This gives the facility of high level

programming and portability within the TRIPOS systems.

While the Bath University Transputer based Parallel Computer (BUTPC) was being

built, it was decided to port an operating system to the BUTPC that:

o would allow a high level language programming environment

o would enable the user to write portable programmes

o would be cost effective

o would be independent of the processor type used

o would allow other useful programmes to be ported on the system

easily

Since the transputer was developed with OCCAM in mind [45], the obvious choice at

hat time would have been the Transputer Development System (TDS) supported by

71

INMOS. This would have made OCCAM as the programming language. But using

OCCAM had its disadvantages as far as the BUTPC and its envisaged use was

concerned. OCCAM did not support dynamic memory allocation [46]. It was not very

much popular as a language to be ported on a large number of other processors,

making its long term future uncertain. This could mean rewriting the whole existing

programmes, and hence losing portability. Secondly using OCCAM would have

prevented porting useful programmes and tools available on other systems such as

Unix based machines.

There was an operating system called Helios being developed at Perihelion Software

Limited, Shepton Mallet near Bath. Porting Helios to the BUTPC promised the

following advantages:

o The team developing Helios had been involved in the development of

TRIPOS as well, which was already in use at Bath University,

o There was a possibility of having full collaboration and support from

Perihelion, making the porting and running of Helios to the BUTPC

cost effective.

o Helios is written in C, a high level language becoming popular as a

system language. Writing programmes in C meant that programmes

developed under Helios could be ported easily across other systems

and vice versa,

o Helios provides a Unix like shell environment

o Another advantage promised by Helios was that it was being

developed keeping in mind the pace of technology, so that it could

easily be tailored to the needs of other new sophisticated processors

such as Intel i860 [3], hence providing no loss of time and effort in

transferring from the existing system to the new system.

72

These were the reasons that decided the implementation of Helios on the BUTPC

[31].

4.2 Helios: The Operating System

Helios is a multiuser, multiprocesor distributed operating system and is designed to

run on a wide range of multiprocessor architectures [47]. For a transputer based

system, it often supports an environment in which the transputers simply act as

accelerators for the existing machines, such as the IBM PC, the SUN. In the case of

the BUTPC, the host is a Philips 68070 based computer discussed in the last chapter.

The host processor retains many of the 10 functions of the standalone machine.

A standard 10 server program that runs on the host machine acts as an interface to the

transputer back end and allows the user to access all the standard features of the host

environment.

Helios controls all the resources available within a network which is a collection of

processors. It provides a consistent mechanism for accessing the resources and hides

the distributed nature of the architecture from the user.

The processors in the network can be of different kinds, such as the Motorola

MC68000 or the Intel 80286 plus one or more Inmos transputers. A network can be

subdivided into a number of smaller networks and can be booted with any

configuration topology that is physically allowed by the hardware.

Helios consists of the following main components,

o Nucleus

o Servers

o Posix library

73

o User interface.

4.2.1 The Nucleus

The nucleus is the minimum system that must be present on every processor in the

network. Its prime purpose is to control the resources of a single processor and to

integrate it into the global system. It provides message passing facilities at the lowest

level to all other high level system services such as file servers, resource manager,

etc., which are added onto the nucleus. The nucleus consists of:

o Kernel

o system library

0 Loader

o Processor manager

0 IO controller (IOC)

0 Name server

4.2.1.1 Kernel

The kernel is directly responsible for managing the hardware resources of the

individual processors in the network. It provides support for local and networked

message passing described later in this chapter. It controls both the external and on

chip memory, and provides event management and semaphore handling as well.

4.2.1.2 System library

The system library is a resident sharable library which provides a general interface to

the operating system services. It keeps track of the system resources allocated to a

task and releases them to the system pool when the task finishes. The libraries are

74

loaded only on demand so that they do not impose an overhead when not required on

a particular processor.

4.2.1.3 Loader

The loader is responsible for loading object code and libraries into a processor and

unloading them, when they are not needed. It supports standard server interface.

4.2.1.4 Processor manager

The processor manager is an autonomous process, responsible for creating tasks,

managing them when they are running and dismantling them when they terminate. It

is also responsible for trapping all signals sent to a given task. When an exception

such as stack overflow or arithmetic overflow occurs, a signal message is sent to the

processor manager that is controlling the relevant task. The processor manager then

reports the exception by running an exception routine provided either by the runtime

system or by the program .

4.2.1.510 Controller

The 10 controller (IOC) is another autonomous process that is responsible for

handling 10 requests of another task. Each task has its own IOC, and an IOC is also

created for each link on the processor. The IOCs act as 10 agents for tasks in a remote

processor and manage the in-comming requests on the four links. When a nucleus

wishes to gain access to an object in a remote processor and it does not have a

destination port, described later, requests can be directed to the link IOC on the

remote processor, which may then access that object directly.

75

4.2.1.6 The Name Server

Every item in a Helios network is referred to as an object. This object model provides

a consistent interface for accessing any item within the network; for example the

same mechanism is used to locate a processor as that used to locate a file within a

directory of file system located on a given processor.

To ensure that an object is unique, Helios implements a unified naming scheme,

which is based on the naming table maintained by the nucleus in each processor.

Each local name table is organised as an hierarchical representation of the network as

it is perceived from that processor. To access an object or a service, a task sends a

general server protocol message to its IOC which looks up, in the name table, the

name identified by the current string offset in the message. The IOC then passes the

request on to the server port found in the name table. If the name is not present, the

IOC asks the neighbouring processors. These may, in turn, need to ask their

neighbours, thus implementing a distributed search of the entire network. Whenever

such a search succeeds, the server, machine and cluster entries are added to the local

name server, thus expanding the processor's knowledge of the network and making

subsequent accesses to this server more efficient.

In the last chapter, an example of a hierarchical network was given and a block

diagram is shown in figure 3.12. If the processing node 0 in the rack 0 of level 3

subnetwork has file called 'procman', then the full network address of this object will

be;

7net/level2rackOAevel3rackO/processorO/procman'.

76

4.2.2 The Servers

Helios is based on the client-server model in which a client wanting some service

sends a message to a server which performs the operation and returns a reply

message.

The nucleus is a server that provides a virtual machine interface and allows the user a

transparent access to all the physical resources of a processor in a transputer network.

However, there are some resources which are not available on every processor in the

network, for example serial console, disc drivers or printers. To control these devices,

additional servers are provided so that a consistent interface to all physical resources

can be maintained.

A general server protocol (GSP) is supported by all system server. All requests within

this protocol have a control vector as shown in figure 4.1, where Context and Name

are offsets into the data vector of null terminated pathname strings. If the offset is -1,

the string is not present. The context string is equivalent to a current directory,

relative to which a pathname is evaluated. The Next field is the offset of the name

element to be used next. The capability encodes the client's access rights to the

context object. Extra request specific parameters may be added at the end of this

structure.

Each server consists of a single task. A single port supplies GSP requests to the

server, which always come from an IOC. A single dispatcher process is dedicated to

receiving these requests and queuing them for attention by a second process, which

can either be a static process, a dynamically created process or a pool of worker

processes to handle each request as it arrives.

Multiple servers may coexist so long as they support the general server protocol.

77

A number of standard system servers are provided with the Helios operating system

[48]. Two of these are discussed bellow.

4.2.2.1 Network server

The network server is responsible for the initial creation and then subsequent control

of the Helios nucleus thorough a network. It uses a resource map to boot all the

processors within a defined network. A resource map defines the topology of the

network, the individual processor types, the location of specific physical devices such

as SCSI controllers etc. and the hierarchical subdivision of the processing units within

the network.

The network server is a distributed service, with a separate component of the network

server being responsible for each subnetwork defined in the network.

4.2.2.2 Task Force Manager

The collection of tasks is referred to as a task force and the task force manager (TFM)

is a distributed server that controls these tasks. It consists of a number of identical

servers distributed throughout a network, each controlling a different area of the

network.

The TFM processes all client level program execution requests. It analysis the current

state of the network and distributes the component tasks of the task force to the most

suitable processing element

Once a task force has been scheduled, then the TFM monitors each of the component

tasks and informs the client when all components have terminated.

78

The TFM also provides the facility to abort a task force. It is thus responsible for load

balancing of Helios networks, ensuring that all tasks are optimally scheduled.

4.2.3 The Posix Library

The posix library is provided in Helios to make it compatible with Unix. This facility

aids portability of existing programs and tools from the Unix environment to the

Helios [49].

4.2.4 The User Interface

A task called Shell is provided in Helios that acts as a command line interface to the

operating system, the Helios Shell interface enables the user to create and control

jobs interactively, both in the background and the foreground. It includes various

shorthand methods to save typing and personalisation methods to enable the users to

use their own commands. Several Shells can be used simultaneously.

The Shell includes support for a subset of the component distribution language

(CDL). The CDL enables the user to declare the resources requirements of the

component tasks of a task force. A CDL script is compiled to generate a binary object

that is submitted direct to the TFM as an executable object.

4.3 Communication Methods In Helios

Helios provides four different levels of communications. These are:

o Language level 10.

o Posix Level IO.

o System Level 10.

79

o Kernel Level IO.

4.3.1 The language level IO

This is the highest level communication level. The calling convention depends on the

type of language used. For example, in the 'C' implementation under the Helios

operating system, these routines are represented as shown in figure 4.2. The 'fread'

and 'fwrite' are used for direct input and output purposes respectively. These functions

use a file stream to receive or send a given number of items of a given size and return

the number of items received of sent respectively. These functions have high error

recovery, therefore they tend to overload the data communication between two Helios

objects, which can be a combination of tasks or files or both.

4.3.2 The Posix level IO

In this second level, the IO Posix routines, shown in figure 4.3, are used for data

communication between two Helios objects. If data is being read from or being

written into a file, a file descriptor associated to that file is used to transfer data to or

from that file. If the data is being read from or written into a task, then there is a pipe

or a FIFO to which the file descriptor is associated, using which data transfer is

completed. The actions of these 'read* and 'write' routines depend on the state of the

pipe or FIFO they are using for data communication. An error recovery mechanism is

also built in to these routines that allows them to return an error message in case of

failure [49].

4.3.3 The system level 10

The third level communication routines are provided by the system library. These are

called 'Read' and 'Write' and are shown in figure 4.4. These routines use the Helios

80

streams for data communication and transfer data of a given size into or out of a

buffer. They have builtin error recovery and checking which, although presenting a

communication overhead, does improve the portability and safety. These routines are

provided with a timeout facility as well. A timeout value of -1 gives an infinite

timeout.

4.3.4 The kernel level IO

The prime means of communication under Helios is message passing which is the

lowest level of communication and is implemented by the kernel. The kernel routines

that constitute the message passing mechanism use Helios ports for data

communication and have minimum error recovery and checking associated with

them.

A message port is a data structure that is implemented by the Helios kernel to make

message passing transparent to the user. A message port can be a local port for

message transfers between processes on the same processor or it can be a surrogate

port which is an entry in the port table referring to a port on a neighbouring processor.

Figure 4.5 shows the Helios port formats.

Index represents the port's offset into the port table. Cycle is incremented each time a

table slot is reused. The uses field is there to garbage collect ports that are unused

because a program has crashed or failed to tidyup. The link field identifies the link

through which the message must be sent.

A message is divided into three parts: a header, a control vector and a data vector as

shown in figure 4.6. The message consists of the sizes of the control and data vectors

and the destination and reply port descriptors through which the message has to pass.

The ContSize is limited to 256 words whereas the DataSize is limited to 64 kbytes.

81

The kernel routines that implement message passing are:

o NewPort();

o PutMsg(mcb);

o GetMsg(mcb);

NewPort allocates an unused slot in the port table, initialises it and returns the port

descriptor for it. PutMsg and GetMsg expect a preinitialised message control block

(MCB) as argument. An MCB is shown in figure 4.7.

PutMsg transmits the message header on the port channel, followed by the contents of

the control vector, and then the data from the data vector. If the message is not

delivered before the expiry of the timeout, the whole transfer fails. A timeout of -1

gives an infinite waiting time.

GetMsg checks the port descriptor given in the MsgHdr.Dest and waits for a message

header from the channel. It receives appropriate data according to MsgHdr.ContSize

and MsgHdrJDataSize into the control and data vectors. It can timeout if data does not

arrive within MgHdr.Timeout period.

PutMsg and GetMsg are point to point message passing routines. PutMsg cannot

return until its message has been accepted or it has been timed out. Similarly GetMsg

cannot return until it has received a message or it has timed out. In order to allow the

main task to carry on doing other jobs while data communication is being done, a

subprocess has to be forked to do PutMsg and GetMsg. Separate processes have also

to be forked if a port is to be shared by several tasks as Helios allows only one

process to transmit or receive a message on a port at one time.

82

If a message does not belong to a local process, it passes through to the link to a

neighbouring processor and, if this is still not the final destination, it is passed through

another link, and so on until it reaches the processor containing its destination port.

This routing of the message is done by a high priority kernel process called a Link

Guardian (LG). Each link in the system has a LG attatched to it. When PutMsg finds

the type of the port non-local, it sends a protocol header byte followed by the MsgHdr

and then control and data vectors if they are present. This protocol header byte is

interrupted by the LG which receives the MsgHdr, replaces the reply port by the

descriptor of a newly allocated surrogate port, looks up the destination port in the port

table and examines its type. If it is a local port and there is a receiver waiting for it,

the LG sends the header to the receiver and waits to allow the receiver to take the

control vector and data directly from the link. If no receiver is present, the message is

received into a buffer and queued for later delivery. If the destination port is a

surrogate and the next link is available, then the LG transmits the protocol byte and

the message header. The control vector and data are received in parallel and are

transmitted down the link when ready. If the link is busy, the message is received into

a buffer and queued for later transmission and, if no buffer is available, the message is

thrown away.

When a message is thrown away as a result of congestion, an exception message is

generated and sent back to the reply port. The Link Guardians make a little more

effort to deliver the messages but congestion may still cause them to be lost [48].

Table 4.1 shows communication speeds using different communication methods

provided in the Helios operating system when the transmitter and the receiver are on

adjacent processors [50]. As the simulation time available for a 1 degree step for a

diesel engine running at 2000 revolutions per minute is 83 microseconds, the

communication times given in table 4.1 show that using conventional Helios

83

communication mechanisms would not give a simulation speed up. Hence special

hardware features provided in the BUTPC were used for the data communication and

synchronization in the diesel engine simulator.

Table 4.1: Communication performance using Helios primitives

Message size
(bytes)

Posix level
read/write

(micro second)

System level
Read/Write

(micro second)

Kernel level
GetMsg/PutMsg
(micro second)

4 1110 1100 125

4.4 New Communication Routines for the
PDESIM

As mentioned earlier, the Helios communication mechanisms that use links, were not

suitable for the communication requirements of the diesel engine simulation.

Therefore new faster communication primitives were developed for data

communication and task synchronization. The following different methods were used

for these routine.

o Backplane data communication and synchronization routines using

TAS flags.

o Packet switching using shared memory flags,

o Packet queues using TAS flags,

o Broadcast signals.

84

4.4.1 The backplane routines

These software routines were written to make the shared memory system appear as

much as possible like faster transputer links [33]. Using these routines a direct

hardware link between any two processors could be simulated. These include:

o BPSemaphorelnit

o BPSignal

o BPWait

o BPInitPort

o BPPutData

o BPGetData

To use these routines, a backplane event handler is installed that reads data off the

EVENTREG when an event occurs and sends this data through the Helios channel to

a task which is either waiting for it or is going to wait.

The BPSemaphorelnit is used to initialize a backplane semaphore structure, shown in

figure 4.8, which is used to simulate the internal semaphore structure of the Helios

using shared memory.

The BPSignal works by locking the processor to be signalled by reading the TAS

flag. It then checks if a task on the remote or local processor has already executed a

BPPWait corresponding to this BPSignal, if not, then it sets the semstate flag to 1, and

releases the processor. If the remote task has done a BPWait, then, if the task is on the

local processor, the BPSignal sends a byte at its local channel to inform the waiting

processor, otherwise it sends an event to the remote processor and releases the

processor.

85

The BPWait also locks the processor using the TAS flag. If the semstate of the

BPSemaphore has already been set to one, then it means that a BPSignal has already

been done by another task corresponding to this BPWait, so the BPWait clears the

semstate flag to 0, and then releases the processor. Otherwise, the BPWait announces

that it is going to wait for a BPSignal by setting the semstate flag of the BPSemaphore

to one and then waits on an input channel. The BPWait is only allowed at a

semaphore which is local to the processor on which the task, that executes a BPWait,

is running.

The BPPutData and BPGetData use a backplane port structure shown in figure 4.9 for

data communication. This port structure is initialized using BPInitPort. Each

communicating task must have an initialized BPPort on its side. The BPPutData

copies the data directly into the data buffer pointed to by the remote port, whereas the

BPGetData just waits for the data to arrive.

Table 4.2 shows timings for these backplane communication routines. These timings

still indicate that using these routines will not achieve a greater speedup for the diesel

engine simulation. Hence other direct communication methods were investigated.

Table 4.2: Communication performance using backplane
routines

Message size

(bytes)

BPGetData/BPPutData

(micro second)

4 75

86

4.4.2 Packets

Previously the diesel engine simulations were earned out under the Tripos operating

system [21, 21]. The main communication mechanism under the Tripos is packet

switching. A Tripos packet structure is shown in figure 4.10.

Tripos maintains a linked list of packet queues. The link field in the packet structure

points to the next packet in the linked list queue. The id field is the identity number of

the task to which this packet is being sent or if it has been received from somewhere

then it indicates the id of the sender. The type field is the type of action for which this

packet is intended. The resl and res2 fields are used normally by Tripos but can be

utilised to send data between two tasks. The argument fields at the end of the packet

are variable and can carry long word data as permitted by Tripos.

4.4.2.1 Packets switching using flags

While designing new communication primitives for the diesel engine simulation, the

first approach was to simulate the Tripos packet mechanism using the BUTPC shared

memory system. For this purpose, a fixed size packet structure, shown in figure 4.11,

was selected. The packet structure was kept constant in order to keep a consistent

packet structure throughout.

Two different packet switching methods were tried. In the first method, a shared

memory flag mechanism was implemented. In this mechanism, each type of packet on

each task was identified by a unique global flag. The bottom 4 Kbytes of the T800's

RAM was used to allocate memory to these flags as this area of memory was

unknown to Helios and could be safely used directly.

87

Figure 4.12 shows the flag structure. Here the pktaddr field gives the address of the

packet for which the flag is used whereas the SHRD_COMM_STRUC is a table of

the flag structures corresponding to each type of the flag in the PDESIM.

Whenever a packet is to be queued, its address is placed at its corresponding location

in the remote processor and the flag is set to -1, indicating a new packet has arrived.

The waiting task keeps on polling its local SHRD_COMM_STRUC table and when it

finds a flag set to -1, it reads off the corresponding packet address and clears the flag

to 0. Figure 4.13 shows a packet being queued from processor 0 to processor 1.

This system provided a few drawbacks. For a task that was waiting it was very time

consuming to poll through all the flags corresponding to each packet type as the

number of packet actions increased. Similarly increasing the number of tasks also

increased the polling time as each task had its own set of packets as well. Hence a

second more general approach was considered.

4.4.2.2 Packet switching using queues

In this implementation of communication routines, each task was allocated a fixed

size circular buffer to simulate a packet queue. The size of this buffer was selected

large enough to avoid any congestion on the queue.

All those tasks which want to send a packet to a particular task wait at the queue

entry and place the packet address on the queue when it is available. The receiving

task picks up the packet address from the queue and advances the tail of the queue.

A task table is copied onto all the tasks of the PDESIM. A task table is an array of

task identifiers as shown in figure 4.14. Each task identifier structure contains a

pointer to the TAS location of the processor on which that task is located, the head

88

and tail pointers to the addresses of the head and tail of the task’s packet queue and

the pointers to the start and end of the queue. The headptrptr and tailptrptr provide the

critical section of the queue and are manipulated by only one task at a time. The

qstartptr and qendptr are used to circulate the buffer queuing on the packet buffer.

The communication primitives that simulate this mechanism are:

o Qpkt

o Taskwait

Qpkt

This routine is used to put the address of a packet on the local queue of a task which

may be a local or a remote task. A pointer to the identifier of the task is fetched from

the local task table using the task's ID given in the packet structure. Then the ID field

in the packet is changed to that of the sender so that this packet could be identified by

the receiver and sent back if required.

Now an attempt is made to access the queue of the remote task by reading its TAS

location. If it is less than zero, it means the MSB of the TAS is set to 1 and someone

else is using the queue. The sender delays itself and checks the TAS flag again. This

process is repeated until the TAS flag is no longer less than zero.

Once the queue is locked, the current head pointer is read and the next address on the

queue is calculated. If the next head value is equal to the address of the tail then the

queue is full. This comparison is carried on until the receiving task takes a packet off

the queue. Then the sender places the packet address at the head of the queue,

advances the head pointer and releases the queue so that it could be used by other

tasks in the system. Figure 4.15 shows a flow diagram of the Qpkt routine.

89

Taskwait

This routine is used to wait for any packet to arrive at the task's queue. It does so by

comparing the head and tail pointers. If these pointers are same then the queue is

empty, and a special busy wait is carried out that allows the transputer to deschedule

if necessary. When the queue is not empty the packet address is taken from the tail of

the queue and the tail pointer is advanced.

Since there is only one task that updates the tail pointer when it executes a Taskwait,

there is no need to lock the queue while advancing the tail pointer.

The Taskwait routine returns the packet address which was taken from the queue. A

flow diagram of the Taskwait routine is shown in figure 4.16.

Communicaton performance for the Qpkt and the Taskwait routines is given in table

4.3. It is clear from the table that these routines provide a considerable improvement

over the Helios and the backplane primitives.

Table 4.3 Communication performance using packet
primitives

Message size

(bytes)

Taskwait/Qpkt

(micro second)

4 22

90

4.4.23 Broadcasting

The broadcast feature provided in the BUTPC provided a means to signal all the

processing nodes at once. In the PDESIM there exist occasions when a single task

wants to synchronise with most of the other tasks at once. For example, while trying

to find out system stability all of the tasks are supposed to reach a particular point

where they wait for a signal from the stability task. Under such situations, it would be

quicker to use broadcast and signal all these waiting tasks in one go rather than

sending them individual signals. Hence the last method tried was a combination of

Qpkt/Taskwait and Broadcast.

4.5 Data Communication and Synchronization

The data communication and synchronization using above mentioned routines may be

done in a number of different ways. Some of these which are used to implement the

DESIM on the BUTPC, described in the next chapter, are:

o The data that is to be sent is written in the argument fields of the

packet and then the packet is queued into the queue of the remote task.

The remote task picks up the packet and reads the data directly from its

arguments fields.

o If some data is required from a remote task, then an empty packet may

be sent to that task, which on receiving that packet will fill the

argument fields with the required data, and send the packet back.

o Instead of sending data directly via a packet, a pointer to a buffer is

sent to the remote task that reads this address and then uses this

address to read or write data into that buffer.

91

o A two way synchronization can be achieved by sending a particular

packet to a remote task and then waiting for it to come back.

4.6 Summary

In this chapter, the operating system Helios is described, and different communication

methods available are discussed. New communication primitives, developed using

backplane features of the BUTPC, are described. It is found that these new

communication routines are faster than the Helios functions, and may provide

significant speedup when used for the Diesel engine simulation.

In the next chapter, different parallel numerical algorithms and their implementation

on the BUTPC, using a single cylinder model, is described.

92

typedef struct IOCCommon {

Offset Context; /* offset of context string */
Offset Name; /* offset of object name string */
Offset Next; /* offset of next element in path */
Capability Access; /* capability of context object */

} IOCCommon;

Figure 4.1 The General Server Protocol structure

93

size_t fread (void *ptr, size_t size, size_t nobj, FILE * stream)
size_t fwrite (const void *ptr, size_t size, size_t nobj, FILE * stream)

Figure 4.2 The Language Level 10 functions

int read (int fildes, char *buf, unsigned nbyte)
int write (int fildes, char *buf, unsigned nbyte)

Figure 4.3 The Posix Level 10 functions

WORD Read (Stream *stream, BYTE ^buffer, WORD size, WORD timeout)
WORD Write (Stream *stream, BYTE *buffer, WORD size, WORD timeout)

Figure 4.4 The System Level IO functions

94

typedef struct PORT {

INTI6 Index; /* index into port table */
BYTE Cycle; /* port slot cycle number */
BYTE Flags; /* flag byte */

} PORT;

Figure 4.5a The Port Descriptor.

typedef struct Port {

BYTE Type; /* = TJocal */
BYTE Cycle; /* current cycle value */
bits TxState: 2; /* transmit protocol state */
bits RxState: 2; /* receive protocol state */
bits Flags: 4;
BYTE Uses; /* garbage collection field */
Channel Chan; /* data transfer channel */
WORD *TxId; /* pointer to transmitter */
WORD *RxId; /* pointer to receiver */

} Port;

Figure 4.5b The Port Table Entry.

95

typedef struct Surrogate {

BYTE Type; /* = T_suiTOgate */
BYTE Cycle; /* current cycle value */
BYTE Flags; /* flags + number of link */
BYTE Uses; /* garbage collection field */
Port Port; /* remote port descriptor */
WORD *TxId; /* pointer to transmitter */
WORD Unused;

} Surrogate;

Figure 4.5c The Surrogate Port Table Entry.

96

typedef struct Message {

struct MsgHdrMsgHdr;
WORD Control[...];
BYTE Data[..J;

} Message;

Figure 4.6a The message structure

typedef struct MsgHdr {

unsigned DataSize: 8;
unsigned Contsize: 8;
unsigned Flags: 8;
Port Dest;
Port Reply;
WORD FnRc;

} MsgHdr;

Figure 4.6b The message header structure

97

typedef struct MCB {

*/
*/
*/
*/

Figure 4.7 The message control block structure

typedef struct BPSemaphore {

Channel lock;
int semstate;
void *userdata;

} BPSemaphore;

Figure 4.8 The BPSemaphore structure

struct MsgHdr, /* message header buffer
WORD Timeout; /* transfer timeout
WORD *Control; /* pointer to control vec
WORD *Data; /* pointer to data vector

} MCB;

98

typedef struct BPPort {

BPSemaphore sem;
struct BPPort ^brother,
void buf;
long len;

} BPPort;

Figure 4.9 The BPPort structure

Link

Taskld

ActionType

resl

res2

Figure 4.10 The Tripos packet structure

99

typedef struct PACKET {

int id;
ACTION type;
ARGDATA resl;
ARGDATA res2;
ARGDATA argl;
ARGDATA arg2;
ARGDATA arg3;
ARGDATA arg4;
ARGDATA arg5;
ARGDATA arg6;
ARGDATA arg7;
ARGDATA arg8;
ARGDATA arg9;
ARGDATA arglO;

) PACKET;

typedef union ARGDATA {

char dummy [8];
char c, *cp;
int i, *ip;
long 1, *lp;
float f, *fp;

} ARGDATA;

Figure 4.11 The simulated packet structure

100

typedef struct FLAGS {

int f;
long pkt;

} FLAGS;

typedef struct SHRD_COMM_STRUC {

FLAGS flag[LAST_ACTION];

} SHRD_COMM_STRUC;

Figure 4.12 The Flags structure

101

Processor 0

a b • • •

PO

PI

•

•

•

Processor 1

a b • • •

PO f Ip

PI

•

•

•

f = flag corresponding to pkt type b on PO
p = address of packet 'p' of type 'b'

Figure 4.13 The packet switching using flags from PO to PI

102

typedef struct TASOD {

volatile int *semflag;
volatile long **headptrptr;
volatile long **tailptrptr;
volatile long *Qstartptr,
volatile long *Qendptr,

} TASKID;

Figure 4.14 The Task Identifier structure

void Qpkt (PACKET * pkt)

{
change pkt id from that of receiver to the sender();
get access to the remote queue();
get current head value and calculate new head value();
if next head value is same as the tail value then wait();
place pkt on the queue();
update the head value();
release the queueQ;

Figure 4.15 Flow chart for Qpkt

103

PACKET *Taskwait (void)

if head is same as tail then queue is empty, so wait();
read packet address from tail();
calculate and update new tail value();
return packet addressQ;

Figure 4.16 Flow chart for Taskwait

Chapter 5

Parallel Numerical Integration

5.1 Introduction

The state equations describing the Diesel engine model are ordinary differential

equations (ODEs) and give rates of change of the state variables, mass fuel to air ratio

and temperature. In order to get the values of these state variables over the engine

cycle these state equations have to be integrated. Since the initial state of these engine

variables may be estimated or taken from a knowledge of the engine, the problem is

reduced to solving ordinary differential equations with initial conditions.

A number of serial methods exist to solve this initial value problem. Two different

approaches exist to implement a solution using parallel processing; the geometric

parallelism approach and the algorithmic parallelism approach. In this chapter, four

different numerical integration methods are described. A single cylinder Diesel

engine is simulated using three of these methods.

5.2 Geometric Parallelism

In this type of parallelism, the set of n ODEs is partitioned and allocated to each of

the parallel processors. Then a standard integration algorithm is used with each

processor responsible for calculating only those equations allocated to it.

The simplest method of integration is Euler's method [51]. If the differential equation

given in equation 5.1 is to be solved, provided y=yj is known at x=xp then a new

value of y j + 1 at X j+ 1 at a distance h, can be predicted using the slope of the function

at the initial point xp

106

dy
- = f(*,y)
dx

5.1

Figure 5.1 represents Euler's method graphically. The extrapolated value is given by

ypi+i = y i + f(xh yi)h 52

A fundamental source of error in Euler's method is that the derivative at the beginning

of the integration step h is assumed to apply across the entire interval.

One method to improve the estimate of the slope involves the determination of the

derivative twice for the interval, once at the initial point and once at the end point.

The derivatives are averaged to obtain an improved estimate of the slope for the entire

interval, as shown in figure 5.2 and given by equation 5.3.

dy
 = f(x,y) 5.3a
dx

fj = f(xi, yj) 5.3b

ypi+i = y i+ f i h 5-3c

fi+i = f(xi+i*ypi+i) 5-3d

fi + fi+l
yi+i = yi + h 5-3e

2

Equation 5.3c predicts the first approximation and equations 5.3e corrects it at the end

point. Hence this gives the name Modified Euler Predictor Corrector Method

(MEPCM).

107

Since appears on both sides of the corrector formula, it can be applied iteratively

to improve the predicted solution.

Euler's methods are based on a Taylor series and use only first order terms of the

series which increases round off errors. Those methods which use higher order terms

of a Taylor series as well, introduce lesser error but at a computation cost. An

example of such a method is the Runge-Kutta (RK) method.

A general RK method may be described by equation 5.4 [51].

Yi+1 = yi + 9(xi,yi,h)h 5.4

where (p(xj, ŷ , h) is called an increment function which can be interpreted as a

representative slope over the integration interval. It can be written in general form as

shown in equation 5.5.

<P = aiki + a2k2 + - + 5*5

where the a terms are constants and the k terms are

ki = f(xj, yp

k2 = fCxj+pjh, yi+qj^h)

kji = f(*i+Pn-ih. yi+qn-l,lklh-Kln-l,2k2h+- +qn-l,n-lkn-lh)

If n=l then the general RK formula reduces to the Euler method. The values of p and

q are evaluated by equating the terms in equation 5.4 to the terms in a Taylor series

expression. Equation 5.6 gives a classical fourth order RK formula [51].

yi+l = yj + [k1+2k2+2k3+k4] h /6 5.6

108

where

kl = f(xi> Yi)

k -2 = f(x^+0.5h, yj+0.5hkj)

k3 = f(xj+0.5h, yj+0.5hk2)

k4 = f(xj+h, yj+hk3)

5.3 Algorithmic Parallelism

In this method, the parallelism is achieved by partitioning across the algorithm rather

than across the system of equations.

Franklin [52] discusses parallel predictor corrector and RK methods. The numerical

integration schemes of the RK type proceed a step at a time while performing several

function evaluations within the step. These internal computations may be interpreted

as approximations to the solutions at points lying within the step. If acceptable values

of the discrete solution at equally spaced intervals within a step or block are obtained,

then the method that does so is called a block method. In a k-point block method,

each pass through the algorithm simultaneously produces k new equally spaced

solution values.

Block implicit methods may be applied in a one-step mode or in a predictor corrector

mode [53]. In one-step mode, only the last point in the block is used to compute the

first approximations to the k values of the next block. Then, implicit formulas are

applied iteratively until convergence is achieved to the maximum order of accuracy

obtainable. An example of a parallel four point block implicit one-step method

(BIOSM) due to Worland [54] is given in equation 5.7 and is graphically represented

in figure 5.3.

109

Predictor:

yi+r,0 = Yi **•r h fj r=1.2.3.4 5.7a

Corrector:

yi+M+i
yi+2,s+l

= yi + h
yi+3,s+l
yi+4,s+l

251/720 646/720 -264/720 106/720 -19/720
29/90 124/90 24/90 4/90 -1/90

27/80 102/80
14/45 64/45

72/80 42/80 -3/80
24/45 64/45 14/45

^i+l,s
î+2,s
î+3,s
î+4,s

5.7b

When the block implicit method is adopted to a predictor-corrector mode, then all the

solution values of a block may be used to predict a solution at each node of the next

block.

Birta and Abou-Rabia [55] developed a formula for the block implicit predictor-

corrector method (BIPCM). Equation 5.8 gives predictor and corrector formulas.

Predictor:

ypi = y0 + h ^ j = o Bij f-j

ffi = fOj.yPj)

Corrector:

5.8c

5.8d

yC.i ~ y0 + h 4 o ^ij

f?i = f(ti,yci)

where

5.8a

5.8b

110

f-j = y.j), f.j = f(t.j, y.j)

t.j = t0 -jh, and tj = t0 +jh

Here (tQ.y^, (t_^,y_|),... (t_jc,y_jc) are known values within the current block and the

base point, t0, separates the known data from the set of new values. The coefficients

By and Cy are constants that depend upon the value of k. Equation 5.9 gives a four

point BIPCM due to Abou-Rabia [56].

Predictor

yPn+i.i
y n+2,1

= yn + h
$>+3,1
y n+4,1

1901/720 -27774/720 2666/720 -1274/720 251/720
1079/90 -2396/90 2594/90 -1316/90 269/90

2877/80 -7638/80 8712/80 -4698/80 987/80
3914/45 -11456/45 13704/45 -7616/45 1634/45

*n
fn+l,l
fn+2,*
*n+3,l
n̂+4,1

5.9a

Corrector:

$1+1,1
yn+2,1

y % + 3 , i
J n+4,1

* yn+h

251/720 646/720 -264/720 106/720 -19/720
29/90 124/90 24/90 4/90 -1/90

27/80 102/80 72/80 42/80 -3/80
14/45 64/45 24/45 64/45 14/45

ffn+l,s
*n+2,s
*n+3,s
*ih4,s

5.9b

111

5.4 Power Series Expansions

Another example of 'parallelising' a serial method is the use of the technique of power

series expansions using symbolic differentiation. The recursive calculation of the

power series coefficients and in particular the calculation of the total derivatives

follows a problem-dependent algorithm which may be automated.

In the first step of the procedure, the right hand members of the differential system are

broken into simple expressions of two operands, such as a+b, and elementary

functions, such as sin(x), while introducing auxiliary variables for the intermediate

results. Then, recursive formulas are used to compute the derivatives. These recursive

routines are independent and may be executed concurrently on a parallel computer of

the multiple instruction multiple data type.

Equation 5.10 gives a Taylor series expansion for dy/dx = f(x,y).

yj+l =yj+hyW + — y()̂ + ... + — y00 5.10
2! k!

where

d^y
y(k) = _

dxk

and k is the order of the Taylor series. When k=l the Taylor series reduces to the

Euler method.

*
Barton et al [57] evaluate Taylor series methods and compare them with predictor-

corrector and RK methods. They describe it as a highly stable, flexible, and fast

variable step method.

112

Halin [58] and Halin et al. [59] describe a number of recursive formulas to calculate

the terms of the Taylor series iteratively. Equation 5.11 gives a recursive formula for

the Taylor series.

^ hfr»
y(t) = yi^)(t0) ------ 5.11

u!

where h = t - tQ, D = number of terms in the Taylor series and is the Dth

derivative of yj at tQ. Some of the recursive formulas for addition, multiplication and

division are given in equation 5.12.

r = p + q
ru = p(v) + qC°) v>=0 5.12a

r = p q

r ^) = 2 s_q () p(s) q(v' s) v>=0 5.12b
s

r = p /q

= P0/% ^=0

- (^) - 2 ^ l () r̂ s) q('̂s)) / qQ t»>0 5.12c

The power series method was tried on a simple set of ODEs. Appendix A gives a

procedure to solve a set of equations. This approach was discontinued because of the

fine grain parallelism involved in solving the ordinary differential state equations

describing the Diesel engine.

5.5 Single Cylinder Implementation on
Transputers

Three different methods were investigated to implement a single cylinder model on

the BUTPC. These are:

o Modified Euler Predictor-Corrector Method (MEPCM).

113

o Block Implicit One-Step Method (BIOSM).

o Block Implicit Predictor-Corrector Method (BIPCM).

A simple cylinder model was taken for these experiments. Apart from having no

manifolds, a fixed amount of fuel injection was allowed and the speed of the crank

shaft was kept constant at 1500 rpm. The poppet valves were directly connected to the

atmosphere. A Watson heat release model was used to calculate heat release due to

combustion and the Hohenberg heat transfer model was used to calculate the heat loss

from the cylinder gases to the cylinder walls.

The following sections discuss the above three implementations of the single cylinder

model on the BUTPC and describe different approaches utilised to solve data transfer

and synchronisation problem.

5.5.1 Single Cylinder Implementation using the MEPCM

Since the MEPCM does not introduce any algorithmic parallelism, the system must

be separated across physical boundaries to make it a parallel problem. As a single

cylinder itself may be taken as a single control volume system, with mass flow across

the valves and energy flow across the walls while producing power at the input of the

crankshaft, the solution of system of a single cylinder may be implemented as a single

task. Figure 5.4 gives the solution algorithm for the MEPCM to solve a single

cylinder model.

All the cylinder processes are divided into six main sections depending upon the

physical processes and the valve states; namely: scavenge, induction, and exhaust,

when both inlet and exhaust valvesare open, when only inlet valve or only exhaust

valve is open, and compression, combustion, and power, when all the valves are

closed.

114

In order to speed up the calculation the following set of lookup tables are used.

o cylinder volume

o cylinder surface area

o cylinder rate of change of volume

o inlet valve effective flow area

o exhaust valve effective flow area

o heat transfer

o mass flow

The stability criteria used is

yc
1 - e < — < 1 + e 5.13

yP

where e is the maximum error allowed between two consecutive points. An auto step

reduction scheme was implemented which reduced the step size by one half if the

stability criteria did not meet after a predefined number of iterations.

Figure 5.5a shows the effect of step size on the over all computation time. It is clear

from the graph that as the step length increases the computation time reduces but after

a certain steplength the computation time starts increasing again. This is because, as

step size increases the system becomes unstable and the number of substeps per

integration step increases, which in turn, increases the amount of calculation,

specially in the scavenge or the combustion sections where the system may exhibit

stiffness due to valve overlapping or combustion processes. Hence the advantage of

having a higher stepsize is lost in order to keep the system stable. Figure 5.5b shows

the same effects for a similar single cylinder engine but using only valve effective

area tables. The average calculation time is considerably less due to a greater number

of computations involved in junction flow and cylinder volume calculations. Figure

115

5.5 also shows that if the tolerance on the allowable error is increased, the calculation

time per cycle is reduced.

Figure 5.6 shows one cycle of the state parameters pressure, temperature, fuel to air

ratio and mass within the cylinder of a single cylinder engine as simulated by the

MEPCM.

5.5.2 Single Cylinder Implementation using the BIOSM

Unlike the MEPCM, the BIOSM presents algorithmic parallelism. As it is a block

method, more than one point can be estimated at one time and the solution

progressed, theoretically, at a speed equal to the number of points in the block times

the speed of the serial equivalent. In practice, the speed is not a linear function of the

number of points in the block due to the overheads caused by inter processor

communications and synchronisations. Haysom [21] has mentioned a figure of two

for a four point block one-step method.

While implementing a single cylinder model using the BIOSM, the following points

were considered.

o A fixed step size approach was used and the step sizes used

were taken from the experience of the MEPCM. These are

given in table 5.1.

o A four point block was selected, which, along with giving an

accuracy of the order of six, provides a reasonable number of

processors to see the effects of interprocessor communication.,

o No stability checks were done on the results. Hence a fixed

stepsize BIOSM was implemented.

116

Figure 5.7 gives the solution algorithm for the implementation of the single cylinder

BIOSM. There are two synchronisation points in this algorithm. The first

synchronisation is just before the correction phase. This is to wait until all the

processors in the block have predicted their corresponding points as these are needed

to calculate the corrected values.

Table 5.1 Fixed step sizes for the BIOSM single cylinder
implementation

Section Stepsize (deg)

Scavenge 0.25

Induction 0.50 0 <= 80°

1.00 0 > 80°

Compression 5.00 ® <== %ij ‘20°

1.00 6 > %lj -2°°

Igdel 0.50

Combustion 0.25 e<=400o

1.00 e > 4oo°

Power 5.00

Exhaust 1.00 e < = 660°

0.50 0 > 6600

The second synchronisation is just before advancing the block calculations to the next

point. This wait is done in order to keep all the processors together and have same

base value throughout the block at all times. The synchronising routines are discussed

in section 5.6.

The BIOSM may be improved if a stability criteria is introduced as in the MEPCM,

and then the step reduction is allowed through the block. The calculations are

repeated if the stability does not reach within a certain number of tries [60].

117

Figure 5.8 shows pressure, temperature, fuel to air ratio and mass plots over one cycle

for the simulated single cylinder BIOSM. The calculation time for this simulation is

0.225 sec per cycle which compares with that of the MEPCM with an accuracy of

0.5% and a step size of 2°.

5.5.3 Single Cylinder Implementation using the BIPCM

This method has been studied by Birta et al [55] and Abou-Rabia [56]. They also

describe a number of error functions to test the stability of the system [56]. While

implementing a single cylinder Diesel engine model on the BUTPC using the

BIPCM, following points were considered,

o A four point block was taken,

o A variable step scheme was adopted.

o A stability criteria due to Abou-Rabia and Birta [60] was used

to decide the step reduction.

The integration stepsize adjustment method of Abou-Rabia and Birta is based on an

analysis of the eiTor characteristics for the previous block. The maximum error for all

the points in the block is taken as the error for the whole block. The error for each

point in the block is a normalised error derived from the difference of the predicted

and corrected values and a permissible error value. The value of the error is given by

equation 5.14.

lyi-yPi I
r = | ------------ | 5.14

I 8 I

The block maximum error, Rm, is used as a basis for a steplength adjustment scheme.

The size of the steplength adjustment is given by equation 5.15, and is dependent on

118

the point in the block from which

points in the block.

^new - CT*1old

a = R“Y

Y = (p + I)'1

p is the order of the solution value corresponding to R. The Rm determines the

progress of the solution. If it is less than unity, then the solution may proceed,

otherwise the step is repeated. The new step length is used in both the cases.

Figure 5.9 gives the solution algorithm for the implementation of the single cylinder

BIPCM Diesel engine on the BUTPC. The Bmatrix is the coefficient matrix for the

predictor formula, and has to be recalculated as it depends upon the maximum error in

the whole block [55].

Here again synchronisation between all the processors of the block is needed just

before the corrector is applied, so that only the latest predicted values are used.

Similarly synchronisation is required just before a block maximum error value is

determined so as to decide the system stability later on. The synchronising routines

are discussed in the next section.

Figure 5.10 shows the state variables pressure, temperature, fuel to air ratio, and mass

within the cylinder as simulated by the BIPCM. The calculation time for this

simulation is 4.185 seconds. Such a high value of calculation time is due to a check

on stability that reduces the block step size to a smaller value, especially when valves

are about to open or close and also during early stages of combustion.

the maximum error was derived and the number of

5.15a

5.15b

5.15c

119

5.6 Synchronisation Mechanism for The Block Methods

Synchronisation in the BIOSM and in the BIPCM requires all the processors in the

block to reach a fixed point before any of them commence further calculations, such

as starting the corrector phase. Two different mechanisms were implemented to

achieve this; one using shared memory flags [21], and the other using backplane

routines BPSignal and BPWait [33]. Since both of the block algorithms were

implemented for four points, the routines were written to synchronise four processors.

5.6.1 Four Point Synchronisation Using Flags

In order to synchronise four processors, four flags are needed to represent each

processor in the block. Similarly each processor keeps a separate flag in its local

memory for each of the block processors. Hence there are sixteen flags altogether.

On every synchronisation, each processor sets its respective flag on all the other

processors, and then waits for all its local flags to be set by others. After all the flags

are found set, calculation is proceeded by clearing all the local flags for the next time

use.

On the T800, these flags are implemented as 4 bytes of a long word. Each byte

represents one of the processors in the block, which is set by the corresponding

processor. The local processor waits by checking the whole long word. It is cleared to

zero and the synchronisation process is finished.

If only one set of flags is used for synchronisation, then it is possible for a processor

to continue and reach the next synchronisation point and set its remote flags for a

second time prior to another processor clearing its local flag for the first

synchronisation. A processor 'deadlock* will occur as the second setting of the flag

120

will be lost when the second processor clears its local flags for the first

synchronisation point. This loss of signal can be avoided by having two sets of flags,

one for the first synchronisation, for example before the correction phase, and the

other for the second synchronisation after the correction phase. In this way double

buffering is provided between clearing and setting of the flags.

5.6.2 Four Point Synchronisation Using BPSignal and
BPWait

This method uses the back plane routines implemented on the BUTPC [33]. Each

processor in the block has a set of backplane semaphores corresponding to the remote

processors. For a four point block, each processor has three backplane semaphores, on

which it is going to wait and it also has a pointer to the backplane semaphores on the

other three processors which belong to it.

All the semaphores are initialised with zero count so that any processor which does a

BPWait waits utill a BPSignal is executed by a remote processor. Six processes are

forked on each processor, three for BPSignalling the remote processors and three for

BPWaiting at the local BPSemaphores. The synchronising routine triggers first the

signalling processes and then the waiting processes. It exits only when all the local

BPSemaphores have been signalled.

As the BPSignal and BPWait do not implement actual signal and wait procedures, but

instead simulate these processes in such a way that the BPSemaphore may have only

one of the two values, 0 or 1, the actual signalling and waiting mechanism becomes

like setting and clearing flags. Hence a protective mechanism is needed, just like the

one described for the flag mode synchronisation, in order to avoid any 'deadlock' due

to a loss of any BPSignal. Thus two sets of BPSemaphores are maintained, each for

alternative synchronisation.

121

5.7 Summary

In this chapter a single cylinder Diesel engine is simulated on the BUTPC using three

different numerical algorithms. It is found that a compromise exists between step size,

simulation speed and accuracy of the solution. The BIOSM, with no step reduction

and stability test, provides a high speed up ratio compared with the MEPCM, but

using a stability testing mechanism, the gain in speed is lost due to a reduction in

actual integration step size, as in the case of the BIPCM. In the next chapter a full

implementation of a six cylinder turbocharged Diesel engine using MEPCM is

described.

122

1
2

3

i+1

i+1

Figure 5.1 Graphical representation of Euler method

1
2

4

y

i+1

Figure 5.2 Graphical representation of Modified Euler Predictor Corrector method

Predicted
Corrected
Actual

Figure 5.3 Graphical representation of Block Implicit One Step method

main()
t

initialise();
for (cycle=0; cycle<max_cycles; cycle++)
{

for (ca=CaCycleSiart;ca<CaCycleEnd;ca=ca+CaCycleStep);
cal = ca;
ca2 = ca + CaCycleStep;
castep = CaCycleStep;
castep5 = castep/2;
castepend = ca2;
while(cal < castepend)
t

predict();
calculate cylinder volume();
for (loop=0;loop<max_loops;loop++)
{

calculate gas properties();
calculate junction flows();
correct();
find stability()
if(stable) break loop;

}
if (stable)
{

cal = ca2;
ca2 = cal + castep;
advance point();

)
else (unstable)
{

castep =castep5;
castep5 = castep/2;
ca2 = ca l + castep;

}
i
accumulate_cycle_results();

}
output_results();

Figure 5.4 The single cylinder MEPCM algorithm

126

Si
m

ul
at

io
n

tim
e

pe
r

cy
cl

e
(s

ec
)

Sim ula t ion Time f o r a S in g le C y l in d e r
D iesel Engine Using The MEPCM

0.6

0.5

3 62 4 50.5 1
Step s iz e (deg)

— stab 0.001 — st ab 0.002 s tab 0.003
stab 0.004 s tab 0.005

Figure 5.5a Simulation time as a function o f stepsize for different stability values

(The MEPCM with tables)

to
00

o
o

\GJ
£

0
+>
ITS

£•M
W

Simul a t i o n T ime for a Single C y l i n d e r
Diesel Engine Using The M E P C M

5

0

5

0

5

. 0
63 4 521

s t a b 0 . 0 0 1
s t a b 0 . 0 0 4

S t e p s i z e (d e g)
-+— s t a b 0 . 0 0 2 -*
*- s t a b 0 . 00 5

s t a b 0 . 0 0 3

Figure 5.5b Simulation time as a function o f stepsize for different stability values

(The MEPCM with no tables)

Pr
es

su
re

(b

ar
)

The MEPCM
P re s s u re P l o t

120 t

100

80

60

20

0 90 180 270 360 450 540 630 720
Crank angle (deg)

Figure 5.6a Pressure plot for the MEPCM

Te
m

pe
ra

tu
re

(C

)

The MEPCM
Temperature P lo t

20OG T

18O0

1600

140O

1200

1000

800

600

400

200

180 2700 90 360 450 540 630 720
Crank angle (deg)

Figure 5.6b Temperature plot for the M EPCM

Fu
el

to

ai
r

ra
ti

o

The MEPCM
Fuel To Air R a t io P l o t

O . I O t

0 . 0 9

0 .0 8

0 .0 7

0 .0 6

0 .0 4

0 .0 3

0.02

0.01

0.00
270 36090 180 5400 630 720

Crank angle (deg)

Figure 5.6c Fuel to air ratio plot for the MEPCM

Ma
ss

(k
g)

The MEPCM
Mass P l o t

5E-03t

4E-03

3E-03

2E-03

IE-03

0 90 180 270 360 630 720
Crank angle (deg)

Figure 5.6d Mass plot for the M EPCM

biosm
t

get step size for the current cylinder section();
while (base angle of block <= section stop angle)
{

get yp0;
calculate t (&ca) for the current processor();
predict();
find predicted slopes();
synchroniseO;
correct();
find corrected slopes();
synchroniseO;
advance base t (&ca) for the current processor();
handle any outstanding packets();

}
)

Figure 5.7 Single cylinder BIOSM algorithm

133

Pr
es

su
re

(b

ar
)

The BIOSM
P re s s u re P l o t

100

80

60

40

20

180 270 360 450 540 630 720900
Crank angle (deg)

Figure 5.8a Pressure plot for the BIOSM

Te
m

pe
ra

tu
re

(C

)

The BIOSM
Temperature P l o t

2000

1800

1600

1400

1200

1000

800

600

400 -

200

i ----------------------1----------------------1--------------------- 1--------------------- 1----------------------1----------------------1---------------------- 1----------------------1

0 90 180 270 360 450 540 630 720
Crank angle (deg)

Figure 5.8b Temperature plot for the BIOSM

Fu
el

to

ai
r

ra
ti

o

The BIOSM
Fuel To Air R a t io P l o t

0.10

0 .0 9

0 .0 8

0 .0 7

0 .0 6

0 .0 5

0 .0 3

0.02

0.01

0 .00 ----------------- ,--------------------- i----------------- 1----------------- t----------------- 1------------------!----------------- 1
0 90 180 270 360 450 540 630 720

Crank angle (deg)

Figure 5.8c Fuel to air ratio plot for the BIOSM

Ma
ss

(k

g)

The BIOSM
Mass P lo t

4E-03

3E-03

2E-03

IE-03

0E+00
0 90 180 270 360 450 630 720

Crank angle (deg)

Figure 5.8d Mass plot for the BIOSM

bipcm
{

get step size for the current cylinder section();
while (base angle o f block <= section stop angle)
{

get current slopesQ;
get yo0;
while (unstable)
{

calculate t (&ca) for the current processor();
predict();
find predicted slopes();
synchroniseO;
correct();
find accuracy and Rmax();
synchroniseO;
set variables for stability test();
calculate new step length();
calculate new Bmatrix();

)
find corrected slopes();
advance base t (&ca) for the current processor();
handle any outstanding packets();

}
}

Figure 5.9 Single cylinder BIPCM algorithm

138

Pr
es

su
re

(b

ar
)

The BIPCM
Pressure p lo t

120 t

100

80

60

40

20

0 90 180 270 360 450 540 630 720
Crank angle (deg)

Figure 5.10a Pressure plot for the BIPCM

2000 t

1800

1600

1400

1200

1000

800

600 ̂

400

200

0

The BIPCM
Temperature P l o t

A

270 360 450
Crank ang le (deg)

540

Figure 5.10b Temperature plot for the BIPCM

The BIPCM
Fuel To Air R a t io P l o t

O.IOt

0 . 0 9

0 .0 8

0 .0 7

0 .0 6 -

0 .0 5

0 .0 4 -

0 .0 3 ■

0.02

0.01

0.00
270 36090 180 450 6300 720

Crank an g le (deg)

Figure 5.10c Fuel to air ratio plot for the BIPCM

M
as

s
(k

g
)

The BIPCM
Mass P l o t

4 E -0 3 -

3 E -0 3

2 E -0 3

IE -0 3

450 540 630 720180 270 360
C ran k a n g l e (d e g)

Figure 5.1 Od Mass plot for the BIPCM

Chapter 6

A Multi Cylinder Diesel Engine
Simulation

6.1 Introduction

In this chapter the simulation of a six cylinder turbocharged Diesel engine on the

BUTPC is described. The integration algorithm used is the MEPCM and a

communication scheme called distributive iteration step communication (DISC) due

to Haysom [21] is employed for data synchronisation within the simulator. Different

tasks that constitute the parallel Diesel engine simulator (PDESIM) are also

described. At the end of the chapter, the performance of the simulation is discussed.

6.2 The DISC

The DISC algorithm under the MEPCM views a Diesel engine as a control system

consisting of cylinder and manifold control volumes which are interconnected via

valves and which transfer power via shafts. This provides an inherent 'geometrical'

parallelism in the system, divided into cylinders, manifolds and shafts. The PDESIM

consists of six cylinder tasks, three manifold tasks, one dynamics task, one actuator

task and one stability task.

The cylinder task is responsible for the calculation of cylinder processes, such as

compression, combustion, etc. It also calculates the flows through valves connected to

it. The manifold task calculates the states of the gases inside the manifold and is also

responsible for the flow calculations of any compressor or turbine connected to it.

This division of junction calculations between cylinders and manifolds provides

overlapped calculation and hence a parallel path. There are some dynamic processes

inside a cylinder, such as fuel injection timing and the amount of mass of fuel injected

144

into the cylinder, which are separately calculated by a task called the actuator task.

The dynamics task is responsible for the calculation of shaft speeds and also provides

an estimate of the cumulative torque produced by the engine shafts. The last task, the

stability task, does not contribute to any system calculations but it tracks the system

stability and keeps all the other tasks, which require system stability for their

progress, informed about the latest stability situation in the system.

The main features of the DISC implementation are:

o It has no centralised task for data communication between

different tasks. All communication is distributed throughout the

system and is point to point. For example, if a cylinder task

wants some data from a manifold, it puts the request directly to

that manifold and reads from its memory when the data is

ready.

o Data communication occurs only between those tasks which

are physically connected at that point, for example, when a

junction valve is open and gas is flowing from the inlet

manifold to a cylinder. If the valve is closed, then both the

cylinder and the manifold do not require any data from each

other, so no communication occurs during a valve close period.

o Lookup tables are used for volume, valve flow and heat

transfer calculations. Table 6.1 gives a list of the look up tables

used in the simulator.

o The MEPCM is iteratively applied until stability is reached.

Step reduction is allowed only if the system does not stabilise

145

within a given number of iterations. In the case of the PDESIM,

this iteration count is fixed at three. Communication between

the control volumes occurs at each iteration, for each predictor

and corrector, until all the control volumes which are connected

together are stable.

Table 6.1 List of Lookup Tables

Cylinder volume

Cylinder surface area

Cylinder rate of change of volume

Cylinder inlet valve effective flow area

Cylinder exhaust valve effective flow area

(C1HO * cylinder pressure)®-**

(Average piston speed * C2HO)®-**

(Cylinder volume)®* ̂

(Cylinder temperature)®-^

Figure 6.1 shows a connection diagram of the PDESIM. The following section

describes how PDESIM is implemented on the BUTPC, which is a transputer based

parallel computer running the operating system Helios.

6.3 The PDESIM on the BUTPC

The PDESIM is implemented on the BUTPC in a master-slave mode. A master or

supervisor task called 'engine' is responsible for the initial creation of all the cylinder,

manifold, actuator, dynamics and stability tasks.

146

The engine task reads a data file which provides initial information about the tasks it

is going to create. Then it creates all the remote tasks and writes the initialisation data

required by each task to setup its local variables. Each remote task then sends back

information about itself which is copied to all other tasks in the form of a table. Then

information about shared variables is exchanged and the simulation is started once all

the remote tasks are ready. Figure 6.2 shows a distribution of shared data across

different tasks.

When initialisation is complete, the master task enters an interactive routine which

helps the user to extract useful information from the PDESIM.

6.3.1 Task Creation and Initialisation

In the PDESIM, each remote task is loaded onto a separate processor. The processor

name string is provided in a data file called 'proc-alloc'; an example processor

allocation format is given appendix B. The file starts with a comment and has three

columns of information. The first column is ignored as it is there only to help identify

a task by a name. The next column gives the actual name of the task and the last

column provides the processor name string on which the task has to be loaded. The

engine task is loaded on any processor other than those given in this list.

A special purpose 'createtask' routine is used to create, load and start a task onto a

remote processor. The remote task, once started, is sent initial data by copying the

data across via Helios ports, which are created between the remote task and the

engine task especially for this purpose. Once initialised, all data communication is

done using shared memory primitives, Qpkt and Taskwait, described in chapter 4.

147

6.3.1.1 'createtask1, 'reply' and 'gettxport'

The 'createtask' routine first locates the processor manager of the processor at which

the task is to be loaded. Then it locates the task itself and starts it on the remote

processor. After starting the task, information about the input and output environment

is sent to the task via Helios streams.

Once a remote task is started, it first prepares the processor to get access to the

backplane by clearing the 'eventretry' register to zero, so that a maximum of two

hundred and fifty six tries may be possible. Then it allocates a local Helios port and

sends it back to the parent task using the routine 'reply'. The parent task receives the

information about the remote port using the routine 'gettxport' and stores it in a table

so that data could be sent to the remote task via this port later on. Figure 6.3 gives

flow diagrams for these routines.

6.3.1.2 'getinfo' and 'putinfo'

These two routines are used to exchange data between two tasks using Helios ports.

The 'getinfo' routine waits on a port corresponding to the remote task and reads data

directly into the data area, a pointer to which is provided’ as an argument to the

routine. The 'putinfo' routine copies data directly to the remote task via the transmitter

port. The flow diagrams for these routines are given in figure 6.4.

6.3.2 Data file Format

All previous attempts to simulate a parallel Diesel engine by Jones [2d] and Haysom

[21] were oriented towards a six cylinder diesel engine simulation with embedded

data for a Leyland TL11 turbocharged Diesel engine. In the present research, a

separate data file format was adopted in order to facilitate data entry and also to avoid

148

recompilation of part or all of the code when a minor change in the engine

specification was needed. For this purpose, a data format similar to that of SPICE [15]

was adopted in order to have a similar feel as that of SPICE. Appendix C describes

how a data file is prepared for the PDESIM, and appendix D provides an example

data file for the Leyland TL11 turbocharged six cylinder Diesel engine. Table 6.2

gives those parameters which may be modified.

Another feature of the data file is the ease in the selection of different routines for

heat release and heat transfer. As described in chapter 2, heat release due to

combustion in the cylinder can be calculated in different ways. In the case of

PDESIM either of the two methods, the Watson heat release method or the Wiebe

heat release method, may be used just by specifying its name at the start of heat

release data. Similarly, heat transfer between the cylinder gases and the cylinder walls

may be estimated either by the Hohenberg heat transfer model or by the Woschni heat

transfer model.

6.3.3 Data Communication and Synchronisation

A two way communication mechanism is used to transfer data between tasks. A

communication packet is allocated to each of the two way inter-task transfers, which

controls the reading and writing of data between the tasks. As soon as data is ready, a

packet is sent to a task which may need this data now or later in the process. Return of

that packet from the remote task means that the data has been read by that remote task

and it may now be overwritten by the sender.

If a task needs some data from a remote task, it sends a packet to that task and waits

for the packet to be returned. It then reads the required data from the memory of the

remote task directly.

149

Table 6.2 Engine parameters that may be modified

Cylinder bore

Cylinder stroke

Cylinder compression ratio

Cylinder connecting rod length

Cylinder offset angle

Cylinder friction mean effective pressure

Manifold volume

Manifold surface area

Manifold heat transfer coefficient

Inlet valve data

Exhaust valve data

Load inertia

Load torque

Shaft speed

Initial

pressure, temperature, and fuel to air
ratio

of

cylinders, manifolds, and atmosphere

Integration step size

Tolerance for stability test

Section angles corresponding to

valve open, valve close, and

static fuel injection timing

Combustion duration

150

In order to make all communication asynchronous, so that overlapped communication

and calculation is possible, a flag is maintained for each packet on both the

communicating tasks. This flag is set by a packet handler on the arrival of the

corresponding packet. The waiting task is only forced to wait if the communication

flag is not set.

The cylinder control volume task communicates with all other tasks. It needs

information about pressure, temperature, fuel to air ratio and general gas properties of

both the inlet and the exhaust manifolds it is connected to. It sends valve flow

parameters to the connected inlet and exhaust manifolds. From the actuator task, it

reads static fuel injection timing and the amount of fuel injected, and from the

dynamics it obtains the speed of the crank shaft. The dynamics task, on the other

hand, needs torque produced by the cylinders in order to calculate the engine speed,

and turbine torque from the exhaust manifold and compressor torque from the inlet

manifold to calculate turbo speed. The actuator task needs only engine speed from the

dynamics task. The stability task reads the local stabilities of cylinders and manifolds

and returns them system stability.

There are two different step sizes of the system; one is an overall calculation step size

which is kept constant and is used to accumulate cycle data at constant intervals, and

the other is an intermediate iteration step size which happens whenever system

stability fails and a decision is made to reduce the step. Those control volumes which

are connected to each other keep on exchanging data during the reduced step. Thus

communication between the cylinder and the manifold control volume tasks occurs

for every iteration step of the MEPCM, so that only the latest values of the state

variables may be used at each point.

The communication between the cylinder and the dynamics tasks occurs at each

calculation step. This is because the shaft dynamics have a high integration time

151

constant, and therefore, are solved by a simple integration formula, given in equation

6 .1.

yn+ l = y n + h fn 61

The actuator equations have also a high time constant and are solved independently.

The synchronisation of the actuator task is provided at each calculation step when it

reads engine speed from the dynamics task.

The stability task works in a different way. As mentioned earlier, it does not take part

in any calculations of the system equations. It communicates only with those cylinder

and manifold control volumes which are connected to one another via an open valve.

If both the inlet and the exhaust valves of a cylinder are closed, then the cylinder is

not connected to any of the manifolds. Therefore it does not communicate with any

manifold or with the stability task. Transition between a closed section and an open

section occurs when a valve starts to open or close and is described in the next

section. Figures 6.5a and 6.5b show flow diagrams of a cylinder control volume when

it is in the power stroke and the exhaust stroke respectively. Similarly figure 6.5c

shows the flow diagram of an exhaust manifold.

6.3.4 Open and Closed Loop Connections

Communication between different tasks of the PDESIM is divided into two main

sections depending upon the opening and closing of valves. These are the open loop

section when at least one of the valves is open and the closed loop section when both

valves are closed.

The point at which cylinder valves open or close is determined by the engine

crankshaft angle. The manifold control volume tasks have no absolute knowledge of

152

the crankshaft angle, therefore, the detection of opening and closing of valves is done

by the cylinder control volume tasks.

A valve is presumed to open at the start of the integration step containing the valve

opening angle and is presumed to close at the end of the integration step containing

the valve closure angle. This is to allow to overlap between the section of the cylinder

with the higher number of terms in the state equations, such as scavenge, onto the

section of the cylinder with the lesser number of terms in the state equations, such as

exhaust or induction.

A cylinder control volume task uses three different packet types to inform a manifold

about opening or closing a valve and valve data transfer. These packets are:

o A communication packet

o A valve open packet

o A valve close packet

Each manifold keeps a table for the storage of the cylinder communication packets.

When a cylinder has to open a communication channel, it sends a valve open packet a

step in advance to the manifold which stores this packet in its communication packet

table and increments a counter to indicate that the number of currently open channels

has been increased. Communication is established at the start of the next iteration.

When a channel has to be closed, a valve close packet sent by a cylinder to a manifold

is returned by the manifold after updating a local counter that indicates the number of

channels currently closed. So at the start of the next step, no packet is sent to that

cylinder whose valve was closed, and the communication channel is closed.

The opening and closing of the communication channels between the cylinder and the

manifold control volume tasks is synchronised by sending the valve open or close

153

packet to the manifold before communicating with the stability task. In this way the

manifold task is ensured to receive all the information before it decides to move

forward, to loop around or to reduce step and iterate, depending upon the system

stability.

6.4 Speed Performance of the PDESIM

Three different variables are used to observe the speed performance of the PDESIM.

These parameters are given in table 6.3.

Table 6.3:

Engine speed 1200 rpm - 2000 rpm

Integration step length 0.5°, 1° - 5°

Integration stability criterion 0.1%-0.5%

Figure 6.6a shows the simulation speed as a function of the integration step length for

different stability criteria. The engine speed is 2000 rpm. It gives a peak simulation

speed of 140 rpm for a stability criterion of 0.5% and at 2° step length. As the

integration step length increases, the simulation speed decreases after reaching a peak

value. This is due to a need to reduce intermediate stepsize in the region of greater

instability.

In figure 6.6b, a graph of simulation speed as a function of engine speed is plotted for

different integration step lengths. The stability criterion is 0.5%. It shows that an

optimum step length for an engine speed below 1600 rpm is 1° and that for an engine

speed at and above 1600 rpm is 2°.

154

6.5 Summary

A six cylinder turbocharged Diesel engine is simulated on a transputer based parallel

computer. The simulation utilizes the distributive memory features of the BUTPC. All

data transfer and synchronisation is decentralised and is asynchronous in nature. Data

entry to the simulator is made flexible by the use of a data file, which allows the user

to see the effects of changes in different parameters on the engine performance

without changing actual code. A peak performance simulation speed of 140 rpm is

achieved which is 14.3 times 'real time'.

In the next chapter, simulation results from the PDESIM and the FJH model are

compared.

155

Actuator

Inlet
Manifold
+ Compressor

C6C4 C5C3

Stability

Exhaust
Manifold 2
+ Turbine 2

Exhaust
Manifold 1
+ Turbine 1

Dynamics

Figure 6.1 The six cylinder PDESIM communication scheme

156

157

Cylinder Manifold Actuator Dynamics Stability

Cylinder

Success

Indicated

Torque

Junction
Flow
Parameters

Manifold
Success

Compressor/

Turbine
Torque

Manifold
State
Parameters

Fuel
Injection
Angle

Fuel
Mass
Injected

Engine
Speed

Turbine
Speed

System
Stability

Figure 6.2 Distribution of shared data across the system

Object createtask()

{

construct the name of the processor manager();

locate the processor manager();

locate the program to be loadedO;

start the program up();

construct suitable environment for the new program();

send environment to the new program();

return program object();

)

Figure 6.3a: 'createtask'

158

replyO

{

send dummy message to the parent task();

}

Figure 6.3b: 'reply'

Port gettxport()

{

get dummy message from the remote task();

return reply port();

}

Figure 6.3c: 'gettxport'

159

getinfoO

{

get message data from remote task at the given address();

}

Figure 6.4a: ’getinfo'

putinfoO

{

send data from the given address to the remote task();

}

Figure 6.4b: 'putinfo'

160

S ig n a l

C y l in d e r S ta b il i ty
S t il l in

P o w e r

S tro k e ?

) S ig n a l

e x h a u s t v a lv e o p e n

g o to e x h a u s t

o n n e x t s te p

W a it

fo r

D y n a m

P re d ic t

c s

C o r r e c t
Is L o c a l

S u c c e s s
O K ? -

C a lcu la te
T o rq u e

W a it

fo r

S y s te m

S ta b i l i ty
C a lcu la te

T w a ll

S ig n a l

D y n a m ic s

Figure 6.5a Cylinder flow diagram when in power stroke

161

Signa1
inie: valve or*?".

:o sc av e n g e
next s te p

S g n a l E ic .ausi M anitoic

W a t tor F .x iaust M a n io c

Signal E xhaust M anitoic

W a't ‘O' D ynam ics

W a ; ter S ysiem Stability
Is Sysiem
Stability OK ?

Is lo o o co u n t < 3

C alcu late
Torque

Wait
E xhaust
M anitoic

iR ed u ce
S tep

C alculate
Twall

C alcu late
Junction
flows

Signal
Exhaust
Manitoic

Signal
D ynam ics

F ig u re 6 .5 b C y l in d e r f lo w d ia g ra m w h e n in ex h a u s t s t ro k e

162

S g n aJ C o n n e c ted Cylinder

W ail tor C o n n ec ted C ylinders

W ait lor Actuator

Signal C o n n e c ted C ylinders

Wail lor D ynam ics

Wail lor C o n n ec ted Cylinders

C o n ec i

W ail lor S ysiem Stability
Is Sysiem
Stability OK ?

Is lo o p co u n t < 3

[R educe
'S te p

Signal
C on n ec ted
Cylinders

F ig u re 6 .5c E x h a u s t m a n i fo ld f lo w d ia g ra m

163

Si
m

ul
at

io
n

sp
ee

d
(r

pm
)

P a r a l l e l Diesel Engine S im ula t ion
Engine Speed 2000 rpm

140

120

100

80

60

40

20

0 + -
0 .5 2 3 51 4

Step s i z e Cdeg)
s ta b 0 . 1’/ . -+— s ta b 0 .52

Figure 6.6a The effect of the integration steplength on the simulation speed for

stability criteria of 0.1% and 0.5%

P a r a l l e l Diesel Engine S imula t ion
S t a b i l i t y C r i t e r i o n 0.5x

140 t

120

E

uw
100

80

o 60-

=s
E 40
co

20

1200 1400 1600 1800 2000
Engine speed (rpm)

— 0 .5 1.0 2 .0
3 .0 - * - 4 . 0 — 5. 0

Figure 6.6b The effect of the simulated engine speed on the simulation speed for

different initial integration steplengths

Chapter 7

Engine Simulation Results and Their
Validation

7.1 Introduction

This chapter describes different engine output parameters and their calculation over a

cycle in the PDESIM. A six cylinder Diesel engine is simulated and the results are

compared with those obtained from a similar Diesel engine model due to Haysom

[21]. At the end of the chapter, a brief comparison is given between the output results

of an experimental Leyland TL11 turbocharged Diesel engine and the simulated

results obtained from the PDESIM.

7.2 The Engine Cycle Parameters

An internal combustion engine is characterised by a number of parameters. These

parameters describe the overall performance of the engine. In general, it is of interest

to know about the power generated by a particular engine and its efficiency. To get

this information, a number of engine variables are collected. These variables are of

two main types; actual engine variables which define the instantaneous engine state

such as pressure, and temperature, together with overall engine parameters which

define the performance of the engine such as power and fuel consumption. The

overall performance parameters are derived from the engine instantaneous variables.

The following sections describe these parameters.

167

7.2.1 The Engine Cycle Variables

The engine cycle variables are spread across the engine system. Some of these belong

to the cylinders and some belong to the manifolds and shafts. These variables are of

three different types, average, maximum and accumulative over the engine cycle.

In the PDESIM, each cylinder control volume task collects the following cycle

information.

o Open cycle work in joules

This is the amount of indicated work done by a piston during the gas

exchange strokes.

v ^ ^ i n d / \ dV Cyi

w oc = ^ (pcyl J ---71
BDCexh d0

v

o Closed cycle work in joules

This is the amount of indicated work done by a piston during compression and

expansion strokes.

v ^ ^ ex h / \ d^cyl
w cc = L { pc !) --- A0 7.2

BDCjjjd de

o Mass flowing through inlet valve in kg

This is the total mass of gas entering the cylinder through the inlet valve

during a cycle.

v^4n; ^ iv
m lv = 2 a A0 7.3

0O d0

168

o Mass flowing through exhaust valve in kg

This is the total mass of gas that passed into the exhaust through the exhaust

valve during a cycle.

^ e v
mPV = 2a A0 7.4

0O d0

o Enthalpy through inlet valve in joules

This is the total amount of enthalpy associated with the mass that came into

the cylinder.

S ®4je ^ i v
hjv A0 7.5

0O d0

o Enthalpy through exhaust valve in joules

It is the total amount of enthalpy associated with the mass that went out to the

exhaust.

E ®4tu ^ e v
hev A0 7.6

0O d0

o Maximum cylinder pressure (Pmax) in bar

The highest pressure reached during the entire cycle.

o Wall heat transfer in joules

The amount of heat transferred to the wall of the cylinder.

Ŷ 4rc dqwall
Qwall = ^

0O d0

169

o Volumetric efficiency

This is defined as the ratio between the mass of air trapped inside the cylinder

to the ideal mass trapped inside the cylinder at mean inlet manifold conditions

based on the swept volume of the cylinder.

ma,trapped
^vol = --------------------- 7-8

Pirn ^cyl,swept

where

mcyl

1 + îvc
ma,trapped ~

and

Pim “ 7-10
îm,av ^im,av

o Friction mean effective pressure (FMEP) in bar

The work to overcome friction per cycle divided by the swept volume.

o Average engine speed (coe) in revolutions per minute

o Fuel mass injected (mf) in kg

The following cycle variables are collected by each manifold control volume task.

o Average manifold pressure (P) in bar

o Average manifold temperature (T) in Kelvin

o Average turbocharger speed (cotc) in revolutions per minute

170

o Mass flow through the compressor or turbine per cycle in kg

Mn dnitc

tQ dt

V1= 2mt ------- At 7.11

o Mass flow to or from the cylinders per cycle in kg

^mcyl
mCyj = Z d At 7.12

tQ dt

o Enthalpy flow out of, or into, the manifold through the turbocharger

compressor or turbine in joules.

V 14jc ^ t c
Htc = I d htc ------- At 7.13

tQ dt

o Enthalpy flow to or from the manifold through poppet valves in joules

ityjr dmCyi
^ = I d h„ m ------- At 7.14- 2 ..

tQ dt

where hc in is the enthalpy associated with the mass flows across the junctions

to or from the cylinders.

o Manifold wall heat transfer in joules

\^47c ^ w a ll
Qwall = ^ 7.15

tQ dt

171

o Average power generated by the turbine or required to run the compressor in

Watts

y 14tu
7.16

o Average torque required to move the turbocharger shaft (x^) in Nm

o Average turbocharger efficiency (rjtc)

7.2.2 The Derived Engine Parameters

The engine cycle parameters described above, are used to derive the following engine

performance characteristics.

o Indicated mean effective pressure (IMEP) in bar

This is the uniform pressure which, acting through the power stroke only,

would do the same amount of indicated work during one cycle as is done by

the varying pressure inside the cylinder [61].

IMEP = 7.17

o Pumping mean effective pressure (PMEP) in bar

PMEP = 7.18
cyl,swept

172

Brake mean effective pressure (BMEP) in bar

This is the uniform pressure on the cylinder piston which will produce actual

output at the crankshaft after overcoming the friction.

BMEP = IMEP - FMEP 7.19

Mechanical efficiency

This is a measure of total mechanical losses and is calculated as

T|mech - BMEP / IMEP 7.20

Indicated power (IP) in Watts

This is the power developed inside the engine cylinders.

(Wcc + Wqc) we
IP = --------------------- 7.21

4ix

Brake power (BP) in Watts

This is the power produces by the engine after overcoming fictional losses.

BP = IP Tjmeeh 7.22

Indicated specific fuel consumption (ISFC) in kg/kWHr

It is the fuel flow rate necessary to produce unit indicated power from a given

engine.

o Brake specific fuel consumption (BSFC) in kg/kWHr

BSFC = ISFC / T|mech 7.24

o Indicated efficiency

(Wcc + Woc)
Tlind “ 1 .25

mf calval

where the calorific value 'calval' is in J/kg.

o Brake thermal efficiency

^bk = înd ̂ mech

o Total work output by engine in joules

Wout = (Wcc + Woc) Tlmech 7,27

o Work done against friction in joules

Wfhc = (w cc + w oc)-w out 7-28

Under steady state operation, that is constant speed and load, the mass and the energy

balance for each control volume can be used to indicate the correctness of the sub

models and their implementation and to the numerical integrator. For any control

volume, the mass balance MB is given by

174

total mass entering per cycle
MB = -------------------------------- 7.29

total mass leaving per cycle

and the energy balance EB is given by

total energy entering per cycle
EB = -------------------------------- 7.30

total energy leaving per cycle

For a cylinder

total mass entering

total mass leaving

total energy entering

total energy leaving

For a manifold

total mass entering

total mass leaving

total energy entering

total energy leaving

miv + mf

mev
m f calval

^ e x " ^ in + Qwall+ ^ o u t+ ^fric

7.31

mtc

mcyl
Htc (inlet), HCyj (exhaust)

Htc (exhaust), HCyj (inlet)

7.32

7.3 Collection and Presentation of Engine Cycle
Parameters

Data from the Diesel engine simulation is collected at two different stages. Firstly,

results that are recorded at each integration step, and secondly, results that are

calculated and recorded on completion of a cycle. Table 7.1 gives those parameters

which are recorded at each integration step and table 7.2 gives those parameters

which are recorded for every cycle.

175

To collect and manipulate engine variables, an interactive task is setup which acts as a

link between the user and the PDESIM. When information at each integration step is

required, the interactive task sends a packet to the corresponding task. Each

simulation task has a logging area for recording step information. On receiving a log

packet, the simulation task starts logging information in that area. It returns the log

packet to the interactive task when the logging is finished. The user interface task can

either display these logged variables immediately or can store the results.

Table 7.1 Variables recorded at each step

Cylinder Manifold

angle relative angle

pressure pressure

temperature temperature

mass fuel to air ratio

volume mass

flow through inlet valve flow through turbocharger

flow through exhaust valve flow through poppet valves

heat transferred to wall turbocharger torque

heat released into cylinder turbine speed

engine torque heat transferred to wall

The cycle results are collected in a different way. Each cylinder and manifold task

keeps a circular buffer for recording cycle data. It updates this buffer every cycle, and

advances a pointer to the currently valid cycle data area. When a request for cycle

data logging is received, the pointer to the latest valid cycle data area is returned. The

user interface task then reads in data directly from this data location and does all the

176

required post-processing to calculate engine performance parameters. The results may

then be displayed on the monitor or they may be stored so that a hard copy may be

obtained.

Figure 7.1 gives the structure of the Diesel engine simulation user interface menus.

The 'record time history’ command records data collected every cycle and the 'log

cycle data' command records data collected at each step. The 'modify parameters'

command allows the user to change some of the engine parameters. If a value of -1 is

sent for the rack position, the injection angle, or the amount of fuel injected, then

dynamically calculated values of these parameters are used. Otherwise the given

value is used in the simulation.

Table 7.2 Variables recorded over a cycle

Cylinder Manifold

open cycle work mass flow through valves

closed cycle work mass flow through turbocharger

mass flow through inlet valve energy entering manifold

mass flow through exhaust valve energy leaving manifold

energy flow through inlet valve mean pressure

energy flow through exhaust valve mean temperature

maximum pressure mean turbocharger speed

heat transferred to wall heat transferred to wall

volumetric efficiency mean turbocharger power

FMEP mean turbocharger torque

engine speed mean turbocharger efficiency

mass of fuel injected

swept volume

177

The 'display CV data1 command displays either the cylinder or the manifold data on

the screen. The ’get map data' automatically records engine performance data over a

range of engine speed and fuelling.

7.4 Validation of Results

In order to validate the simulation results, a Leyland TL11 Diesel engine is simulated

and the performance characteristics are compared with those obtained from a similar

engine using FJH Model [21].

7.4.1 The Leyland T ill Diesel Engine

The Leyland TL11 Diesel engine is a high speed truck engine. It is being used as an

experimental engine in the School of Mechanical Engineering, University of Bath. It

has six cylinders 'in-line'. It is a four stroke, 11.1 litre turbocharged Diesel engine

capable of producing 190 KW of power at a maximum speed of 2100 rpm.

The TL11 has a direct fuel injection system. The fuel pump is driven at half engine

speed from the engine crankshaft and is controlled in two ways; by the rack control

and by the timing control. The rack control defines the amount of fuel injected into

the engine and the timing control defines the angle at which the fuel enters the

cylinders.

Earlier, the TL11 was fitted with a variable geometry Holset turbocharger, which has

been replaced with a fixed geometry Garrett turbocharger. The engine has an air-to-

water aftercooler which cools the charge air before it enters the inlet manifold.

178

The power from the TL11 engine is absorbed by a hydrostatic dynamometer in three

different modes; constant speed, constant torque, and with torque proportional to the

square of the engine speed. A complete description of the Leyland TL11 engine and

its behaviour is given by Roberts [62].

The TL11 has been extensively instrumented to give as full a picture of the operation

of the engine as possible. A description of this may be found in the Leyland TL11

instrumentation manuals [63]. To measure the cylinder pressure, two Kistler 6121

piezo-electric pressure transducers and their associated amplifiers are fitted at the top

of cylinders three and six. These pressure transducers are removable to allow the

deposits from fuel combustion to be removed.

Temperatures in the engine system are measured using Cromel-Alumel (K type)

thermocouples. These thermocopuples are buffered using conditioning cards which

allow the user to present temperature readings to a display on the engine

instrumentation panel or to read using a computer.

The dynamic timing of the injection of fuel into cylinders is indicated by needle lift

transducers which are fitted to cylinders three and six.

To obtain the speed of the engine, the crankshaft position is monitored using an AVL

crankshaft optical encoder type 360C/600. It has two rings of dark and bright bands,

one provides a crankshaft resolution of 0.6 degrees and the other outputs a pulse when

cylinder one is at TDC.

A number of other transducers are also fitted to the engine to measure turbocharger

speed, manifold pressures, fuel flow rates, engine torque etc. A description of these is

given by Haysom [21] and Scaife [64].

179

To monitor, record and present results from the TL11 engine, a computer data

acquisition system has been designed and built by Haysom [21]. This system is based

on a Motorola MC68000 based single board computer system. It logs analogue and

digital data at the rate of 25 kHz. The system consists of a master board, slave boards,

a two megabyte backplane memory board, a multilink local area network board and

an EFCIS colour graphics board. A complete description of the data acquisition

system may be found in the theses of Haysom and Scaife.

7.4.2 The FJH Model

The simulation model due to Haysom has data built into the program. It uses a Holset

turbocharger in the six cylinder TL11 Diesel engine simulation and has been verified

against the real engine. To allow a comparison between the FJH Model and the

PDESIM, the Holset turbocharger was modelled. The Watson heat release model [25]

was used for heat release calculations and the Hohenberg model [28] was used for

heat transfer calculations. These models were selected because the FJH Model uses

only these two functions for simulation. The same poppet valve effective area tables

and initial conditions were fed to the PDESIM as those used in the FJH model.

To compare the steady state performance of the two models, the simulations were

setup to achieve a constant engine speed by selecting a high load inertia. The amount

of fuel injected into the system was adjusted so that the same amount of fuel could be

used in both cases. For each point, the simulations were allowed to reach steady state

before any results were taken. The simulations were run with an initial integration

step of 2 degrees and a stability criterion of 0.5 percent.

A comparison of the results from the PDESIM and the FJH Model is shown in figures

7.2 and 7.3. In figure 7.2, the BMEP and the brake power results from the FJH Model

180

and the PDESIM are plotted against fuel flow rate. A Willan's line [61] is

superimposed on these graphs. The Willan's line gives an approximation to the FMEP

and the friction power of compression ignition engine. In these graphs, the point at

which the line crosses the x-axis provides the rate of fuel flow needed to overcome

friction. It gives the value of the FMEP and the friction power required to overcome it

when it touches the y-axis, where zero fuelling occurs at a particular speed.

In figure 7.3 engine maps showing brake power, maximum cylinder pressure, the

BSFC, the brake efficiency, the boost pressure, the turbocharger speed, the

compressor power, and the fuel flow are given. These maps are drawn against the

BMEP as function of the engine speed and show similar trends for both the models.

7.4.3 The TL11 engine

A new turbocharger has been fitted onto the TL11, and is being tested in the School

of Mechanical Engineering [65]. In order to have a test comparison, the PDESIM was

run using data for the new Garrett turbocharger and two of the results compared with

those available from the engine. These results are shown in figure 7.4, and the

agreement between theoretical and experimental results is extremely promising.

In figure 7.4a and 7.4b, a Willan's1 line is superimposed on the BMEP plots for engine

speeds of 1200 rpm and 1600 rpm respectively. It gives a FMEP value of 1.57 bar and

1.71 bar at 1200 rpm and 1600 rpm respectively. Similarly, the friction power

required to overcome this friction is 17.4 and 25 KW for the respective speeds.

181

7.5 Summary:

The results of the parallel engine simulated on the BUTPC are compared with an

equivalent simulation due to Haysom which has already been verified against the data

of a real engine. The results from the present PDESIM show good correspondence

with results from the FJH Model. BMEP and brake power curves for two different

engine speeds are also compared with the real experimental results of the TL11 Diesel

engine.

182

Figure 7.1 The user interface menu

c display CV data s store cycle & history

t record time history m modify parameters

1 log cycle history r rpm over one minute

g get map data q quit to Helios

Display CV data

c cylinder

m manifold

r raw data

q
menu

quit to previous

Modify parameters

r rack position s engine speed

i injection angle f fuel injected

q quit to previous menu

183

BM
EP

(b

ar
)

P a r a l l e l D iese l Engine S im u la t io n
1200 rpm , 338 degree i n j e c t i o n

14 T

12

10

-2

-4
6 8 10 12 142 4

Fuel f lou (g/sec)
• PDESIM + FJH Model

Figure 7.2a A Willan's line superimposed on the BMEP results from the PDESIM and

the FJH Model at 1200 rpm

BM
EP

(b

ar
)

P a r a l l e l D iese l Engine S im u la t io n
1400 rpm, 338 degree i n j e c t i o n

10

6

-2

0 2 6 8 1210 14
Fuel f lou (g/sec)

■ PDESIM + FJH Model

Figure 7.2b A Willan's line superimposed on the BMEP results from the PDESIM and

the FJH Model at 1400 rpm

BM
EP

(b

ar
)

P a r a l l e l D iese l Engine S im u la t io n
1600 rpm, 338 degree i n j e c t i o n

2

2

-4
6 8 10 12 140 2 4

Fuel flow (g/sec)
■ PDESIM + FJH Model

Figure 7.2c A Willan's line superimposed on the BMEP results from the PDESIM and

the FJH Model at 1600 rpm

BM
EP

(b

ar
)

P a r a l l e l Diese l Engine S im u la t io n
1800 rpm, 338 degree i n j e c t i o n

6

62 4 8 10 12 14
Fuel f lou (g/sec)

• PDESIM + FJH Model

Figure 7.2d A Willan's line superimposed on the BMEP results from the PDESIM and

the FJH Model at 1800 rpm

BM
EP

(b

ar
)

P a r a l l e l Diese l Engine S im u la t io n
2000 rpm, 338 degree i n j e c t i o n

-2

6 8 10 12 142 4
Fuel f lou Cg/sec)

• PDESIM + FJH Model

Figure 1.2c A Willan's line superimposed on the BMEP results from the PDESIM and

the FJH Model at 2000 rpm

Br
ak

e
po

we
r

(K
U)

P a r a l l e l D iese l Engine S im u la t io n
1200 rpm , 338 degree i n j e c t i o n

225

200

175

150

125

100

75

50

25

-25

-50
2 60 4 8 10 12 14

Fuel flow (g/sec)
• PDESIM + FJH Model

Figure 7.2f A Willan's line superimposed on the brake power results from the

PDESIM and the FJH Model at 1200 rpm

Br
ak

e
po

ue
r

(K
U

)

P a r a l l e l D iese l Engine S im u la t io n
1400 rpm, 338 degree i n j e c t i o n

225 t

200

175

150

125

100

75

50

-25

-50
2 4 6 8 10 140 12

Fuel f lo u (g /sec)
• PDESIM + FJH Model

Figure 7.2g A Willan's line superimposed on the brake power results from the

PDESIM and the FJH Model at 1400 rpm

Br
ak

e
po

ue
r

CK
U)

P a r a l l e l D iese l Engine S im u la t io n
1600 rpm, 338 degree i n j e c t i o n

225 t

200

175

150

125

100

75

50

25

-25

-50
4 6 8 10 12 142

Fuel f lo u Cg/sec)
■ PDESIM ♦ FJH Model

Figure 7.2h A Willan's line superimposed on the brake power results from the

PDESIM and the FJH Model at 1600 rpm

Br
ak

e
po

ue
r

(K
U

)

P a r a l l e l D iese l Engine S im u la t io n
1800 rpm, 338 degree i n j e c t i o n

225 t

200

175

150

125

100

75

50

25

-25 ^

6 8 10 1242
Fuel f l o u (g /se c)

■ PDESIM + FJH Model

Figure 7.2i A Willan's line superimposed on the brake power results from the

PDESIM and the FJH Model at 1800 rpm

Br
ak

e
po

ue
r

(K
U

)

P a r a l l e l D iese l Engine S im u la t io n
2000 rpm, 338 degree i n j e c t i o n

225 t

200

175

150

125

100

75

50

25

-25

10 12 146 82 4
Fuel f l o u (g /se c)

■ PDESIM ♦ FJH Model

Figure 7.2j A Willan's line superimposed on the brake power results from the

PDESIM and the FJH Model at 2000 rpm

F ig u re 7 .3 a E n g in e c o n to u r m a p s sh o w in g b rak e p o w e r

The BUTPC Parallel Diesel Engine Model With Holset Turbocharger
Contours of Brake Power (KW)

’6°0 . . .

10 -

rtj
JO

Q .
CDC
x>

«o0 . . .

12 13 14 15 16 17 18 19 20
s p e e d (rp m /1 00)

The FJH Parallel Diesel Engine Model With Holset Turbocharger
Contours of Brake Power (KW)

9

(0
JO 7~_
CLa>E

XI

5 -

4 ^

1512 13 14 16 17 18 19 20
s p e e d (rp m /1 0 0) .

194

Figure 7.3b Engine contour maps showing maximum cylinder pressure

The BUTPC Parallel Diesel Engine Model Witn Holset Turbocharger
Contours of Maximum Pressure (bar)

12

11
1200

10

9

8

7CL 900
E 6

5
75 0

4
70 0

3

2
1

12 13 14 15 16 17 18 19 20
s p e e d (rp m /1 0 0)

rhe FJH Parallel Diesel Engine Model With Holset Turbocharger

12

11

10

9

8
co
^ 7
CL
QJ

I 6
5

4

3

2

1
12 13 14 15 16 17 18 19 20

s p e e d (rp m /1 00)

Contours of Maximum Pressure (bar)

i i i t ~ i i "i ' i i p ~ i ~ r ~r r [■ i i— f— r i > t r | t i i i | ~i i r - r - y - i i t i

195

Figure 7.3c Engine contour maps showing the BSFC

The BUTPC Parallel Diesel Engine Model With Holset Turbocharger
Contours of BSFC (g/kwh)

10 -i

9

Q .

4

15 1712 13 14 16 18 19 20
s p e e d (rp m /1 0 0)

The FJH Parallel Diesel Engine Model With Holset Turbocharger
Contours of BSFC (g/kwh)

9-:

N/

2014 15 16 17 18 1912 13
speed (rpm/100)

196

Figure 7.3d Engine contour maps showing brake efficiency

The BUTPC Parallel Diesel Engine Model With Holset Turbocharger
Contours of Brake Efficiency (%)

12 -i

10 -i

Q .
CD
E

-O

19 2014 15 16 17 1812 13
s p e e d (r p m /1 0 0)

The FJH Parallel Diesel Engine Model With Holset Turbocharger
 Contours of Brake Efficiency (%)

10-i

8

4 -

2-i

12 13 14 15 16 17 18 19 20
speed (rpm/100)

197

Figure 7.3e Engine contour maps showing boost pressure

The BUTPC Parallel Diesel Engine Model With Holset Turbocharger
Contours of Boost Pressure (bar)

1 2 - .

8 -_
-O

7-_

x i 6 -

2-i

12 13 14 15 16 17 18 19 20
speed (rpm/100)

The FJH Parallel Diesel Engine Model With Holset Turbocharger
Contours of Boost Pressure (bar)

12 -;

15 16 17 18 19 2012 13 14
speed (rpm/100)

198

Figure 7.3f Engine contour maps showing turbocharger speed

The BUTPC Parallel Diesel Engine Model With Holset Turbocharger
Contours of Turbo Speed (rpm)

12-i

i o -E

9-j

8

5~.
4 -

2

12 13 14 15 16 17 18 19 20
speed (rpm/100)

he FJH Parallel Diesel Engine Model With Holset Turbocharger
Contours of Turbo Speed (rpm)

1 2 -i

10-i

9-i

8

CL
(D

I ^
5-i

4 *:

12 13 15 16 1714 8 19 201
speed (rpm/100)

199

Figure 7.3g Engine contour maps showing compressor power

The BUTPC Parallel Diesel Engine Model With Holset Turbocharger
Contours of Compressor Power (KW)

1 2 -.

9-.

JQ
7 -Cl

JD

3

12 13 14 15 16 17 18 19 20
s p e e d (r p m /1 0 0)

The FJH Parallel Diesel Engine Model With Holset Turbocharger
Contours of Compressor Power (KW)

12 -

10-j

9-:

Cl

X3

5

3-_

12 13 15 16 1814 17 19 20
speed (rpm/100)

200

Figure 7.3h Engine contour maps showing fuel flow

The

12 13 14 15 16 17 18 19 20
s p e e d (r p m /1 0 0)

BUTPC Parallel Diesel Engine Model With Holset Turbocharger
Contours of Fuel Flow (g/sec)

The FJH Parallel Diesel Engine Model With Holset Turbocharger
 Contours of Fuel Flow (g/sec)

12 13 14 15 16 17 18 19 20
s p e e d (r p m /1 0 0)

201

BM
EP

(b

ar
)

Parallel Diesel Engine Simulation
1200 rpm (Garrett Turbocharger)

10 -

6 8 122 4 10
Fuel f l ou (g / s e c)

• TL11 + PDESIM

Figure 7.4a A Willan's line superimposed on the B M E P results from the PDESIM and

the TL11 Diesel engine at 1200 rpm

P a r a l l e l D i e s e l E n g i n e S i m u l a t i o n
1600 r pm (G a r r e t t T u r b o c h a r g e r)

2 6 8 10 124
Fue l f l ow (g / s e c)

• TL11 + PDESIM

Figure 7.4-6 A Wilkin’s line superimposed on the BMEP results from the PDESIM and

the T L 11 Diesel engine at 1600 rpm

B
ra

ke

po
w

er

CK
W

)

P a r a l l e l D i e s e l E n g i n e S i m u l a t i o n
1200 rpm (G a r r e t t T u r b o c h a r g e r)

200

1 7 5 +

1 5 0 +

1 2 5 +

100

7 5 +

50

2 5

- 2 5

6 8 12104
Fue l f l ow (g / s e c)

• TL11 + PDESIM

Figure 7 .4 : A Wilkin's line super imposed on the brake pow er results f rom the

P D E S IM and the T L 1 1 Diesel engine at 1200 rpm

B
ra

ke

po
w

er

CK
W

)

P a r a l l e l D i e s e l E n g i n e S i m u l a t i o n
1 6 0 0 rpm (G a r r e t t T u r b o c h a r g e r)

2 0 0

1 7 5

1 5 0

1 2 5 4

100

7 5 |

5 0

2 5 4

- 2 5

1210864
F u e l f l o w (g / s e c)

■ TL1 1 + PDESIM

Figure 7.4d A Willan's line superimposed on the brake power results from the

PDESIM and the TL11 Diesel engine at 1600 rpm

Chapter 8

Application of the Engine Simulation

8.1 Introduction

Engine simulation has always been used in a number of applications, but its main use

has been in the areas of engine design and performance comparisons where the

relative response of the engine simulation is not important. With the introduction of

high speed computers and the application of parallel processing, the simulation time

has been considerably reduced. This has opened new potential applications areas

where the time of simulation is relatively important when compared with the actual

engine response. The following sections describe some of the possible applications of

the Diesel engine simulation.

8.2 Simulation as a Design Tool

Existing engine simulation using complex models is slow and can limit the use of the

engine simulation as a design tool. With a fast simulation, the response time to an

action is very short. An interactive control of a simulated engine can be given to the

designer, who can change different engine parameters interactively and see their

effects on different performance parameters before going into detailed prototype

design of the engine. This can lead to experiments with novel designs which may be

expensive to try using real hardware. Simulation can help the understanding of

combustion and an efficient engine design with less combustion products released to

exhaust may easily be designed. The parallel Diesel engine simulation developed in

this thesis has the ability to allow some of the parameters to be modified and their

effects recorded.

207

8.3 Condition Monitoring and Fault Diagnosis

A number of maintenance techniques are employed to keep an engine running. One

way is to replace or repair when failure occurs. This is not always feasible,

particularly in cases where continuity of operation is required, such as in case of ship

engines. Another method is to do maintenance at planned intervals and replace

components on 'running hour1 bases. This can lead to replacement of those

components which are still healthy and hence can contribute an overall cost increase

and produce inefficiency of the system. A third type of maintenance method is based

on condition of the engine, and is called condition monitoring [66]. Condition

monitoring is considered the most reliable, cost effective and efficient technique for

maintaining an engine. It improves safety and gives more running time and less

maintenance time.

Condition monitoring relies on objective assessment and quantitative measurements

of the engine by taking regular measurements and analysing them. This is achieved by

comparing different engine parameters with already established known values of

these parameters for a healthy engine.

The requirements to compare the engine results with a reference provides some

difficulties. Uitermarkt [67] notes that a reference database of an engine test-bed

results for a large ship engine would probably be incomplete due to the huge

variations in operating and environmental conditions that such an engine would meet.

Introducing a complete set of operating conditions will increase the size of the

database to a considerable extent. A fast engine simulation system would help to

overcome this.

Another aspect of condition monitoring is fault diagnosis. Faults can be simulated

using a complex engine model and the results stored in a database file. A complete

208

condition monitoring system could then compare these simulated faulty results with

those from an engine and could predict a possible fault in a particular part of the

engine.

It is envisaged that an on-board condition monitoring and fault diagnostic system

would be used in conjunction with an expert system. Katsoulakos et al [68] describe

such a system. Simple engine condition monitoring using test-bed results has already

been used commercially. A model that is based on test-bed results and makes

adjustments to these to take account of operating conditions has been implemented by

the company Mak [69].

8.4 Engine Control

Testing new control strategies using real engines is cosdy because of high amount of

instrumentation involved. By using a high speed simulation, new management and

control systems can be investigated before applying these techniques to the real

engine. This can provide a reduction in cost and effort just by reducing the number of

trials on a real engine before perfecting the method.

8.5 Summary

The application of high speed simulation to Diesel engine design and subsequent

control and maintenance offers a great deal of economic and environmental

advantages. A combination of condition monitoring and control applied in

conjunction with expert systems may develop into a semi-auto control system that

will be applied to monitor big engines both in off-shore applications such as ship and

in inland applications such as power generation.

209

Chapter 9

Conclusions

A Diesel engine simulation has been implemented using the distributed memory

features of the Bath University transputer based parallel computer. A filling and

emptying model is used to simulate a Diesel engine, which treats a Diesel engine as a

thermodynamic system consisting of cylinder and manifold control volumes,

junctions that interconnect these control volumes, and shafts that transfer power

generated by the engine. An advantage of this method is that a direct correlation

exists between the real engine and the simulation, and using cylinders and manifolds

as basic control volume modules almost any type of engine configuration can be

studied.

The filling and emptying model also provides lesser communication between cylinder

and manifold tasks as these control volumes are relatively independent and share only

those variables which affect the flow between them.

A new flexible data entry system has been developed that helps the user to define the

topology of an engine and initialise different variables of the engine simulation. This

system also provide the facility to change different parameters, of the engine without

changing the actual code. It is also possible for the user to change some control

parameters interactively and see their effect on the engine performance.

Control and synchronisation within the simulation is distributed across all of its

constituent tasks. Thus, once the simulation is initialised, synchronisation and data

transfer occurs as and when required by a particular task.

Different communication functions are provided with the operating system Helios,

but these are slow and do not satisfy the fast data communication requirements for the

Diesel engine simulation. New communication primitives have been developed using

211

the backplane features of the new computer which are faster than the Helios routines.

These new routines have been used for data transfer and synchronisation within the

Diesel engine simulation.

The new parallel Diesel engine simulator has been compared with a previous but

slower, simulator. Results from the two simulators were taken for varying fuelling

over a range of speeds. Engine maps were plotted and the results were found in

agreement.

The results from the new simulation have also been compared with results from a real

engine. An extremely promising correlation has been shown to exist between

theoretical and experimental results for different speed and fuelling conditions.

212

Chapter 10

Further Work

The new parallel Diesel engine simulation implemented using transputers has

demonstrated a number of areas where further investigation may be carried out. One

of these is the addition of a database type input to the simulation that defines the

topology of the engine and initialises different operating and environmental variables.

This can be extended further by combining the simulation with an expert system to

provide a better and faster engine management system for condition monitoring and

fault diagnosis of large industrial and ship engines.

At present, a turbocharged engine can be modelled with a variable number of control

volumes. An extension to this facility would be to be able to select any number of

turbochargers.

In the present simulation, only one crankshaft and one turbocharger shaft are allowed.

The addition of more shafts will add more flexibility in defining the overall topology

of the engine and it could be possible to simulate any thermodynamic control system

beside a complete Diesel engine.

The empirical models used in the simulation have values for the constants which are

suggested by the authors of these models. To simulate a particular engine, more

appropriate constants should be found that may improve the actual model as well.

A natural enhancement to the simulation will be the addition of a user friendly man-

machine interface for plotting different parameters of the simulation.

Technology is advancing at a great pace and new and fast processors are appearing in

the market. An obvious enhancement to the present work would be to adopt it

accordingly so that the latest computing systems available may be utilised. For

214

example, further work could be carried out to port the simulation developed in this

thesis to an Intel’s i860 based system which would promise a greater speed of

simulation.

215

References

References

1. Asimov, I., The Book of Facts, Coronet Books, 1979.

2. de Cogan, D., Design and technology of integrated circuits., John Wiley,

1990, pp 1-7.

3. Margulis, N., "i860 microprocessor internal architecture", M i c r o p r o c e s s o r s

a n d m i c r o s y s t e m s , Vol. 14, No. 2, March 1990, pp 89-96.

4. Atherton, W. A., "Poineers", E l e c t r o n i c s & W i r e l e s s W o r l d , 1987, pp 1213-

1214.

5. Morrison, P., Morrison, E., Charles Babbage and his calculating engines.,

N.Y., 1961.

6. Burks, A. W., "The ENIAC: First general-purpose electronic computer", A n n .

H i s t . C o m p u t e Vol. 3, No. 4, pp 310-399.

7. Wilkes, M. V., Renwick, W., "The EDSAC, an electronic calculating

machine", J . S c i . I n s t r u m ., Vol. 26,1949, pp 385-391

8. Treleaven, P. C., "Future parallel computers", Lecture notes in computer

science - 237, CONPAR-86, pp 41-47.

9. Wilkinson, J. H., "The pilot ACE", Computer structures: Readings and

examples, Chapter 11, Ed. Bell, C. G. and Newell, A., N.Y., McGraw-Hill,

1953, pp 193-199.

10. Helay, A. C. D., "DEUCE: a high speed general purpose computer", P r o c .

I . E M . , Vol. 103, Part B, Suppl. 2,1956, pp 165-173.

11. Smith Associates, I n t l . C o n f . o n P a r a l l e l P r o c e s s i n g , The Royal Society,

London, 9th-10th Dec., 1987.

12. Payne, M., "Multiple transputers will enhance Marconi radars", E l e c t r o n i c s

W e e k l y t June 27,1990, p 12.

13. Parsytec, "British Aerospace goes parallel with Parsytec", S.E.R.C./D.T.I.

transputer initiative, Mailshot, June 1990, pp 30-31.

217

14. Watson, N., "Computers in Diesel engine turbocharging system design",

I.Mech.E., C05/87,1987, pp 269-280.

15 Charlton, S. J., SPICE: Simulation program for internal combustion engines.,

Bath University, U.K., 1986.

16. Katsoulakos, P. S., Hornsby, P. P. W., Zanconato, R., "DEEDS: The Diesel

engine expert diagnostic system", M a r i t i m e c o m m u n i c a t i o n a n d c o n t r o l , 26-28

Oct, 1988, Paper 22.

17. Tomisawa, N., Toki, S, "Trends in electronic engine control and development

of optimum microcomputers", S.A.E. Paper No. 880136.

18. Clark, C. A., "Electronics applied to systems using internal combustion

engines; from lawnmowers to low speed marine engines", I.Mech.E. Seminar:

The benefits of electronic control systems for internal combustion engines.,

Jan., 1989.

19. Gerrett, K., "Microprocessor control for Diesel engines", A u t o m o t i v e

E n g i n e e r , Vol. 15, No. 4, Aug./Sep. 1980, pp21-25.

20. Jones, A. D., The application of parallel processing to diesel engine

modelling., Ph.D. Thesis, University of Bath, 1987.

21. Haysom, F. J., Enhanced performance simulation of diesel engines., Ph.D.

Thesis, University of Bath, 1989.

22. Ramos, J. I., "Mathematical models of Diesel engines", Computer simulation

for fluid flow, heat and mass transfer, and combustion in reciprocating

engines, Ed. Markatos, N. C., N.Y., 1989, pp 67-130.

23. Henein, N. A., Bolt, J. A., "Ignition delay in Diesel engines", S.A.E. Paper

No. 670007.

24. Wolfer, H. H., "Ignition lag in Diesel engines", Translated by Mullins, M. F.,

Royal Aircraft Establishment Library No. 358.

25. Watson, N., "Combustion and gas properties", Report E17, Imperial college of

science and technology, London, Sep., 1979.

218

26. Watson, N, Pilley, A. D., Marzouk, M., "A combustion correlation for Diesel

engine simulation1’, S.A.E. Paper No. 800029.

27. Watson, N., Janota, M. S., "Modelling", Chapter 15, Turbocharging the

internal combustion engine, MacMillan, 1982, p 537.

28. Hohenberg, G. F., "Advanced approaches for heat transfer calculations",

SAE/SP-79/449, 1979.

29. Woschni, G., "A universally applicable equation for the instantaneous heat

transfer coefficient in the internal combustion engine", S.A.E. Paper No.

670931.

30 Chen, S. K., Flynn, P. F., "Development of a single cylinder compression

ignition research engine", S.A.E. Paper No. 650733.

31. Berry, T., Personal communications.

32. Data Sheet, "IMS T800 transputer", Inmos, 1987.

33. Dunn, R. W., Daniels, A. R., Gott, V. S., Selwyn, C. G., "A new architecture

of high performance parallel computer for use in condition monitoring of large

diesel engines", I.E.E. Conf. Publication 309, Sep. 1989.

34. Daniels, A. R., Dunn, R. W., Gott, V. S., Selwyn, C. G., "Real time simulation

of diesel engines using the T800 transputer", S.E.R.C./D.T.I. Transputer

Initiative workshop on Transputer development environment, 1987.

35. Meiko Scientific, 650 Aztec West, Almondsbury, Bristol, U.K.

36. The Transputer Family, Inmos, 1986

37. Helios User’s Manual, Perihelion Software, 1988.

38. Daley, M. B., A link topology controller for a sixteen transputer

multiprocessor system., B. Sc. (Elect) Thesis, University of Bath, 1988.

39. Hafeez, M., An expandable input/output and graphics system for distributed

memory parallel computers., Ph.D. Thesis, University of Bath, 1990.

40. Dale, L. A., Real time modelling of multi-machine power systems., Ph.D.

thesis, University of Bath, 1986.

219

41. Berry, T., Real time modelling of complex power systems using parallel

processing., Ph.D. Thesis, University of Bath, 1989.

42. Introduction to Tripos, Metacomco, Issue May 1986.

43. Tripos programmer's reference Manual, Metacomco, Issue 1986.

44. Sargent, P., "Tripos", P e r s o n a l C o m p u t e r W o r l d , June 1986, pp 140-147.

45. May, D., "Occam", SIGPLAN Notices, Vol. 18, No. 4, April 1983, pp 69-79.

46. Pountain, D., "Occam II"„ B y t e , Oct. 1989, pp 279-284.

47. Grimsdale, C. H. R., "Distributed operating system for transputers",

M i c r o p r o c e s s o r s a n d m i c r o s y s t e m s , Vol. 13, No. 2, March 1989.

48. Helios Technical Manual, Perihelion Software, 1988.

49. Helios Developer's Manual, Perihelion Software, 1988.

50. Powell, J., Garnett, N., "Helios performance measurement", Technical report

No. 22, Perihelion Software, Feb. 1990.

51 Chapra, S. C., Canale, R. D., Numerical methods for engineers, Second

edition, McGraw-Hill, N.Y., 1989, pp 565-705.

52 Franklin, M. A., "Parallel solution of ordinary differential equations", I . E . E . E .

T r a n s a c t i o n s o n C o m p u t e r s , Vol. C-27, No. 5, May 1987, pp 413-420.

53. Kerckhoffs, E. J. H., "Parallel algorithms for ordinary differential equations:

An introductory review", Procedings 1986 Summer Computer Simulation

Conference, Reno, NV, U.S.A., 28-30 July 1986, Eds: Crosbie, R., Luker, P.,

pp 947-952.

54. Worland, P. B., "Parallel methods for the numerical solution of ordinary

differential equations", I . E . E . E . T r a n s a c t i o n s o n C o m p u t e r s , Oct 1976, pp

1045-1048.

55 Birta, L. G., Abou-Rabia, O., "Parallel block predictor-corrector methods for

ode’s", I . E . E . E . T r a n s a c t i o n s o n C o m p u t e r s , Vol. C-36, No. 3, March 1987, pp

299-311.

56. Abou-Rabia, O., Multiprocessing in continuous system simulation., Ph.D.

Thesis, University of Ottawa, Canada, 1985.

220

57 Barton, P., Willers, L M., Zahar, R. V. M., "Taylor series methods for

ordinary differential equations - An evaluation", Mathematical software, Ed.

Rice, J. R., Academic Press, 1971, pp 369-390.

58. Halin, J. H., "Integration across discontinuities in ordinary differential

equations using power series", S i m u l a t i o n , Feb. 1979, pp 33-45.

59. Halin, J. H., Buhrer, R., Haig, W., Benz, H., Bron, B., Brundiers, H. J.,

Isacson, A., Tadian, M., "The ETH multiprocessor project: Parallel simulation

of continuous systems", S i m u l a t i o n , Oct. 1980, pp 109-123.

60. Abou-Rabia, O., Birta, L. G., "Some variations on the BPC parallel integration

method", Proceedings 1987 summer computer simulation conference,

Montreal, Que., Canada, July 1987, Ed. Chou, J. Q. B., pp 37-42.

61. Greene, A. B., Lucas, G. G., The testing of internal combustion engines., The

English Universities Press Ltd., London, 1969.

62. Roberts, E. W., Variable geometry turboengine optimisation and control.,

Ph.D. Thesis, University of Bath, 1984.

63. Leyland TL11 Instrumentation Manuals, Wolfson Laboratory, School of

Mechanical Engineering, University of Bath.

64. Scaife, M. W., An experimental facility for the development of intelligent

engine diagnostics., MPhil. Thesis, University of Bath, 1990.

65. Scaife, M. W., Personal communications, 1990.

66. Haddad, S. D., "Condition monitoring and fault diagnosis in Diesel engines",

in 'Principles and performance in Diesel engineering', Eds: Haddad, S. D.,

Watson, N., Ellis Harwood Limited, Chichester, U.K., 1984, pp 246-277.

67. Uitermakt, R. W. P., "Engine fault diagnosis", M a r i n e e n g i n e r e v i e w , July

1984, pp 8-10.

68. Katsoulakos, P. S., Newland, J., Stansfield, J. T., Ruston, T., "Monitoring

databases and expert systems in the development of engine fault diagnostics",

J o u r n a l o f n o n - d e s t r u c t i v e t e s t i n g , 1988, Vol. 30, No. 4, pp 263-273.

221

69. Anonymous, "Engine history at Dicare's heart", T h e m o t o r s h i p , July 1987, p

26.

222

Appendices

Appendix A

Solution of Ordinary Differential

Equations Using Power Series

A.l For y = f(t) Taylor series is defined as

(At)2 (At)3
f(ti+At) = f(ti) + At f(ti) + ------ f (ti) + ------- f"(ti) +

2! 3!

where At = t - ti or t = ti + At

Rewriting the above equation

f(t) = f(°)(ti) + At fW(ti) + - - - - - f<2>(ti) + - - - - - f<%i) +
2! 3!

where f^)(t) is the kth derivative of f(t).

In general

E k=oo (At)k
f(k)(ti). -----------

k=0 k!

Substituting y^ = f̂ k)(ti) . (At)k / k!, the general solution y = f(t) can be

written as

y = y0 + y i + y2 + y3 + ...

224

A.2 Let the example set of ordinary differential equations be

y ^ 1) = y2 A.la

y2(1) = ----- -̂----- ""o“"Tn A* lb
(y 1 + y 2)

where both yj and y2 are functions of t.

The initial conditions are

yi(0) = 1

y2(0) = 0

The solution of the above equations is

yj = cos (t) A.2a

y2 = sin (t) A.2b

A.3 To integrate these initial value first order ordinary differential equations using

Taylor series, these equations are required to be broken down into set of equations

involving two variables only. To do so new auxiliary variables are introduced. These

sub equations are

yjW = y2 A.3a

aO = - A.3b

al = yj2 A.3c

a2 = y2^ A.3d

225

a3 = al + a2 A.3e

a4 = (a 3)^ A.3f

a5 = a0/a4 A.3g

y ^ 1) = a5 A.3h

In the following sections, it is assumed that y^Q represents Oth derivative of yj, y2 Q

represents Oth derivative of y2 , alO represents Oth derivative of al, and so on.

Selecting the number of terms k=4 and the interval At=h for the Taylor series, the

solution will be:

A#4 Formula:

For = p A.4a

the Taylor series terms are

rk+1 = (h/(k+l))pk A.4b

Applying this formula to equation A.3a gives

YlO = 1 A.5a

k=0 y n = h y20 A.5b

k=l y12 = (h/2) y21 A.5c

k=2 y13 = (h/3) y22 A.5d

k=3 yi4 = (h/4) y23 A.5e

k=4 y15 = (h/5) y24 A.5f

A.5 Formula:

r = constant. p A.6a

the Taylor series terms are

rk = constant. pk A.6b

226

Applying this formula to equation A.3b gives

k=0 aOO = - yio A.7a

k=l aOl = - y n A.7b

k=2 a02 = - yi2 A.7c

k=3 a03 = - y n A.7d

k=4 a04 = - yi4 A.7e

A.6 Formula:
2r = p^

the Taylor series terms are

rk = PO• PO

y (k-l)/2
rk = 2 Z a Ps Pk-s

S = 0

y (k-2)/2
rj, = 2 2 - i ps p^g (k=even and k>0)

s=0

A.8b

Applying this formula to equation A.3c gives

A.8a

(k = 0)

(k=odd and k>0)

k=0 alO = y10 yio

k=l a ll = 2 (y 10 yn)

k=2 al2 = 2 (y 10 y12) + y n y n

k=3 al3 = 2 (y 10 y13 + yn y ^)

k=4 al4 = 2 (y 10 y14 + yn y i3 > + y n m

A.9a

A.9b

A.9c

A.9d

A.9e

227

A.7 Applying the formula A.8 to equation A.3d gives

k=0 = yio y20 A.9a

k=l a21 = 2 (y20 Y2 l) A.9b

k=2 a22 = 2 (Y20 yi2> + >'21 >'21 A.9c

k=3 a23 = 2 (y2o Y23 + y21 >"22) A.9d

k=4 a24 = 2 (y20)'24 + y21 y23̂ + yil y22 A.9e

A.8 Formula:

r = p + q A. 10a

the Taylor series terms are

rk = Pk + 9k A*10b

Applying this formula to the equation A.3e gives

k=0 a30 = alO + a20 A .lla

k=l a31 = a ll + a21 A .llb

k=2 a32 = al2 + a22 A. 11c

k=3 a33 = al3 + a23 A. l id

k=4 a34 = al4 + a24 A .lle

A.9 Formula:

rk = pconstant A 1

2a

the Taylor series terms are

rk = pconstant (k=0)

rk = ---- [^ (constant. k - (constant+1). s) 1 (k>0)
kp0 s=l

A. 12b

228

Applying this formula to equation A.3f gives

k=0 a40 = a315 A.13a

k=l a41 = 1.5a30°-5 a31 A. 13b

k=2 a42 = 3 y j2 + 1-5 (y2 j)^ A.13c

k=3 a43 = 1.5 a33 A. 13d

k=4 a44 = 1.5 a34 + 0.75 y12a32 + 0.375 (y21)2 a32 A.13e

A.10 Formula:

rk = P/Q A. 14a

the Taylor series terms are

rk = P0/(10 (k=°)

rk = — [Pk “ ^ (q s - rk - s)] (k>°)
q0 s=l

A. 14b

Applying this formula to equation A.3g gives

k=0 a50 = a00/a40 A.15a

k=l a51 = (aOl - a41 a00/a40) / a40 A.15b

k=2 a52 = 2 y 12 + 1.5 (y2i)2 A. 15c

k=3 a53 = 2 y 13 + 3 y21 y2 2 A.15d

k=4 a54 = - y i 4 - (3 yi2 + 1-5 (y2i)2) . (2y12+ 1.5 (y2i)2) + a44

A.15e

229

Applying formula A.4 to equation A.3h gives
to O II o A. 16a

k=0 y21 = h a50 A. 16b

k=l y22 = h a51 /2 A. 16c

k=2 y23 = h a52 / 3 A.16d

k=3 y24 = h a53 /4 A.l 6e

k=4 y25 = h a54 /5 A.16f

A.12 Solving the above simultaneous equations and substituting in the Taylor

series gives

y i = ylO+ y ll + yl2 + yl3 + yl4 +...

= 1 - h2/2 + h4/24 + ...

and

y2 = y20 + y21 + y22 + y23 + y24 + ...

= -h + h3/6+ ...

Hence if h=0.1 then

yl = 0.99500416

and

y2 = - 0.09983333

The actual values are

yl = cos (0.1) = 0.99500416

and

y2 = - sin (0.1) = -0.09983341

230

A.13 References:

Barton, P., Willers, I. M., Zahar, R. V. M., "Taylor series methods for ordinary

differential equations - An evaluation", Mathematical software, Ed. Rice, J. R.,

Academic Press, 1971, pp 369-390.

Halin, J. H., "Integration across discontinuities in ordinary differential equations

using power series", Simulation, Feb.. 1979, pp 33-45.

Halin, J. H., Buhrer, R., Haig, W., Benz, H., Bron, B., Brundiers, H., J., Isacson, A.,

Tadian, M., "The ETH multiprocessor project: Parallel simulation of continuous

systems", Simulation, Oct. 1980, pp 109-123.

231

Appendix B

An Example Data File For Processor

Allocation
/*

*_____

* First column will be ignored.

* Second column gives the name of the task to be loaded.

* Third column is the processor name string.

* The engine task should be loaded remotely on a processor

♦

*

other than those given in this list

*/

cyll cylinder 04

cyl2 cylinder 05

cyl3 cylinder 06

cyl4 cylinder 07

cyl5 cylinder 08

cyl6 cylinder 09

manl manifold 10

man2 manifold 11

man3 manifold 12

act actuator 13

dyn dynamics 14

stab stability 15

disp display 03

232

Appendix C

Data Preparation For the PDESIM

There are three different data files for the PDESIM. The first data file describes the

Diesel engine itself. The second file gives interccooler and compressor data and the

third file provides turbine data to the PDESIM.

C.l Main Data File:

The main data file for the PDESIM is divided into a number of sections. Each section

of data must be preceded by a comment terminated by '<space>*A The comment may

cover any number of lines. The maximum length of any string in a comment line is

limited to 80 characters.

Any variable preceded by the abbreviation ’int' must be written as an integer. The

numbers may be delimited by any number of blanks or new lines unless otherwise

stated.

The volume numbering must start from 1 and manifolds should be preceded by

cylinders. Numbering of all other data sets should start from zero.

Each section of the data file is explained below individually.

C .l.l Title and Control Data:

Title string may be of any length and includes the title string of the control data as

well. The control data has four arguments. All of these arguments are zero as dynamic

data logging is provided in the PDESIM.

233

o arg 1 (int) number of cycles for simulation

o arg 2 (int) number of first cycle to be printed out

o arg 3 (int) number of last cycle to be printed out

o arg 4 (int) interval between printout cycles

C.1.2 System Data:

This section provides information about the system components. The maximum

number of control volumes is limited. At present only one compressor and turbine

may be connected to the system, and since the governor and load data is not being

used, no data is provided for these sections.

0 arg 1 (int) number of cylinders (1 to 10)

0 arg 2 (int) number of manifolds (1 to 5)

0 arg 3 (int) number of junctions (1 to 20)

0 arg 4 (int) number of compressors (1)

0 arg 5 (int) number of turbines (1)

0 arg 6 (int) number of poppet valve sets (8)

0 arg 7 (int) number of timing sets (1)

0 arg 8 (int) number of heat release sets (10)

0 arg 9 (int) number of cylinder heat transfer sets (2)

0 arg 10 (int) number of manifold heat transfer sets (3)

0 arg 11 (int) number of shaft sets (2)

0 arg 12 (int) number of governor sets (0)

0 arg 13 (int) number of load sets (0)

234

C.1.3 Cylinder Data:

Data for each cylinder is provided in a line and each line consists of nineteen

arguments. At present it is assumed that all cylinders have only one inlet and one

exhaust valve. The offset angle of cylinder 1 is taken as zero and all other cylinders

are referenced from it

o line 1 data related to cylinder 1

o line 2 data related to cylinder 2

0 line n data related to cylinder n

0 arg 1 (int) volume number (1 to n)

0 arg 2 (int) volume type (l=cylinder, 2,3=manifold)

0 arg 3 (int) task type (2=cylinder,

manifold)

3=inlet manifold, 4=exhaust

0 arg 4 (int) cylinder fault (0, No fault at present)

0 arg 5 (—) cylinder bore (m)

0 arg 6 (—) cylinder stroke (m)

0 arg 7 (—) compression ratio

0 arg 8 (—) offset angle with respect to cylinder 1 (deg)

0 arg 9 (—) connecting rod length (m)

0 arg 10 (—) piston mass (kg) (Not used)

0 arg 11 (—) friction mean effective pressure (bar, or < 0.0 if to be

calculated by the program

0 arg 12 (int) heat release set

0 arg 13 (int) heat transfer set

235

o arg 14 (int) shaft set associated with cylinder

0 arg 15 (int) timing set associated with cylinder

0 arg 16 (int) number of inlet junction (1)

o arg 17 (int) number of exhaust junction (1)

0 arg 18 (int) array of inlet junction numbers

0 arg 19 (int) array of exhaust junction numbers

C.1.4 Manifold Data:

Data for each manifold is provided in a line and each line consists of eight arguments

and two arrays.

o line 1 data related to manifold 1

o line 2 data related to manifold 2

0 linem data related to manifold m

0 arg 1 (int) volume number (n+1 to n+m)

0 arg 2 (int) volume type (l=cylinder, 2,3=manifold)

0 arg 3 (int) task type (2=cylinder, 3=inlet manifold, 4=exhaust

manifold)

0 arg 4 (int) associated turbocharger number (0)

0 arg 5 (—) heat transfer set associated with manifold (-1 for no heat

transfer)

0 arg 6 (—) volume (m3)

o arg 7 (int) number of junctions where flow is normally in

o arg 8 (int) number of junctions where flow is normally out

o arg 9 (int) array of in junction numbers

o arg 10 (int) array of out junction numbers

C.1.5 Junction Data:

Data for each junction is provided in a line and each line consists of seven arguments.

At present a twin entry turbine is modelled for the PDESIM.

o line 1 data for junction 0

o line 2 data for junction 1

o line j data for junction j-1

o arg 1 (int) junction number (0 to 20)

o arg 2 (int) junction type (l=poppet, 2=orifice, 3=compressor, 4=turbine)

o arg 3 (—) effective area (m^) (Not used)

o arg 4 (—) coefficient of discharge (Not used)

o arg 5 (int) poppet valve set if poppet valve

(int) 0 if compressor

(int) first turbine entry junction number if second turbine for a twin

entry turbine

o arg 6 (int) entry volume number assuming normal flow direction or highest

volume number plus one if the entry volume is atmosphere,

o arg 7 (int) exit volume number assuming normal flow direction or highest

volume number plus two if the exit volume is atmosphere.

237

C.1.6 Heat Release Data:

Heat release data is provided in lines. Each line gives data for the corresponding heat

release set. A cylinder may have any one of the data set for the calculation of its heat

release.

o line 1 data relating to heat release set 0

o line 2 data relating to heat release set 1

o line r data relating to heat release set r-1

o arg 1 (string) name of the heat release model (Watson or Wiebe)

0 arg 2 (-----) calorific value of fuel (J/kg K)

o arg 3 (-----) duration of combustion in degrees

o arg 4 (-----) fuel pipe length in meters

o arg 5 (-----) Wiebe combustion coefficient Cl (0.0 for Watson)

o arg 6 (-----) Wiebe combustion coefficient C2 (0.0 for Watson)

C.1.7 Cylinder Heat Transfer Data:

This data is also divided into lines, each line providing data for the corresponding

cylinder heat transfer set. For the PDESIM, a uniform temperature distribution is

assumed over the entire surface of the cylinder and an average value of the wall

temperature is used to calculate heat transfer through the cylinder walls. This wall

temperature is dynamically calculated by the program and is initialised by the value

given by arg 4.

238

o line 1 data relating to cylinder heat transfer set 0

o line 2 data relating to cylinder heat transfer set 1

o linet data relating to cylinder heat transfer sett-1

o arg 1 (string) name of the cylinder heat transfer model (Hohen or

Woschni)

o arg 2 (int) number of heat transfer areas (1)

o arg 3 (-----) area array (0.0)

o arg 4 (-----) temperature array corresponding to above areas,

(initial wall temperature in Kelvin)

C.1.8 Manifold Heat Transfer Data:

This data is also divided into lines, each line providing data for the corresponding

manifold heat transfer set. In the PDESIM, a uniform temperature distribution is

assumed over the entire surface of the manifold and an average value of the wall

temperature is used to calculate heat transfer through the manifold walls. This wall

temperature is dynamically calculated by the program provided it is selected in the

manifold data. The wall temperature is initialised by the value given by arg 6.

o line 1 data relating to manifold heat transfer set 0

o line 2 data relating to manifold heat transfer set 1

o line u data relating to manifold heat transfer set u-1

0 arg 1 (string) name of the manifold heat transfer model (ht_simple)

0 arg 2 (--—) surface area of the manifold in m^

0 arg 3 (- —) heat transfer coefficient of exhaust gas

0 arg 4 (--—) thermal resistance of manifold wall

0 arg 5 /V-—) thermal capacitance of manifold wall

0 arg 6 (- —) initial temperature of manifold wall (K)

C.1.9 Poppet Valve Data:

Poppet valve data is divided into section of sets. Each section consists of four

arguments followed by two arrays, one for crank angle and the other for

corresponding cross sectional area of the valve.

o arg 1 (int) number of values in each crank angle and area array (max. 50)

o arg 2 (—) shift factor in degrees to shift the camshaft diagram (0 for no

shift)

o arg 3 (—) stretch factor to scale the duration of the valve opening(1.0 for no

scaling)

o arg 4 (—) area scale factor to scale the valve area (1.0 for no

scaling)

o arg 5 (—) array of crank angles in degrees

o arg 6 (—) array of corresponding valve areas in m^

C.1.10 Shaft Data:

Each line in this section provides data for the corresponding shaft and has seven

arguments and an array which gives the corresponding connected control volumes or

junctions.

240

o line 1 data for shaft 0

o line 2 data for shaft 1

o line s data for shaft s-1

o arg 1 (int) shaft number

o arg 2 (int) shaft type (l=crank, 2=turbo)

o arg 3 (int) speed dynamics (0) (Not used)

o arg 4 (—) shaft inertia (kg/m^)

o arg 5 (—) initial shaft speed(revolutions per minute)

o arg 6 (—) crank case pressure in N/m^ for crank shaft, 0.0 for other cases

o arg 7 (—) mechanical efficiency if turbo shaft, 0.0 for all other cases

o arg 8 (int) number of cylinders connected to crank shaft or number of

junctions connected to turbo shaft

o arg 9 (int) array of cylinder numbers if crank shaft, array of junction

numbers if turbo shaft

C .l.ll Initial Volume Conditions:

o line 1 initial conditions for volume 1

o line 2 initial conditions for volume 2

o line i initial conditions for volume i

241

J
o arg 1 volume pressure in N/m^

o arg 2 volume temperature in K

o arg 3 volume fuel to air ratio

C.1.12 Initial Ambient Conditions:

There are three lines for ambient data, one for the ambient conditions at the inlet and

two for the ambient conditions at the exhaust. Each line has three arguments.

o arg 1 ambient pressure in N/m^

o arg 2 ambient temperature in K

o arg 3 ambient fuel to air ratio

C.1.13 Integration Step Information:

This data structure is a single line with six arguments that provide information to

control the integration algorithm.

o arg 1 (—) step size in seconds (Not used)

o arg 2 (—) step size in degrees

o arg 3 (—) starting crank angle for cylinder 1 (Not used)

o arg 4 (int) number of correction loops before step length is reduced

(Not used)

o arg 5 (—) convergence tolerance of predictor-corrector method form mass,

fuel to air ratio and temperature, fraction of change at each correction,

o arg 6 (—) convergence tolerance (Not used)

242

C.1.14 Timing Information:

This section provides angles in degrees at which valves open or close and static fuel

injection starts with reference to cylinder 1.

o line 1 data for timing set 0

o line 2 data for timing set 1

0 line n data for timing set n-1

0 arg 1 reference angle at which exhaust valve closes

o arg 2 reference angle at which inlet valve closes

o arg 3 reference angle at which static fuel injection starts

o arg 4 estimated reference angle at which combustion finishes

o arg 5 reference angle at which exhaust opens

o arg 6 reference angle at which inlet opens

243

C.2 Compressor and Intercooler Data File:

The intercooler is included as part of the compressor data file. The compressor is

simulated by using a digitised map of pressure ratio, mass flow parameter and

efficiency.

C.2.1 Control data:

This file starts with a comment, which is followed by a line that describes different

variables required to set up compressor map. This line has following six arguments.

o arg 1 number of speed curves (N) (max 11)

o arg 2 number of lines for pressure ratio, mass flow parameter and efficiency

(M) (max 11)

o arg 3 pressure ratio scaling factor

o arg 4 speed curve scale factor

o arg 5 efficiency scale factor(this will convert percentage to fraction of unity)

o arg 6 mass flow scale factor

C.2.2 Intercooler data:

This data follows the compressor setup line. It must have a comment before it. It

consists of the following three arguments.

o arg 1 intercooler pressure loss (N/m^)

o arg 2 intercooler coolant inlet temperature (K)

o arg 3 intercooler effectiveness

244

C.2.3 Compressor data:

This data section consists of N block of digitised compressor map curves. Each

section consists of one line for the non dimensionlised compressor speed (w /K ^),

where w is in radians per second, and M lines, each consisting of the following three

arguments.

o arg 1 pressure ratio

o arg 2 mass flow parameter (kg m^/Ns)

o arg 3 isentropic efficiency (0 to 1)

Each block is delimited by an asterisk on its own line including the last line of the

file.

245

C.3 Turbine Data File:

The turbine is also simulated by using a digitised map of pressure ratio, mass flow

parameter and efficiency, and is fed as a separate file to the simulator.

C.3.1 Turbine data:

This file starts with a comment, which is followed by a line that describes different

variables required to set up turbine map. This line has following seven arguments.

o arg 1 number of speed curves (N) (max 11)

o arg 2 number of lines for pressure ratio, mass flow parameter and efficiency

(M) (max 11)

o arg 3 number of turbine inlets

o arg 4 pressure ratio scaling factor

o arg 5 speed curve scale factor

o arg 6 efficiency scale factor (this will convert percentage to fraction of

unity)

o arg 7 mass flow scale factor

C.3.2 Turbine data:

This data section consists of N block of digitised turbine map curves. Each section

consists of one line for the non dimensionlised turbine speed (w /K ^), where w is in

radians per second, and M lines, each consisting of the following three arguments.

246

o arg 1 pressure ratio

o arg 2 mass flow parameter (kg m^/Ns)

o arg 3 isentropic efficiency (0 to 1)

Each block is delimited by an asterisk on its own line including the last line of the

file.

247

Appendix D

An Example Engine Data File

/*

* *

* engine.dat

*

* Maximum string length in comments - 80 characters *

* Variable preceded by int need to be integer and not floating point number *

Leyland t i l l engine (six cylinder engine with Garrett turbocharger), 338 injection

timing

D .l.l Control data for number of cycles and printout of
results:

(int) number of cycles, (int) first cycle for printout, (int) last cycle

for printout, (int) interval between printouts

*/

0 0 0 0

/*

D.1.2 Number of engine components:

(int) no_cylinders, (int) no_manifolds, (int) no_junctions,

(int) no_compressors, (int) no turbines, (int) no_valve_sets,

(int) no_timing_sets, (int) no_heat_rel_sets,

248

(int) no_ht_sets, (int) no_ht_man_sets,

(int) no_shaft_sets, (int) no_guv_sets, (int) no_load_sets,

output files, turbo files in junction order

*/

6 3 15

1 1 2

1 1

12

2 0 0

engine.res engine.plt

compressor.dat turbine.dat

/*

D.1.3 Cylinder data:

(int) vol.number,(int) vol.type (1 - cylinder, 2, 3- manifold, 4 - atmosphere,),

(int) task_type (2=cyl,3=im,4=em)

(int) cylinder fault (0 - no fault, non_zero - faulty)

bore(m), stroke(m), comp_ratio, ca offset (deg w.r.L cyl 0),

con_rod_length(m), piston_mass (including reciprocating mass of con rod),

fmep (N/m^, <= O.Of for calculation by program),

(int) heat_rel_set,(int) ht_set, (int) shaft_set, (int) timing_set,

(int) no_in junct, (int) no_ex_juncts,

(int) in junct_nos, (int) ex_junct_nos (one of each only at present)

*/

1 12 1 0.12708 0.14605 15.75 000.00.2667 1.0-1 0 0 0 0 1 1 0 1

2 1 2 1 0.12708 0.14605 15.75 240.0 0.2667 1.0 -1 0 0 0 0 1 1 2 3

3 1 2 1 0.12708 0.14605 15.75 480.00.2667 1.0-1 0 0 0 0 1 1 4 5

4 12 1 0.12708 0.14605 15.75 120.00.2667 1.0-1 0 0 0 0 1 1 6 7

249

5 1 2 1 0.12708 0.14605 15.75 600.00.2667 1.0-1 0 0 0 0 1 1 8 9

6 1 2 1 0.12708 0.14605 15.75 360.0 0.2667 1.0 -1 0 0 0 0 1 1 10 11

/*

D.1.4 Manifold data:

(int) vol_no, (int) vol_type (2 - no ht, 3 - with ht),

(int) task_type (2=cyl,3= irc i,4=em), (int) tc_no (which turb/comp to use)

ht_set (-1 for no ht),

volume (m^), (int) no_in_junct, (int) no_ex_juncts, (int) in_junct_nos, (int)

ex_junct_nos

*/

7230-10.00488 16 12 0 2 4 6 8 10

8 3 4 0 00.00138 3 1 1 35 13

9 3 4 0 10.00120 3 1 7911 14

/*

D.1.5 Junction data:

(int) junc_no,

(int) junction type (2 - oriface, 1 - poppet, 3 - comp. 4 - turb),

effective area (m^), cd, (int) poppet valve_set, shaft set (for crank) and number of

first turbine entry (other 0 including first turbine entry),

(int) entry volume, (int) exit volume

*/

0 1 0.00.0 0 7 1

1 1 0.0 0.0 1 1 8

2 1 0.00.0 0 7 2

250

3 1 0.0 0.0 1 2 8

4 1 0.0 0.0 0 7 3

5 1 0.00.0 1 3 8

6 1 0.0 0.0 0 7 4

7 1 0.0 0.0 1 4 9

8 1 0.0 0.0 0 7 5

9 1 0.00.0 1 5 9

101 0.00.0 0 76

11 1 0.00.0 1 69

12 3 0.00.0 010 7

13 4 0.00.0 0 8 11

14 4 0.0 0.0 13 9 11

/*

D.1.6 Heat release data:

(int) hr_set_no, cal_value (J/kg K), combustion duration (deg),

fuel_pipe_length (m) (same for all the models), wiebe_cl, wiebe_c2

*/

watson 42800000.0 125.0 1.1 0.0 0.0

/*

D.1.7 Cylinder heat transfer data:

(string) heat transfer model (on own line),

woschni-(int) number of surface areas

array of areas (0.0)

array of temperatures (K)

hohen— 1 surface area

251

0 area

initial wall temp (K)

woschni 1

0.0

423

*/

hohen 1

0.0

423.0

/*

D.1.8 Manifold heat transfer data:

(string) model type (ht_simple)

surface_area, heat transfer coeff (exhaust gas),

thermal resistance, thermal capacitance,

estimated wall temp.

*/

ht_simple 0.15 175. 0.225 450.0 303

ht_simple 0.15 175. 0.225 450.0 303

/*

D.1.9 Valve data: repeat for each valve:

(int) number of points, shift factor, stretch factor, area factor

crank angle array (deg), corresponding valve area array (m^)

*/

252

32 0.0 1.0 1.0

000.0 005.0 015.0 025.0 045.0

050.0 055.0 065.0 075.0 085.0

090.0 095.0 100.0 105.0 115.0

125.0 135.0 145.0 150.0 155.0

160.0 165.0 175.0 185.0 190.0

200.0 210.0 220.0 230.0 710.0

715.0 720.0

1.175e-4 2.020e-4 5.570e-4 9.630e-4 1.572e-3

1.633e-3 1.674e-3 1.675e-3 1.634e-3 1.602e-3

1.589e-3 1.581e-3 1.580e-3 1.579e-3 1.580e-3

1.588e-3 1.615e-3 1.655e-3 1.673e-3 1.683e-3

1.674e-3 1.641e-3 1.485e-3 1.167e-3 9.630e-4

5.250e-4 2.310e-4 9.500e-5 000000.0 000000.0

3.300e-5 1.175e-4

32 0.0 1.0 1.0

000.0 004.0 014.0

494.0 504.0 514.0 534.0 539.0

544.0 549.0 554.0 559.0 564.0

574.0 584.0 594.0 604.0 614.0

624.0 634.0 644.0 654.0 664.0

669.0 674.0 679.0 684.0 689.0

694.0 704.0 714.0 720.0

1.500e-4 8.200e-5 000000.0

253

000000.0 8.200e-5 3.060e-4 9.680e-4 1.104e-3

1.159e-3 1.189e-3 1.201e-3 1.175e-3 1.163e-3

1.092e-3 1.084e-3 1.089e-3 1.091e-3 1.091e-3

1.090e-3 1.088e-3 1.083e-3 1.119e-3 1.175e-3

1.199e-3 1.189e-3 1.160e-3 1.095e-3 9.630e-4

8.010e-4 4.450e-4 1.980e-4 1.500e-4

/*

D.1.10 Shaft details:

(int) shaft no., (int) shaft_type (1 - crank, 2 - turbocharger),

(int) dynamic, (0 - constant shaft speed; 1 - dynamic shaft speed),

load_inertia, load_torque,

shaft_speed, crankcase pressure, mechanical efficiency (turbocharger)

(int) no_of_cyls or junctions connected to shaft,

if shaft_type =1:- (int) cylinder numbers, else leave blank

if shaft_type = 2:- (int) junction (turbine or compressor) numbers, else blank

*/

0 1 0 le21 300.0 1500.0 le5 0.0 6 01 2 3 4 5

1 2 1 0.0002 0.0001 68829.60 0.0 0.95 3 12 13 14

/*

D .l.ll Initial conditions:

In control volume order.

Pressure (N/m2), Temperature (K), FAR

*/

117246.78 652.69 2.8482158e-002

254

197465.72 387.44 6.6022854e-004

583237.44 1108.38 3.5283495e-002

148741.17 334.12 7.9941779e-004

162893.17 793.59 3.5289638e-002

9415444.00 1426.87 1.0372365e-002

152357.84 300.94 4.0311828e-005

107916.05 653.61 3.5221875e-002

155900.39 785.62 3.5240222e-002

/*

D.1.12 Ambient conditions:

Pressure (N/m^), temperature (k) and fuel/air ratio at inlet and exhaust

*/

1.0022e5 290.842 0.0000

1.0022e5 290.842 0.0000

1.0022e5 290.842 0.0000

/*

D.1.13 Integration step information:

stepsize in seconds or degrees (set time to zero for degree option),

starting crank angle for cylinder 0

(int) loopcount, tolerance (for LoStab, HiStab)

*/

0.0 2.0 0.0 4 0.005 0.9

/*

255

D.1.14 Crankangles at transition points:

In degrees w.r.t. cylinder 0

eve, ivc, static timing(same for all the sets),

estimated_pow_angle, evo, ivo

*/

14.0 230.0 338.0 463.0 494.0 710.0

 */

256

D.2 An Example Compressor Data File

/*

H e_ He

* Compressor data file *
He He

* UNITS - All values are multiplied by the appropriate scaling factor. *

* When this is has been done, the units should be : *

He He

* Speed : Actual turbine speed in rads/s. *

* Pressure Ratio : This is a simple ratio hence is dimensionless. *

* Efficiency : Dimensionless (0 < eff < 1). *

* Mass Flow Rate : Normalised mass flow rate in kg/s. The program scales *

* these values by P(ambient)/sqrt(T ambient). *

He He

* The values for ambient temperature and pressure are in SI units, ie *

* temperature (K) *

* pressure (N/mA2) *

He He

He_ He

* D .2 .1 C o n tro l d a t a : No.speed curves, No.points, Scaling factors:

pr,np,ef,mp *

*/

11 11 1.0 0.1047 1.2e-3 1.37091e-6

257

/*

D.2.2 Intercooler data:
press loss(n/m^),inlet temp(k),effectiveness

*/

2622 289.6672 0.872592

/*

D.2.3 Tabulated map:
Pressure ratio, Mass flow parameter, efficiency

*/

46300

1.300 00 000

1.250 20 725

1.220 25 650

1.150 30 520

1.080 35 425

1.000 40 350

1.000 45 275

1.000 50 225

1.000 55 200

1.000 60 175

1.000 65 150

*

56300

1.575 00 000

1.550 20 725

1.545 25 750

258

1.513 30 740

1.450 35 690

1.375 40 575

1.250 45 475

1.100 50 375

1.000 55 300

1.000 60 250

1.000 65 200

*

67900

1.900 00 000

1.875 20 670

1.860 25 710

1.850 30 750

1.840 35 760

1.790 40 740

1.700 45 700

1.540 50 585

1.225 55 450

1.000 60 375

1.000 65 325

*

77900

2.275 00 000

2.255 20 550

2.250 25 630

2.245 30 700

2.235 35 745

2.225 40 765

259

2.175 45 755

2.075 50 735

1.900 55 660

1.450 60 450

1.100 65 325

*

87100

2.675 00 000

2.650 20 450

2.645 25 525

2.640 30 600

2.635 35 675

2.625 40 725

2.600 45 750

2.588 50 755

2.475 55 735

2.275 60 675

1.250 65 000

*

95100

3.140 00 000

3.063 20 520

3.056 25 580

3.050 30 630

3.044 35 670

3.038 40 700

3.031 45 725

3.025 50 740

2.975 55 745

260

2.825 60 720

2.375 65 600

*

102700

3.500 00 000

3.488 20 490

3.481 25 565

3.475 30 615

3.469 35 650

3.463 40 675

3.456 45 700

3.450 50 710

3.438 55 720

3.375 60 720

2.950 65 650

261

D.3 An Example Turbine Data File

i *
* ___*

* Turbine data file *
* sic

* UNITS - All values are multiplied by the appropriate scaling factor. *

* When this has been done, the units should be : *

* *

* Speed: Normalised turbine speed in rads/s. These speeds are *

* multiplied by sqrt(turb inlet temp) within the model. *

* Pressure Ratio: This is a simple ratio hence is dimensionless. *

* Efficiency: Again dimensionless (0 < e f f < l) *

* Mass Flow: Normalised mass flow in kg/s. The program multiplies *

* these values by P(e_man)/sqrt(turb inlet temp). *

% afc

* The de-normalising parameters have standard SI units, ie *

* temperature (K) *

* pressure (N/mA2) *

* *

*__ *

D.3.1 Control data:
No. speed curves, No. points, No. inlets,

Scaling Factors: pr, np, ef, mp

*/

1 11 2 1.0 6.017 le-3 1.0e-3 1.26984e-6

262

/*

D.3.2 Tabulated turbine map:
Pressure ratio, Mass flow parameter, Efficiency

*/

000

1.0 00.0 500

1.1 22.0 640

1.2 30.0 675

1.4 37.6 700

1.6 41.8 705

1.8 44.2 710

2.0 45.5 710

2.2 46.0 700

3.0 44.0 650

4.0 42.0 600

5.0 42.0 600

*

263

Z
64

Intercooler Compressor

12

Inlet Manifold 7

Load 1C

1 f c f 2 W 3

Junctions
Cylinders

Shaft 0
4 n 5 n 6

13

11
Shaft 1

Exhaust Manifolds 14

Turbine

Figure D.1 Schematic drawing of a six cylinder turbocharged Diesel engine

