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Summary

In this thesis, a multicylinder turbocharged Diesel engine simulation using a 

distributed memory, transputer based parallel computer is presented. The new 

simulation has a flexible data entry mechanism which allows the user to change 

different parameters of the engine and which allows their effects observed without 

changing the actual code. The simulation results are compared with the results of an 

equivalent simulation. A comparison is also made between the simulated results from 

an engine. Different parallel methods to increase computation speed are discussed.
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Introduction

"It took five months to get word back to Queen Isabella about the 

voyage of Columbus, two weeks for Europe to hear about Lincoln’s 

assassination, and only 1.3 seconds to get the word from Neil 

Armstrong that man can walk on the moon [1].”

1.1 The Technological Revolution

It took man thousands of years to progress from the stone age to the atomic age, but it 

took him less than a century to advance from the early era of valves and tubes to the 

present day era of electronic technology.

Discovering the power of electricity by Edison was like the ’’taming of the shrew", 

once tamed, rapid improvements followed and electrical power moved from the 

experiments of the laboratories to the essentials of everyday life. New technologies 

emerged. Germanium and silicon were discovered as bases for thin layer electronic 

devices. Transistors replaced valves and were themselves then replaced by the 

integrated circuits [2].

The advent of technology triggered a chain reaction; new fabrication techniques 

followed new devices, which in turn followed new techniques. Very large scale 

integration (VLSI) techniques helped pack large number of individual components 

onto a single chip. The transistor density per package increased from one to one 

million [3].
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1.2 The Computer

All these advancements brought a parallel revolution in the world of computing. The 

helping aids for mathematicians changed their shape from the ABACUS to pocket 

calculators [4] and from the analytic engine of Charles Babbage [5] to the digital 

computers of the present day world.

The decade of the 1940s saw the evolution of the first generation of stored program 

computers based on valve technology, like ENIAC [6] and EDS AC [7]. Later in the 

late 1970s and early 1980s, emergence of a new type of integrated circuit (IC), called 

a microprocessor, and developments in the field of memory devices changed the 

shape of digital computers and made them cheaper, smaller and reliable.

In recent years, it has become possible to pack a central processing unit (CPU), a 

floating point processor, some memory and input/output (IO) channels on a single IC 

chip. This kind of microprocessor makes it possible to realise that parallel computers 

could be constructed from a large number of identical units, each with its own 

processing unit, memory and communications.

This flood of new technology made it possible to experiment in different directions, 

diverting from the initially defined Von Neumann computer architecture to other 

novel architectures [8].

1.3 Parallel Processing

Although parallel computing is not a new idea, the earliest reference to parallelism is 

thought to be by Charles Babbage [5], the first general purpose computer that 

contained parallel features was ACE [9], whose commercial derivative DEUCE [10]
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could perform multiplication or division in parallel with data transfer to or from 

memory.

As the technology developed, the demand to solve more difficult problems increased. 

To fulfil this demand, uniprocessor systems were proving to be inefficient and costly. 

It was thought that a multiprocessor system, consisting of 'n' processors would, in 

theory, compute 'n' times faster than a uniprocessor system. The problem, however, is 

to use these processors effectively and efficiently at the same time to solve a variety 

of different problems.

Parallel processing is finding its way into a number of applications very rapidly; from 

database search applications [11] to radar control in military applications [12], and, of 

course, in the field of simulation [13]. In this thesis, for example, parallel processing 

has been used in the field of Diesel engine simulation.

1.4 Diesel Engine Simulation

The Diesel engine is recognised especially for its efficiency and reliability which 

explains its well established position in commercial vehicles and industrial 

applications. In recent years, Diesel engineering is becoming a fast growing applied 

engineering discipline designed to meet exacting demands for designing Diesel 

engines optimized in relation to greater efficiency and power, low noise, acceptable 

emissions, fuel economy and greater maintainability.

Because of the complexity of the physical phenomena involved in the Diesel engine 

processes, the design of engines has been a complex and demanding problem, and to 

get necessary 'know how’ for this purpose extensive testing of prototypes has been a 

necessary prerequisite to all engine development. Engine simulation can be used to
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systematize the knowledge obtained through this expensive engine testing. It can also 

reduce the amount of engine testing by narrowing the range of variables that must be 

studied experimently. Engine simulation can help predict the behaviour of the engine 

for those variables for which little is known and in this way new experiments may be 

carried out and results predicted well before a prototype design is suggested [14]. For 

example, SPICE, the simulation program for internal combustion engines [15], can be 

used for a number of prototype designs before an internal combustion engine is 

physically built. Similarly DEEDS, the Diesel engine expert diagnostic system [16], 

which is an integration of engine simulation programs and expert system techniques, 

has been developed for maritime engine condition monitoring and fault diagnosis.

Once designed, a steady performance can be obtained by the Diesel engine if it is 

maintained properly. For this purpose, new electronic controls are being employed. 

These may include a single microprocessor control system or a number of 

microprocessors monitoring a number of parameters of the engine simultaneously, 

providing a possible parallel computer engine control system [17,18, 19].

1.5 About This Thesis

In this thesis the work carried out to simulate a Diesel engine on a transputer based 

parallel computer is described.

Chapter 2 describes the 'filling and emptying' method on which the Parallel Diesel 

Engine Simulation (PDESIM) developed in this thesis is based. This chapter also 

describes the state equations relating cylinders, manifolds, various junctions, actuators 

and shafts. A dynamic engine model is described at the end of the chapter.
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In chapter 3 the Bath University Transputer based Parallel Computer (BUTPC) which 

is used for the PDESIM is outlined.

Chapter 4 is a description of the operating system for the BUTPC. Some of the 

communication limitations are discussed and new communication mechanisms are 

proposed to achieve higher data transfer rate for the PDESIM.

Chapter 5 discusses different parallel algorithms. It also describes implementation of 

these algorithms on the BUTPC.

Chapter 6 describes the simulation of a six cylinder Diesel engine on the BUTPC. It 

also describes the new technique applied in order to make the simulator more flexible 

as compared with the previous implementations by Jones [20] and Haysom [21].

In chapter 7 a brief description of a Leyland TL11 experimental Diesel engine is 

provided. A comparison of the FJH Model [21] results and the simulated results from 

the PDESIM is also discussed with the help of a number of engine performance maps 

generated using the data obtained from the FJH Model and the PEDSIM.

Chapter 8 discusses possible applications of the PDESIM developed in this thesis.

Chapter 9 concludes the work carried out for this thesis, and chapter 10 gives 

suggestions for the possible future work in the Parallel Diesel Engine Simulation area.
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The Diesel Engine Model

2.1 Introduction

A model is a mathematical representation of a complicated physical situation. It is 

formulated by selecting the properties of a system which are important in determining 

the required information. A model should represent the behaviour of the system itself 

and the behaviour of its boundaries as well. A Diesel engine is essentially a 

thermodynamic system. Hence to describe the Diesel engine system behaviour, a 

thermodynamic model is needed.

There are a number of engine models available that range from semi-empirical 

matching calculations to comprehensive analysis of the fluid and thermodynamic 

processes that take place in the engine. The usefulness, accuracy and running costs of 

these models vary tremendously. These models can be classified in three basic 

groups[22]:

zero dimensional 

quasi dimensional 

multi dimensional

The zero dimensional models assume that:

o a homogeneous mixture of ideal gases exists at all times and at all

points within the system; perfect mixing, 

o the instantaneous state of the gaseous mixture can be defined by

pressure, temperature and fuel to air ratio; thermodynamic equilibrium, 

o fuel mixes and bums instantaneously as it enters the cylinder,

o unbumt fuel vapours do not affect the ignition delay or the combustion

process.
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0 quasi steady state flow occurs between the control volumes.

The quasi dimensional models:

o account for finite rate effects due to injection, vaporization, mixing and

combustion.

o divide the fuel injected into the combustion chamber into several

zones.

o account for the jet deflection by the surrounding air in the combustion

chamber.

The multidimensional models:

o account for the temporal and spatial variations of the fluid flow,

temperature, gas composition, pressure and turbulence within the 

combustion.

o consider the injected fuel as droplets sprayed inside the combustion

chamber and hence the effects of gas phase turbulence on the liquid 

driblets.

In this thesis, the zero dimensional models are used in conjunction with 'filling and 

emptying' method (FAEM) to model the Diesel engine to be simulated. The FAEM 

views a Diesel engine as a set of interconnected thermodynamic control volume 

models. Each of the control volumes represents one of the cylinder or manifold 

volumes of the engine. These control volumes are interconnected by the valve and 

port models. The turbine and compressor are viewed as connections between the 

manifolds and the atmosphere with the flow through them being modelled by the 

compressor and turbine characteristics.
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The FAEM can be explained as follows:

o Air enters into the inlet manifold either via an orifice or via a

compressor.

o Heat transfer occurs between the gas and the walls of the inlet

manifold.

o Gas leaves the inlet manifold via the inlet valves to the cylinder.

o When the inlet valve is open, gas enters the cylinder.

o Fuel is injected into the cylinder when both, the inlet and exhaust

valves are closed.

o Heat transfer occurs between the cylinder walls and the gas mixture in

the cylinder.

o Useful work is transferred to the shaft via the piston.

o Gases leave the cylinder when the exhaust valve is open to the exhaust

manifold.

o The exhaust manifold receives hot gases from the cylinder when the

exhaust valves are open.

o Heat is transferred from the hot gases to the exhaust manifold walls.

o Exhaust gases leave the exhaust manifold, either via the orifice or

through a turbine.

Figure 2.1 shows how the thermodynamic behaviour of a six cylinder turbocharged 

Diesel engine is represented using a FAEM.

In the following sections, the state equations representing changes in the control 

volume mass, the fuel to air ratio and the temperature are discussed alongwith the
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submodels that describe different chemical and physical processes within a particular 

control volume.

2.2 The Control Volume Gas State Equations

The state of the gas in a control volume can be represented at any instant of time by 

its temperature, mass and composition. The three state equations that represent rates 

of change of these parameters, can be derived by applying laws of conservation of 

mass, energy and fuel species to the mixture contained in a control volume [21]. and 

are given below.

where dm/dt is the overall rate of change of mass of the gases inside a control 

volume, dmj/dt is the rate of change of mass associated with the jth port connected to 

the control volume and dm^/dt is the rate of change of fuel burnt in the control 

volume.

2.2.1 Rate of change of mass

Hm Hm •
2.1

2.2.2 Rate of change of fuel to air ratio

dX (1+X)
2.2

dt m

where dX/dt is the rate of change of fuel to air ratio inside the control volume, and 

(Aj/(l+Aj)dmj/dt) is the fractional change in the fuel to air ratio associated with the jth 

port connected to the control volume. The terms containing dm^/dt and dm/dt



represent change in the fuel to air ratio caused by the burnt fuel and the change in 

total mass of the control volume respectively.

2.2.3 Rate of change of temperature

dT 1 p dV ^  dQw drrij dm ^ dm 5u dA, ,
= L "p * " l*oj *■ hcalval u “m J 

dt m5u/5T dt dt dt dt dt 8 X  dt

where dT/dt is the overall rate of change of temperature within the control volume. 

The term containing PdV/dt represents the useful work done by the control volume 

gases, and dQw/dt is the loss of energy in the form of heat exchange to the walls of 

the control volume. The term containing h0jdmj/dt represents the amount of enthalpy 

associated with the mass entering or leaving through a port connected to the control 

volume and hcajvaj.dm^)/dt is the representation of the amount of enthalpy entering 

the control volume due to the fuel burnt inside the system. The remaining terms 

containing u represent the specific internal energy of the mixture.

2.3 The Cylinder Control Volume Equations

The above state equations are general in nature and can be applied to any control 

volume. But there are some terms which are not needed during certain stages of the 

Diesel engine cycle. Which can then be simplified for the six stages of the cylinder 

cycle: scavenge, induction, compression, combustion, power stroke and exhaust.

All these stages depend upon the position of the crankshaft with respect to a 

reference. In this thesis, the top dead center (TDC) is taken as a reference. The 

relationship between crankshaft position and time is defined by equation 2.4.

0 = fcoedt+0o 2.4
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where 0O is the angular position of the crankshaft in radians with respect to the TDC 

at t=0, and coe is the engine speed in radians per second.

The equations for individual sections of the Diesel engine cycle are derived for the 

case of one inlet and one exhaust valve per cylinder and are given in the following 

sections.

2.3.1 Scavenge

The scavenge period is defined when both the inlet and the exhaust valves are open. 

During this period no combustion takes place. Hence

dmfb
—  = 0 2.5a
dt

dmsc dmj dme
 = ................. 2.5b
dt dt dt

d^Sc l-*"̂  r /  dmj k ^  dm^ Adm<,q
 = —  L d - M ............................ )    J 2.5c
dt m 1+Xj dt 1+A,e dt dt

dTsc 1 r dV dQw dmj dme dmsc 8u dXsc-.
 = ----- [ -P --+  2ww —  + h0j .....................u .........m........... J 2.5d
dt m8u/8T dt dt dt dt dt 8k dt

2.3.2 Induction

During the induction period, only the inlet valve is open and no combustion takes 

place. Hence

dmfu dm-
  = 0;  = 0 2.6a
dt dt
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drriin dmj
2.6b

dt dt

dXjj| p y Xj dm j . Xdmjn
 [ (1+x>(------ ) .......-  J
dt m 1+Xj dt dt

dTjn 1 j- dV n  dQw dmj dmj^ 8u dAĵ j
 = -----  [  -P - - .+  2^w —  + ho i.........u - .........m --------- J
dt m5u/5T dt dt dt dt bX dt

2.6c

2.6d

These equations represent normal conditions when gases flow from the inlet manifold 

to the cylinder via the inlet valve. But, if at some stage, the pressure in the inlet 

manifold is less than the pressure in the cylinder during the induction period, then 

reverse flow occurs. Under these conditions

dXjn
  = 0  2.6e
dt

2.3.3 Compression and Power

The compression and power strokes are defined when both the inlet and exhaust 

valves are closed and no combustion occurs. Hence the simplified state equations are

dmfu dm: dnu
= 0; - - ' = 0 ;  — *=0 2.7a

dt dt dt

dmri
  = 0 2.7b
dt

c&ci
  = 0 2.7c
dt
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dTc, 1 dV _  dQ
 =  L -P -— + 2.IW —  J  2.7d
dt m.8u/8T dt dt

2.2.4 Exhaust

Exhaust period is defined when only the exhaust valve is open. There is no 

combustion during the exhaust period. Hence the simplified state equations that 

represent normal exhaust stroke are

dmfb dmj
  = 0;  = 0 2.8a
dt dt

timex dme
  = -------  2.8b
dt dt

   0 2.8c
dt

dTex 1 p dV y  dQw time dmex ,
   -----  [  -P — + jL w   u   J  2.8d
dt m8u/8T dt dt dt dt

But, if reverse flow occurs during an exhaust stroke due a low pressure inside the 

cylinder compared with the pressure inside the exhaust manifold, then the rate of 

change of fuel to air ratio and that of temperature are given as

d̂ ex i+̂  r /  dme \  d̂mex
. . . . .    ) ..............
dt m 1+Xe dt dt

dTex 1 r  dV y  dQw dme dmex 8u dXex-.
  -----  [  - P — + Z«fw  +  u-.......m --------- J 2.8f
dt mSu/ST dt dt dt dt 8A, dt

2.8e
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2.3.5 Combustion

Fuel is injected into the cylinder when both the inlet and the exhaust valves are 

closed. Fuel is considered to be a liquid before combustion and therefore assumed to 

have no effect on the gas of the cylinder before combustion. Thus, during combustion 

period, the state equations become

drrij dme
 = 0;  = 0 2.9a
dt dt

dnicb dmfb
 = -----  2.9b
dt dt

dXcb 1+* dmfb
 = ................. 2.9c
dt m dt

dTcb 1 r dV _  dQw dm dmcb 8u dXcb
  =   [  - P — + Zrfw -----+ hcalval.........u ------- m --------- J 2.6d
dt m5u/ST dt dt dt dt SX dt

2.4 The Manifold Control Volume Equations

The general FAEM state equations may be simplified for the inlet and the exhaust 

manifold control volumes as no combustion is assumed to occur in any of the 

manifold control volumes, and also a manifold has a constant volume. Hence

drrifb dV
  = 0;  = 0; 2.10
dt dt
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2.4.1 Inlet Manifold

Neglecting heat transfer to the walls of the inlet manifold, the three state equations 

that represent an inlet manifold are

dmim dm^ v  dmj
 =  Id  j   2.11a
dt dt dt

d̂ irn 1+̂  r /  îa ^mia v  t̂mi \  t
L a+ x )( L {   ;   j  m b

dt m 1+Xja dt 1+Xj dt dt

^ im  * r ^mia y  ^mi ^ im  ^iim
 = -----  L hoia  + A  ho i.........u ..........m " .........  J 211c
dt m5u/5T dt dt dt 8A, dt

where the subscript ia represents an entry port to the inlet manifold, which may be 

either an orifice or a compressor.

2.4.2 Exhaust Manifold

dmem y  *"« ^ e a

dt dt dt
2.12a

1+V  /  ^ea dmga \  ^ merrn
 =   [  (i+X) (   +   )    J 2.12b
dt m 1+A.ga dt 1+Xe dt dt

^em  * r dQw ^ e a  y  ^ em  ^em-j
_____ s  — _— I 2) _ h o e a  ——— +  —__ -  u  ——  -  m  -  ______ I

dt m5u/5T dt dt dt dt bX dt

2.12c

where the subscript ea represents an exit port from the exhaust manifold, which may 

be an orifice or a turbine.
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2.5 Sub Models

In order to evaluate the state equations, their constituent terms are either calculated 

using the thermodynamic laws or empirical models derived from the experimental 

data are used where these laws are not directly applicable. The following sections 

describe the equations representing the terms in the state equations.

2.5.1 Gas properties model

This model calculates the values of the following quantities for use by the engine 

model in the state equations.

u the specific internal energy of the gas

8u/5T partial derivative of specific internal energy with respect to

temperature

b u / b k  partial derivative of specific internal energy with respect to fuel to air 

ratio

R the gas constant

y ratio of specific heat at constant pressure to the specific heat at

constant volume 

ho specific enthalpy of the gas mixture

The empirical relations used to calculate these quantities are derived by Charlton [15]

from the tabulated data for the internal energy and the gas constant for the equilibrium 

combustion products of a hydrocarbon and air. In this model the gas dissociation

effects are ignored and the specific internal energy becomes a function of only the

temperature and the gas composition. The gas constant is defined as a function of gas 

composition only. Hence
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u = f(T,X) 2.13a

R * f(A,) 2.13b

The gas model expressions for the lean fuel to air ratio mixtures are:

Ka- Kb X
u = -----------  2.14a

1 + X

Ka = 696T+0.89465e-3T2+102.512e-6T345.52e-9T4+6.22e-12T5 2.14b

Kb = 722.903T+1.57193T2-523.84e-6T3+116.61e-9T4-12.533e-12T5 2.14c

270.21 + 288.294 X
r  = -------------------- 2.14d

1 + X.

5u
— = (101.4663-2.5223T-1.055e-3T2+l .7569e-7T3) X + 920.7128-0.2806T-5.4939e-5T2 - R 
5T

2.14e

8u 26.053T+1.57104T2-626.352e-6T3+162.1283e-9T4-18.75e-12T
— = --------------------------------------------------------------------------- 2.14f
6X (1+X)2

R
y = 1 + -------  2.14g

8u/6T

ho = u + R.T 2.14h

2.5.2 The heat release models

Combustion is one of the most complex processes carried out in a Diesel engine and 

is responsible for the useful work output from the engine. It may be considered to 

commence when fuel is dynamically injected into the cylinder. It comprises of an 

ignition delay followed by a period of heat release.
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Once ignition takes place, the combustion mechanisms accelerate, resulting in a rapid 

rate of pressure rise. The first appearance of a flame following ignition is of the non- 

luminous, pre-mixed type. The highest rate of heat release is normally associated with 

this relatively short period of uncontrolled burning.

At the high temperatures corresponding to the main period of combustion, which 

follows the pre-mixed burning stage, the burning rate is controlled by the mixing 

pattern, which is dependent on purely mechanical and physical processes. This stage 

is called the diffusion burning stage, subsequent to which the diffusivity of the fuel 

becomes low and the rate of heat release becomes dependent upon chemical kinetics 

of the mixture and the amount of oxygen left in the combustion chamber. All these 

four stages of chemical combustion are shown in figure 2.2.

In the following sections, along with a model for ignition delay, two different models 

are represented to calculate combustion processes in the Diesel engine.

It should be noted that in the simulations developed by Jones [20] and Haysom [21], a 

fixed combustion model was used which could not be exchanged with any other 

model. But in the simulation presented in this thesis two different combustion models 

are given, either of which can be selected at the start of the simulation as explained in 

chapter 5.

2.5.2.1 The Ignition delay model

The fuel when injected into the engine cylinder, does not ignite instantaneously. The 

time interval between the start of fuel injection and the start of its ignition is termed 

as ignition delay. The duration of this period greatly affects the intensity of the
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subsequent burning, hence the rate of pressure rise, maximum cylinder pressure and 

the indicated mean effective pressure [23].

Wolfer [24] derived a semi-empirical relationship to calculate the ignition delay by 

considering a number of factors, such as:

amount of air 

amount of fuel

shape of combustion chamber 

shape of fuel nozzle 

injection pressure

turbulence and mixing inside the combustion chamber 

fuel temperature

He found that the ignition delay was a function of the mean temperature and pressure 

during the ignition delay period. This Wolfer ignition delay relation, given in equation 

2.15 was used to calculate the ignition delay with coefficients suggested by Watson 

[25].

453.4638 e2100/Tm
q j = ----------------------  2.15

g Pm 1-022

2.5.2.2 Watson heat release model

The first model used to describe the fuel burning rate is due to Watson et al [26]. It 

assumes that

0 the combustion consists of two main parts, the pre-mixed and the 

diffusion combustion.
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o both these parts start at the same time at ignition,

o the overall combustion correlation is due to the individual

contributions from these two parts.

Equation 2.16a represents the pre-mixed combustion whereas equation 2.16b 

represents the diffusion combustion.

FBRp(x) = 1 - (1 - xCp!)Cp2 2 16a

FBRd(x) = 1 - exp(-Cdl xCd2) 2.16b

The overall combustion correlation is:

FBR(x) = P FBRp(x) - (1 - P) FBRd(x) 2.17

where p is defined as the 'mode of burning’ which expresses the cumulative fuel burnt 

during pre-mixed combustion as a fraction of the total fuel injected. The constants 

Cpl» Cp2 ’ Cjjj, and are called the shape factors.

Equation 2.17 gives the rate of fuel burning as the sum of two weighted distributions 

which are non-dimensionalised with respect to the amount of fuel injected into the 

cylinder and the nominal time of the combustion.

The shape factors, Cpj, Cp2 » and and the mode of burning, p, are 

dependent on the engine operating conditions. For the purpose of this model these 

values were taken from Watson [25] and are given in equation 2.18 as

Cpx = 2.0 + 44.549 (tigd to^2-4 2.18a

Cp2 = 5000.0 2.18b

Cdl = 2.5463 \ - ° - m  2.18c
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1.0- 0.4125 A.0-37
Cdo = ---------------------- 2.18d

•igd“ 6

If is the amount of fuel injected during a combustion period 'Acom^' then the 

rate of fuel burning may be given by equation 2.19 in the form

dmfb FBR(t) mfin:
—  -  ----------------  2.19

^comb

e -©i © - ©j
where t = -------= -------

0e - 0 j ^comb

and 0j = angle with respect to TDC at which ignition starts. 

0e = angle with respect to TDC at which ignition ends.

2.S.2.2 Wiebe heat release model

The second heat release model is based on the Wiebe function [25], which is a simple 

algebraic formula for the fuel burnt as a fraction of the total fuel injected. It is given 

in equation 2.20.

FB(t) = 1 - exp(-K2 t k1+1) 2.20

Differentiating with respect to t gives

dFB(x)
 = K2 (K1 + 1) xK1 exp(-K2 xK l + l ) 2.21
dx
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where FB is the fraction of fuel burnt per total fuel injected per cycle per cylinder, 

FBR is the non-dimensional fuel burning rate, K1 is the shape factor and K2 is the 

combustion factor.

2.5.3 The Heat Transfer Models

Heat is transferred from the gas in a control volume by convection at the control 

volume walls and by the radiation from flame and luminous carbon particles. Heat 

entering the walls is passed through the coolant with forced convection. As the forced 

convective heat transfer at the gas-to-wall interface has a more important impact on 

the heat transfer than conduction through the wall or transfer from wall to coolant, the 

heat transfer due to conduction is assumed to be negligible. Also, as the significance 

of the contribution of radiation may vary between 0% to 30% [27], its effects on the 

overall heat transfer are ignored in this thesis.

Hence a convective, gas-to-wall heat transfer model may be defined by the equation 

2.22.

dQ
— = SAhtc(Tg -Tw) 2.22
dt

where dQ/dt is the rate of heat transfer across the surface area SA. Tg and Tw are the 

temperatures of the control volume gas and wall respectively and the proportionality 

constant 'htc' is known as the heat transfer coefficient.
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The surface area, SA, of the control volume is calculated from the knowledge of the 

geometry of the control volume. In case of a cylinder, shown in figure 2.3, it is given 

by equation 2.23, whereas it is a constant quantity for a manifold.

SAgyj = SA^ix: + nd(l + r(l - cosG) - sqrt(l - A iiA )) 2.23

For a manifold, the htc is taken as a constant quantity [20]. But in case of a cylinder, 

as the heat transfer primarily depends on the flow conditions within the cylinder 

which are difficult to predict, the calculation of htc is not a linear problem. In the 

following sections two different empirical methods are described to calculate the 

value of the htc.

2.5.3.1 Hohenberg heat transfer model

Hohenberg [28] derived a semiempirical heat transfer model assuming only the 

convective heat transfer conditions. The htc due to Hohenberg, given in equation 

2.34, depends upon the cylinder temperature, pressure, volume and the mean piston 

speed. The two empirical constants, and depend upon the operating 

conditions inside the cylinder and ideally should be determined from the heat transfer 

measurements on the engine being modelled.

htc = Chl P0-8 (upis + Ch2)0'8 V"0-06 T ° a  2.24

where Vpjs = 2rcoe/7t

2.53.2  Woschni heat transfer model

The heat transfer model derived by Woschni [29] is based on the experiments on 

motored and fired engines and a constant volume bomb. It describes two different
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heat transfer coefficients; one for the scavenge period and the other for the rest of the 

cycle. Equation 25 gives the hts as defined by Woschni.

hie = c wl p0 » d-0-2 r°-53 [ Cw2 V s  + c w3cw4cw5]0.8 

Cwl = 12.99 10-3

2.25a

2.25b

Cw2 = 6.18 (during scavenge) 2.25c

Cw2 = 2.28 (during compression and expansion) 2.25d

Cw3 = 3.24 10-10 m/sec °C

Cw4 = Vtotai / (Va t jnj Pat_inj)

C\v5 = P " ^motoring

2.25e

2.25f

2.25g

where Pmotoring *s cylinder pressure corresponding to the current volume under 

motoring conditions.

2.5.3.3 Control volume surface temperature

A simple model is used to calculate the surface temperature of the wall of the control 

volume. Figure 2.4 shows the model. The thermal resistance, RgW, between the gas 

and the wall is calculated from the heat transfer coefficient, and is given in equation

The thermal resistance Rwc and the thermal capacitance Cwc, which represent the 

heat transfer model for the heat flow from the control volume wall surface to the 

engine coolant, can be estimated by having a knowledge of the bulk properties of the 

wall of the control volume. From this model, the rate of change of wall temperature is 

given by

2.26.

Rgw = (SA htc)'1 2.26
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dTo.

di

sa 1 dQ V Tw

C  dt Cwc
2.27

2.5.4 Cylinder volume and rate of  change of  volume

The cylinder trapped volume is a function of the crank angle and is calculated using 

the information about the cylinder geometry as shown in figure 2.3. Equation 2.28 

gives the cylinder trapped volume.

V = 0.25ml2 [crl + r(l-cosG) - sqrt(crl2 - r2sin20) + 2r /  (cr - 1)] 2.28

where 'crl' is the connecting rod length and 'cr' is the compression ratio of the 

cylinder.

Differentiating equation 2.28 with respect to t yields the rate of change of volume and 

is given in equation 2.29.

dV p d0 r2sin0cos0 d0 -.
—  = 0.25ml2 [  rsin0 — + ....................................... -  J 2.29a
dl di sqrt(crl2 - r2sin20) dt

dV p r2sin0co$0
—  = 0.25ml2G)e [  rsin0 + ----------------------  J 2.29b
dt sqrt(crl2 - r2sin20)

where dO/dt = coe = engine speed in radians per second.
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2.5.5 Junction flow models

In this thesis, three types of junctions are modelled; a poppet valve, a compressor with 

an intercooler and a turbine. The models representing flow through these junctions are 

discussed in the following sections.

2.5.5.1 The poppet valve

A poppet valve connects a cylinder control volume to a manifold control volume. The 

rate of mass flow through the valve is a function of the pressure ratio across the valve, 

the effective cross-sectional area of the valve throat, local geometrical effects, heat 

transfer, flow separation and other secondary effects. In this thesis, the mass flow 

through the valves is considered to be quasi-steady, one-dimensional and isentropic. 

These assumptions highly simplify the resultant model. Some account of secondary 

flow effects is taken by introducing an empirical quantity called the discharge 

coefficient into the model.

Two different types of flow occur through the valves; supersonic and subsonic. These 

depend upon the pressure, Pp ratio across the junction, defined by equation 2.30.

^upstream
Pr = ------------- 2.30

^downstream

The pressure ratio at which the transition between the two flow types occurs is known 

as the critical pressure ratio, and is given by equation 2.31.
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where y is the ratio of specific heats of the upstream gas mixture.

If the pressure ratio Pr is less than the critical value, then the flow is subsonic and is 

calculated using equation 2.32a. Otherwise the flow is supersonic and is calculated 

using equation 2.32b.

^sub r  ^Yu ✓ 1 1 \ - i
 ----  = Cd APu sqrt [  ---------  ( .........    )  J 2.32a
dt RuTu(yu-l) pr(2/yu) pr(ya-l)/-yu

dm y  2  CYu+1)/Cyu-1)sup \  i
 = Cd APu sqrt [     ̂ ----------  )  J 2.32b
dt RUTU (yu+1)

Here Cd is the discharge coefficient and the product C^A is the effective cross- 

sectional area of the valve.

The general valve area A is given to the engine model in tabular form as a function of 

the crankangle. A constant area valve can be simulated by providing a constant area 

for all the possible values of the crankangle.

2.5.5.2 The turbocharger

In this thesis, a turbocharger consisting of a conventional centrifugal compressor and 

a fixed geometry turbine, is modelled. The compressor is connected to an intercooler 

which cools the compressed air before it enters the inlet manifold.

The model evaluates the rate of mass flow through the compressor and turbine units. 

It also calculates the torque developed by the turbine and that required to drive the 

compressor via the turbocharger shaft.
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As quasi-steady flow of gas is assumed through the compressor and turbine junctions, 

the flow and efficiency characteristic maps of the compressor and the turbine based 

on their steady flow performance data, obtained experimently or provided by the 

manufacturer, are used to interpolate the required mass flow parameters.

Compressor and turbine models are discussed below.

The compressor

The steady state performance map of a compressor manufactured by Garrett is shown 

in figure 2.5. The mass flow rate through the compressor and the compressor 

efficiency can be calculated by interpolating this map, provided the pressure ratio 

across the compressor, the rotational speed of the turbocharger and the upstream 

temperature and pressure known.

^compressor ûpstream
----------------  = CompMassFlowParameter   2.33
dt sqrt(TUpStream)

Once the compressor efficiency is known, the exit temperature can be calculated 

using equation 2.34.

Td = Tu + ~ U  [ ( - ! ) . , ]
Pu

Equation 2.35 gives the torque required to drive the compressor.

(^oin" ̂ oout) 

dt co,
xc = ...............   2.35

JLC
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where hOjn-hoout is the change in enthalpy of gas after passing through the 

compressor.

The intercooler

The air from the compressor passes through an intercooler before entering the inlet 

manifold, which absorbs heat from the compressed air and hence increases the air 

density. The efficiency of the intercooler is defined as the ratio between the actual 

temperature drop across athe cooler to the theoretical pressure drop due to the cooling 

water. Equation 2.36 gives the value of this effectiveness.

Tin" Tout
T|ic= 2.36

Tin" Tcoolant

From this equation the exit temperature can be calculated as given in equation 2.37.

Tout= (1" “Hie) Tin + ̂ ic Tcoolant 2.37

There is also a pressure drop associated with the intercooler due the resistance offered 

by the cooling surface. Due to this pressure drop APjc, the pressure ratio across the 

intercooler is given by equation 2.38.

poutic + ^ ic
pric = ---------------- 2-38

P- • r mic

The total pressure ratio across the combination of the compressor and the intercooler 

used to calculate compressor mass flow is given by equation 2.39.

poutic' ^ i c
Pf = ----------- 2.39

p.Mncomp
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In this research, a value of 0..9 for the intercooler effectiveness and a value of 10000 

N/m^ for the pressure drop across the intercooler was used [21].

The turbine

The model of the turbine is divided into two imaginary parts, each of which is 

connected to an exhaust manifold. This assumption is made in order to model the 

turbocharger of the experimental Leyland TL11 Diesel engine which has two exhaust 

manifolds and a multi entry turbine.

Both imaginary turbines are constrained to rotate at the same speed, and their mass 

flow performances are scaled so that their combined mass flow is equal to that of the 

real turbine.

Figure 2.6 shows the map of Garrett turbine. The rate of mass flow through the 

turbine can be calculated by interpolating this map and then using equation 2.40.

^turbine ^upstream
 = TurbMassFlo wParameter----------------------------------- 2.40

sqrt(T Upstream)

The exit temperature is calculated using equation 2.41 by using the interpolated 

turbine efficiency.



The resultant torque developed by the turbine is the sum of the individual turbine 

torques produced by each imaginary turbine. It is given by equation 2.42.

V  ^mtj /  ôinj " ôoutj \
Tt = “ j \  /  2.42

dt co^

where h0inj"^ooutj *s c^ange in enthalpy of gas after passing through the jth 

turbine.

2.6 The Engine Dynamics

The model described above for combustion, heat transfer, cylinder geometry and 

junction flows represent steady state engine operation. But if dynamic models that 

describe parameters such as shaft speed, mass of fuel injected and fuel injection 

timing are used, then the dynamic responce of the diesel engine can be modelled 

using the FAEM. These dynamic models are described below.

2.6.1 The engine crankshaft

The engine crankshaft connects all the cylinders together and is responsible for the 

transfer of the power, genereated by the engine, to the outside world. The acceleration 

of the crankshaft depends upon the torque produced by the cylinders, the demanded 

torque from the load on the engine, and the inertia of the crankshaft and that of the 

load. Equation 2.43a represents the engine acceleration as a function of these 

parameters, whereas equation 2.43b gives the engine speed calculated using 

acceleration.
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dco £ xcyl,brake" xload
=  L ----------------  2.43a

d* ^eng' hoad

dcoe
coe = -----  2.43b

dt

The indicated cylinder torque that is a function of cylinder pressure, is given by 

equation 2.44.

dVcyl
xcyl,ind = ^ c y l’ ^crankcase) ®e .̂44

dt

Some of this torque is lost in order to overcome the primary friction which is present 

between the sliding surfaces of the cylinder and the crankshaft bearings, and some 

torque is used up by secondary friction which is caused by driving engine auxilaries 

such as water and oil pumps.

Chen and Flynn [30] have proposed a friction model for a turbocharged Diesel engine 

It is based on the mean piston speed and the maximum cylinder pressure for each 

engine cylinder and provides the friction mean effective pressure as given in eq 2.45.

fmep = Cj + C2 Pmax + C3 upis 2.45

The constants Cl, C2 and C3, which should ideally be obtained from motoring 

experiments, were used, for this research, as proposed by Chen ans Flynn.

Cl = 13.7 C2 = 0.005 C3 = 16.2

Hence the brake cylinder torque generated by each cylinder is given by equation 2.46.
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dVcyl I dVcyl I
xcyl,brake = (^cyl' ^crankcase) we '  ̂ihiep we * 2.46

dt I dt I

Another fixed fmep model is also provided which reads a fixed value of fmep from 

the data file and stops dynamic calculation of fmep.

2.6.2. The turbocharger shaft

This shaft connects the turbine to the compressor and transfers power generated by 

the turbine to the compressor. It is assumed that the friction offered to the 

turbocharger rotor is proportional to the turbine torque. Hence the resultant torque 

that accelerates the turbo rotor is a function of the turbocharger efficiency, rjtc. 

Therefore the turbocharger acceleration is given by:

d®tc T|tc ^ xt ” xc
------------------------------------------  2.47

dt Jte

where £  t t is the friction adjusted torque produced by all the imaginary turbines 

and xc is the torque required to drive the compressor. Jtc is the inertia of the 

turbocharger.

2.6.3 The control actuators

Three different control inputs were modelled by Jones [20]: 

o to control the fuel rack position,

o to get time of fuel injection,

o to define the turbine nozzle restriction for a variable entry turbine.
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The third control input is not considered in this research as a constant geometry 

turbine fixed to the TL11 Diesel engine which was used as a test engine for this 

research. The first two actuators are discussed below.

2.6.3.1 Rack position

Jones found that the hydraulic actuator dynamics were predominancy second order in 

nature. The general equations that describe the engine actuators are given in equation

2.48.

t f ( xactuafcor < xslew) 

xactuator k wn^

xdemand + 2 £ con s + con^

else

xactuator = xdemand ^.48

where x is the displacement from the normal zero position and x is the velocity at 

which the actuator will move under a disturbance. Table 2.1 gives the values used in 

these equations.

Table 2.1:The control actuator model constants

Actuator Gain Damping Natural Slew
ratio frequency rate

(k) ( 0 (con, rad/sec) (m/sec)

Fuel rack 0.98 0.55 174 0.1

Fuel injector 1.00 0.70 125 0.2
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2.63.2 Injection timing

The static angle 0S at which fuel is injected, is determined from the actuator 

dynamics, whereas the dynamic angle at which fuel actually enters the cylinder is 

determined by considering the length of the fuel pipe, engine speed and the speed of 

fuel pressure wave which travels at the speed of sound. The dynamics injection angle 

is given by equation 2.49.

0(j = 0S + ltoe /C 2.49

Once the dynamic injection angle is known the amount of fuel injected into the 

cylinder at that angle may be found by interpolating the fuel injector characteristic 

map shown in figure 2.7.

2.7 Summary

In this chapter the state equations that represent the thermodynamic engine processes 

are described. These state equations are based on a ’filling and emptying' method, 

which considers a Diesel engine as a thermodynamic system consisting of cylinder 

and manifold control volumes, junctions that interconnect these control volumes, and 

shafts that transfer power generated by the engine. Hence, the parallelism is achieved 

by solving each control volume as a separate task. The next chapter describes the 

hardware features of a parallel computer on which the above Diesel engine model is 

implemented.
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Figure 2.1 Filling and emptying model representation of a six cylinder Diesel engine
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Tgas Rgw Twall Rwa Tambient

Cwa

Rgw = Thermal resistance between control volume gas contents and wall

Rwa = Thermal resistance between wall and atmosphere surrounding it

Cwa = Thermal capacitance between wall and atmosphere surrounding it

Figure 2.4 A control volume heat transfer model
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Chapter 3



The Bath University Transputer Based 
Parallel Computer (BUTPC)

3.1 The BUTPC for Diesel Engine Simulation:

To achieve higher throughput for the diesel engine simulation, a new parallel 

computer was needed. The options available were:

redesign the existing Motorola 68020 based processing nodes [31] and 

the backplane using new high speed components, 

use an upgraded version of the same family of processors, for example 

a Motorola MC68030.

use the Intel 80286 processor available at that time.

use the INMOS transputer and redesign the new parallel computer

around it.

The choice of modifying the existing MC68020 processing node or going for the 

MC68030 did not promise sufficiently higher throughput. Similarly Intel’s 80286 in 

conjunction with a mathematics coprocessor gave lower performance figures 

compared with that of the transputer. Hence it was decided to build a transputer based 

parallel computer for the diesel engine simulation.

Now the question was the selection of the communication mechanism for the new 

BUTPC. The main means of communication available in a transputer system are the 

transputer links. Although an INMOS T800 transputer has sufficient power, for 

example a T800-30 running at 30 Mhz clock speed may achieve floating point 

performance of 2.25 Mflops (for 64 bit operations) and a throughput of possibly 15 

Mips [32], it was the communication bandwidth available from the transputer links 

that was not sufficient to allow efficient use of this processing power for the diesel 

engine simulation [33, 34]. The other option was to use shared memory. For this
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purpose, a fast backplane multiprocessor bus was designed along with the transputer 

link bus, hence providing a more flexible parallel computer.

Having decided that a T800 transputer based parallel computer with both links and a 

shared memory architecture was required for the diesel engine simulation, the next 

question was whether to buy a commercially available system such as the Meiko 

computing system [35] or buy plug in boards and use a standard host system such as a 

PC or build our own system at the Bath University. The first two options meant 

higher costs in terms of initial installation and maintenance, particularly if a shared 

memory architecture was used. It was, therefore, necessary to build another in-house 

parallel machine based on the Inmos T800 transputer. A block diagram of this 

machine is given in figure 3.1.

3.2 The T800 Processing Node

The BUTPC is housed in several 19 inch racks and has sixteen transputer based 

processing nodes per rack. Each processing node consists of an INMOS T800 

transputer, one megabyte of dynamic ram, a multiprocessor bus interface, local and 

multiprocessor bus arbiter logic and high speed line drivers to connect the transputer 

links to other boards via the backplane.

A transputer is a single VLSI device with on chip memory, a central processing unit 

and communication links for direct connections to other transputers [36]. The T800 

used in the BUTPC has a 32 bit bus, 4 Kbytes of on chip memory and a 64 bit floating 

point processor, and four direct memory access (DMA) controlled serial links. Figure

3.2 shows a block diagram of the T800 transputer.

The transputer exploits fast on chip memory by having only a small number of 

registers and simple instructions. Only six registers are used in the execution of a
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sequential process as shown in figure 3.3. The A, B and C registers form an 

evaluation stack and are the sources and destinations of most of the arithmetic and 

logical operations. Loading a value into the stack pushes B into C and A into B, 

before loading A. Storing a value from A, pops B into A and C into B. The workspace 

register points to an area of store where local variables are kept. The instruction 

pointer points to the next instruction to be executed and the operand register is used in 

the formation of instruction operands.

The T800 uses multiplexed address and data signals on its 32 bit memory bus. A built 

in memory controller provides DRAM control and refresh timing. The internal 

processor speed is link selectable and is generated by a 5 Mhz external clock.

The T800 transputer can be booted either from a communication link or from a ROM. 

All the processing nodes in the BUTPC are booted via links. A block diagram of the 

T800 processing node is shown in figure 3.4. Figure 3.5 shows the T800 processing 

board itself.

Each T800 processing node consists of two different communication paths. The T800 

links are directly available for data communication between adjacent transputers and 

connected to the backplane link bus, whereas the 32 bit transputer bus is connected to 

the shared memory bus via bus transceivers.

There are three main types of memory access cycles:

i) Local memory access by the on-board T800.

ii) Off-board memory access by the on board T800.

iii) Local memory access by an off-board T800.

When an on-board memory access cycle is initiated by the local T800, the local 

decoder signals the local arbiter which enables the local access buffers and disables
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the external to local cycle buffers so that during an internal memory access no 

external transputer should access the local memory.

But if the access cycle is for off-board memory, then the local arbiter disables the 

local access buffers, so that, if any off-board transputer wants to access the local 

memory, it could do so. The local decoder hands over the control to the bus arbiter 

which looks at the bus arbitration signals, and if the bus is available, enables the local 

to external cycle buffers so that the local to external cycle can be completed. The bus 

arbitration is explained later in this chapter.

The third type of memory cycle consists of a memory request from an off-board 

transputer for the local memory. The local arbiter waits if the local memory access is 

in progress, and then disables the local access buffers while allowing the external to 

local cycle buffers to put the external data on the local memory bus.

The memory map for the T800 processing node is shown in figure 3.6. It extends 

form 00000000H to ffffffffH. A 1 Mbyte slot is used by the 'Helios’ operating system 

[37], out of which the 4 Kbytes is the on chip memory. Rest of the 1 Mbyte is paged 

onto the memory page starting at 80000000H and ending at 800fffffH, because the 

T800 recognizes the memory address 80000000H as its base address [32]. The 4 

Kbytes from 80000000H to 80000fffH is not known to the Helios and can safely be 

used outside the Helios environment.

The top 4 Kbytes of the transputer 1 Mbyte memory page contain special purpose 

registers. These are:

Boot location (BOOTLOC)

Control and status register (CSR)

Test and Set semaphore (TAS)

Processor number (PNUM)
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Event register (EVENTREG)

Semaphore table pointer register (SEMTAB)

The boot location is the register that is used to provide the jump location if a 

transputer is to be bootstraped from ROM. If the BootFromRom pin of the transputer 

is connected to logical high, the transputer starts bootstraping immediately by 

executing code located at the memory address given at BOOTLOC; otherwise it waits 

for the first bootstrap message to arrive at any of its links [32].

The control and status register is used to flag the system of special functions. These 

special functions are:

Disable the on chip ram of the transputer.

Enable the T800 analyse mode.

Signal the transputer to boot from ROM.

Enable broadcasting, a special feature’discussed later in the chapter. 

Send a signal to the link topology controller to set new link topology 

of the system [38].

Set an error flag if an event failure occurred.

Set an error signal if a processor error occurred.

These special flags are shown in figure 3.7. These flags enable the particular 

operation related to these when the CSR is set to their value. These special operations 

are disabled when the CSR is cleared to zero.

Another special feature provided is an indivisible Test-and-Set (TAS) bit location on 

each T800 board. Whenever a read cycle is initiated for TAS location it is set to 

logical 1 in one indivisible read-test-write cycle. It is cleared by explicitly writing 

logical zero to this location. This TAS semaphore was one of the main features
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exploited extensively for the inter processor communications in the diesel engine 

simulation, explained in the next chapter.

The PNUM register provides the complete bus which, when read, gives the full 

backplane address of the processing node. This location has another role as well. 

When written, it sets up the timeout for all shared memory accesses so that if the 

multiprocessor bus is not available within that time interval a retry could be initiated.

The ENVENTREG generates an event whenever data is written into i t  It blocks any 

further writes into itself until the previous data has been read, i.e. the previous event 

has been handled by the transputer.

The last register SEMTAB provides a location at which a pointer to a semaphore table 

can be held. This semaphore table can be used to simulate a number of TAS 

semaphores by locking the table using the TAS.

Since the BUTPC has a shared memory architecture, it is necessary to have a unique 

address for each memory location in the system as seen by an off-board processor. 

This is achieved by assigning a unique number to the rack that houses the transputer 

processing nodes. This provides a unique page within the whole memory span of the 

transputer. Within this page, each processing node has its own unique identity 

number. The most significant byte of the address bus presents the rack number and 

the third most significant nibble gives the identity number of the processing node. 

Since there are 16 processing nodes per rack at the most, hence all of the processing 

nodes in the system have a unique memory address in the system. For example, for a 

rack number 2 the memory page would be 02xxxxxxH. The processing node zero 

within this area would have a 1 Mbyte memory page starting at location 02000000H, 

the processing node one would have a memory page starting at 02100000H and so on.
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The input/output (10) facilities to the system are provided by a standalone computer 

developed by Hafeez [39] which consists of an IO board and a graphics board both 

connected to the same backplane as the other transputer boards via links.

3.3 The Input/Output System

The Input/Output (IO) system developed by Hafeez [39] is based on the Philips 

SCC68070 microprocessor. A block diagram of the IO board is shown in figure 3.8. 

The SCC68070 has an on chip memory management unit, a two channel DMA 

controller, a serial interface, an inter-integrated circuit (I^C) bus interface and a timer. 

The IO system built around it exploits these features of the processor to connect to 

external devices such as disk drives, printer, and the console.

The floppy disk controller DP8474 uses DMA channel 2 on the SCC68070, whereas 

DMA channel 1 is connected to the Shugart Associates Systems Interface (SASI) bus 

which is a parallel bus and provides a data transfer rate of approximately 4 Mbytes 

per second. The SASI bus is the lowest level implementation of the Small Computer 

Systems Interface (SCSI) and connects a hard disk and a tape streamer to the system. 

The I^C interface provided on the SCC68070 is a serial bus and operates 

independently of the centralised bus arbiter. It is a bidirectional, two wire bus 

comprising of the 'Serial Clock' and 'Serial Data' lines. It is used to connect the 

SCC68070 to a real time clock PCF8583, and also to an 10 expander, PCF8574, used 

to provide a parallel centronics interface for a printer. Since the BUTPC is based on 

the T800 transputer, in order to connect the IO board to other T800 based boards in 

the system a bidirectional, two wire data link consisting of an IMSC012 link adapter 

is provided.
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The graphics board consists of a T800 transputer, a Philips SCN66470 Video and 

System Controller (VSC), a Philips 68070 microprocessor, keyboard and mouse 

interfaces, a colour palette and two different banks of memory. A block diagram of 

the graphics board is shown in figure 3.9. The 4 Mbyte local memory is provided to 

run the Helios' operating system and is refreshed by the T800. The other memory 

bank is controlled by the VSC and is used for video and display data. The T800 reads 

and writes to this memory via a handshake on the VSC's coprocessor interface [39]. 

The T800 updates the picture information in the video memory whereas the VSC uses 

this information from the video memory to display the pixels onto the graphics screen 

[39]. The colour palette is a lookup RAM that is connected to the lower byte of the 

T800 data bus. It translates the pixel output into Red, Green and Blue (RGB) signals 

which may drive the 75 ohm inputs of a video monitor [39].

3.4 The Backplane

The backplane used in the BUTPC has two different physical buses, one is a 32 bit 80 

Mbytes per second multiprocessor bus shared by only the T800 processing nodes and 

the other is the link bus for the transputer links. As mentioned before, the bandwidth 

offered by the transputer links was not sufficient to handle the communication for the 

diesel engine simulator so that a new architecture for the shared data bus was 

implemented. This bus structure does not use any asynchronous handshakes or 

address or cycle validation signals and is not tailored to any specified processor.

Each processor node in the system is supplied with input and output latching address 

and data buffers. The information appears on the bus during an inter processor write 

cycle, only long enough to be latched by all the processor nodes which are ready to 

latch that information at that instant of time. When an inter processor read is initiated 

by a processor, the data return is allowed as a separate cycle and can occur at an 

indeterminate interval after the initiation of the cycle. This allows a variable access
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time for read cycles. At a clock speed of 20 MHz, there is about a 500 nanosecond 

interval between the address and data phases [33]. This allows around 10 other bus 

accesses to be started and/or finished on the same bus signal wires during this time.

The interleaved bus access can give rise to the possibility of many bus access attempts 

to the same processor. Two signals, SUCCESS and FAIL, are provided on the 

backplane bus to cope with this problem. All processors decode the address of a cycle 

that appears on the backplane. Only one of them responds and, if it has latched the 

information and is capable of carrying out the cycle, it sets the SUCCESS signal; 

otherwise it sets the FAIL signal. A failure causes the initiating processor to 

automatically re-send the cycle 250 nanoseconds later.

All these features do not involve the T800 processor which can carry on its 

processing. These features are handled by a specialised hardware involving the 

backplane.

3.5 Bus Arbitration

In order to achieve optimum arbitration speed to decide which processor gets the next 

access to the bus, the arbitration mechanism has to be as fast as the multiprocessor 

bus access mechanism. Instead of using a standard centralised bus arbiter, a 

specialised distributed arbiter was developed. Limited priority shifting is provided for 

processors that are having difficulty getting time on the bus.

In figure 3.10, the arbiter control signals are shown. The four least significant bits are 

used for fixed priority. Their level is set by the geographical position of the processor 

node in a nineteen inch rack. The three most significant bits, DATA, BDCST and 

FAIR, are provided to change the priority level under certain conditions.
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The DATA bit ensures that the returning data phase accesses are always high priority 

as a processor is waiting to receive the data. The FAIR bit is used to signal that a 

processor has been unsuccessfully trying to access the bus for more than sixteen time 

slots and the BDCST bit is used to ensure the quick completion of a new type of 

cycle, called a broadcast cycle.

The broadcast cycle involves all the processors connected to the bus. When a 

broadcast cycle is initiated by a processor, all other processors decode the current 

write cycle as if it is for them and reply on the SUCCESS and FAIL signals. If any 

FAIL occurs, then the sender resends the cycle. A processor that succeeds in 

capturing the cycle ignores subsequent broadcast cycles until a completely successful 

cycle occurs. Because of the involvement of all the processors, a broadcast cycle is 

always of high priority.

3.6 Inter Rack Connection

There are physical constraints on the number of processing nodes that can 

simultaneously operate within a single backplane. Therefore the expansion of the 

system is possible only by connecting racks together by a communication method that 

does not introduce significant additional overheads.

As described earlier, each rack has its own graphics board plugged into it, with extra 

links to the outside world. Hence to connect two racks together, the simplest solution 

is to use two links on the respective graphics boards of each rack. This provides a 

connection of two clusters of transputers which communicate with each other via 

transputer links. But this is relatively slow and would introduce large overheads.
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Since the BUTPC has shared memory architecture as well, it was necessary to provide 

a connection between the busses of the two racks as well. This is achieved by 

providing a high speed buffered optical fibre link running at 125 Mbits per second 

[33] between the two racks together. Any bus access that does not belong to any one 

of the local processors is passed through the optical link to another rack. If the system 

consists of more than two racks then, if the cycle does not belong to a given rack, it is 

passed higher up the rack tree structure until it reaches a rack that has the desired 

processing node down another branch of the tree. The bus access is then passed down 

the tree by the direct path to the desired processing node. The maximum latency to 

traverse all the optical fibre links for a tree structure of three levels is three micro 

seconds provided there is no other load on the system bus [33]. The figure 3.11 shows 

a two rack system.

For a 32 bit parallel bus the total address space is 4 Gbyte. In the current system each 

processor has an address space of 1 Mbyte thus giving a total number of 4095 shared 

memory slots. This provides a total of 256 racks that can be connected in a three level 

tree structure as shown in figure 3.12. But increasing the number of racks affects the 

bus bandwidth. Having a high bandwidth of 80 Mbytes per second on each backplane 

increases the overall bus bandwidth in proportion to the number of processors. The 

advantage of having a number of racks can be achieved by implementing programmes 

which use clusters of processors, with frequent access to the processors local to a 

given cluster and infrequent access to the processors in remote clusters via the optical 

fibre system.

3.7 Summary

In this chapter, the hardware features of the Bath University Transputer based Parallel 

Computer used to simulate the diesel engine simulator are described. The next chapter
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introduces the operating system implemented on the BUTPC and describes the 

communication mechanisms developed for the diesel engine simulator.
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Figure 3.5 The T800 processing node
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Masking Flags Values (Hex)

IRAMENB M 01
ANALYSE M 02
RAMBOOT M 04
SHRMEMENB M 08
BRDCSTENB M 10
LNKTOPREQ M 20
EVNTERR M 40
PROCERR M 80

Figure 3.7 The Control and Status Register Masking Flags.
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Figure 3.11 A two rack system (The BUTPC)
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Chapter 4



The System Software

4.1 Introduction

Every computer hardware system requires an operating system to coordinate the 

resources offered by it  An operating system is a set of programmes that controls the 

operation of the hardware resources, utilises them efficiently and manages the data 

flow within the computer system.

At Bath University, a generation of parallel computers have been built around the 

Motorola MC68000 [40] and the MC68020 [41]. The operating system TRIPOS [42, 

43,44] was ported to these machines. TRIPOS is a single-user, multitasking operating 

system for small computers, originated in the University of Cambridge. It was 

modified by Dale to be used as a multiprocessing, multiplier system. TRIPOS is 

written in BCPL and supports a BCPL compiler. This gives the facility of high level 

programming and portability within the TRIPOS systems.

While the Bath University Transputer based Parallel Computer (BUTPC) was being 

built, it was decided to port an operating system to the BUTPC that:

o would allow a high level language programming environment

o would enable the user to write portable programmes

o would be cost effective

o would be independent of the processor type used

o would allow other useful programmes to be ported on the system

easily

Since the transputer was developed with OCCAM in mind [45], the obvious choice at 

hat time would have been the Transputer Development System (TDS) supported by
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INMOS. This would have made OCCAM as the programming language. But using 

OCCAM had its disadvantages as far as the BUTPC and its envisaged use was 

concerned. OCCAM did not support dynamic memory allocation [46]. It was not very 

much popular as a language to be ported on a large number of other processors, 

making its long term future uncertain. This could mean rewriting the whole existing 

programmes, and hence losing portability. Secondly using OCCAM would have 

prevented porting useful programmes and tools available on other systems such as 

Unix based machines.

There was an operating system called Helios being developed at Perihelion Software 

Limited, Shepton Mallet near Bath. Porting Helios to the BUTPC promised the 

following advantages:

o The team developing Helios had been involved in the development of 

TRIPOS as well, which was already in use at Bath University, 

o There was a possibility of having full collaboration and support from

Perihelion, making the porting and running of Helios to the BUTPC 

cost effective.

o Helios is written in C, a high level language becoming popular as a

system language. Writing programmes in C meant that programmes 

developed under Helios could be ported easily across other systems 

and vice versa, 

o Helios provides a Unix like shell environment

o Another advantage promised by Helios was that it was being

developed keeping in mind the pace of technology, so that it could 

easily be tailored to the needs of other new sophisticated processors 

such as Intel i860 [3], hence providing no loss of time and effort in 

transferring from the existing system to the new system.
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These were the reasons that decided the implementation of Helios on the BUTPC 

[31].

4.2 Helios: The Operating System

Helios is a multiuser, multiprocesor distributed operating system and is designed to 

run on a wide range of multiprocessor architectures [47]. For a transputer based 

system, it often supports an environment in which the transputers simply act as 

accelerators for the existing machines, such as the IBM PC, the SUN. In the case of 

the BUTPC, the host is a Philips 68070 based computer discussed in the last chapter. 

The host processor retains many of the 10 functions of the standalone machine.

A standard 10 server program that runs on the host machine acts as an interface to the 

transputer back end and allows the user to access all the standard features of the host 

environment.

Helios controls all the resources available within a network which is a collection of 

processors. It provides a consistent mechanism for accessing the resources and hides 

the distributed nature of the architecture from the user.

The processors in the network can be of different kinds, such as the Motorola 

MC68000 or the Intel 80286 plus one or more Inmos transputers. A network can be 

subdivided into a number of smaller networks and can be booted with any 

configuration topology that is physically allowed by the hardware.

Helios consists of the following main components, 

o Nucleus

o Servers

o Posix library
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o User interface.

4.2.1 The Nucleus

The nucleus is the minimum system that must be present on every processor in the 

network. Its prime purpose is to control the resources of a single processor and to 

integrate it into the global system. It provides message passing facilities at the lowest 

level to all other high level system services such as file servers, resource manager, 

etc., which are added onto the nucleus. The nucleus consists of:

o Kernel

o system library

0 Loader

o Processor manager

0 IO controller (IOC)

0 Name server

4.2.1.1 Kernel

The kernel is directly responsible for managing the hardware resources of the 

individual processors in the network. It provides support for local and networked 

message passing described later in this chapter. It controls both the external and on 

chip memory, and provides event management and semaphore handling as well.

4.2.1.2 System library

The system library is a resident sharable library which provides a general interface to 

the operating system services. It keeps track of the system resources allocated to a 

task and releases them to the system pool when the task finishes. The libraries are
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loaded only on demand so that they do not impose an overhead when not required on 

a particular processor.

4.2.1.3 Loader

The loader is responsible for loading object code and libraries into a processor and 

unloading them, when they are not needed. It supports standard server interface.

4.2.1.4 Processor manager

The processor manager is an autonomous process, responsible for creating tasks, 

managing them when they are running and dismantling them when they terminate. It 

is also responsible for trapping all signals sent to a given task. When an exception 

such as stack overflow or arithmetic overflow occurs, a signal message is sent to the 

processor manager that is controlling the relevant task. The processor manager then 

reports the exception by running an exception routine provided either by the runtime 

system or by the program .

4.2.1.510 Controller

The 10 controller (IOC) is another autonomous process that is responsible for 

handling 10 requests of another task. Each task has its own IOC, and an IOC is also 

created for each link on the processor. The IOCs act as 10 agents for tasks in a remote 

processor and manage the in-comming requests on the four links. When a nucleus 

wishes to gain access to an object in a remote processor and it does not have a 

destination port, described later, requests can be directed to the link IOC on the 

remote processor, which may then access that object directly.
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4.2.1.6 The Name Server

Every item in a Helios network is referred to as an object. This object model provides 

a consistent interface for accessing any item within the network; for example the 

same mechanism is used to locate a processor as that used to locate a file within a 

directory of file system located on a given processor.

To ensure that an object is unique, Helios implements a unified naming scheme, 

which is based on the naming table maintained by the nucleus in each processor.

Each local name table is organised as an hierarchical representation of the network as 

it is perceived from that processor. To access an object or a service, a task sends a 

general server protocol message to its IOC which looks up, in the name table, the 

name identified by the current string offset in the message. The IOC then passes the 

request on to the server port found in the name table. If the name is not present, the 

IOC asks the neighbouring processors. These may, in turn, need to ask their 

neighbours, thus implementing a distributed search of the entire network. Whenever 

such a search succeeds, the server, machine and cluster entries are added to the local 

name server, thus expanding the processor's knowledge of the network and making 

subsequent accesses to this server more efficient.

In the last chapter, an example of a hierarchical network was given and a block 

diagram is shown in figure 3.12. If the processing node 0 in the rack 0 of level 3 

subnetwork has file called 'procman', then the full network address of this object will 

be;

7net/level2rackOAevel3rackO/processorO/procman'.
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4.2.2 The Servers

Helios is based on the client-server model in which a client wanting some service 

sends a message to a server which performs the operation and returns a reply 

message.

The nucleus is a server that provides a virtual machine interface and allows the user a 

transparent access to all the physical resources of a processor in a transputer network. 

However, there are some resources which are not available on every processor in the 

network, for example serial console, disc drivers or printers. To control these devices, 

additional servers are provided so that a consistent interface to all physical resources 

can be maintained.

A general server protocol (GSP) is supported by all system server. All requests within 

this protocol have a control vector as shown in figure 4.1, where Context and Name 

are offsets into the data vector of null terminated pathname strings. If the offset is -1, 

the string is not present. The context string is equivalent to a current directory, 

relative to which a pathname is evaluated. The Next field is the offset of the name 

element to be used next. The capability encodes the client's access rights to the 

context object. Extra request specific parameters may be added at the end of this 

structure.

Each server consists of a single task. A single port supplies GSP requests to the 

server, which always come from an IOC. A single dispatcher process is dedicated to 

receiving these requests and queuing them for attention by a second process, which 

can either be a static process, a dynamically created process or a pool of worker 

processes to handle each request as it arrives.

Multiple servers may coexist so long as they support the general server protocol.
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A number of standard system servers are provided with the Helios operating system 

[48]. Two of these are discussed bellow.

4.2.2.1 Network server

The network server is responsible for the initial creation and then subsequent control 

of the Helios nucleus thorough a network. It uses a resource map to boot all the 

processors within a defined network. A resource map defines the topology of the 

network, the individual processor types, the location of specific physical devices such 

as SCSI controllers etc. and the hierarchical subdivision of the processing units within 

the network.

The network server is a distributed service, with a separate component of the network 

server being responsible for each subnetwork defined in the network.

4.2.2.2 Task Force Manager

The collection of tasks is referred to as a task force and the task force manager (TFM) 

is a distributed server that controls these tasks. It consists of a number of identical 

servers distributed throughout a network, each controlling a different area of the 

network.

The TFM processes all client level program execution requests. It analysis the current 

state of the network and distributes the component tasks of the task force to the most 

suitable processing element

Once a task force has been scheduled, then the TFM monitors each of the component 

tasks and informs the client when all components have terminated.

78



The TFM also provides the facility to abort a task force. It is thus responsible for load 

balancing of Helios networks, ensuring that all tasks are optimally scheduled.

4.2.3 The Posix Library

The posix library is provided in Helios to make it compatible with Unix. This facility 

aids portability of existing programs and tools from the Unix environment to the 

Helios [49].

4.2.4 The User Interface

A task called Shell is provided in Helios that acts as a command line interface to the 

operating system, the Helios Shell interface enables the user to create and control 

jobs interactively, both in the background and the foreground. It includes various 

shorthand methods to save typing and personalisation methods to enable the users to 

use their own commands. Several Shells can be used simultaneously.

The Shell includes support for a subset of the component distribution language 

(CDL). The CDL enables the user to declare the resources requirements of the 

component tasks of a task force. A CDL script is compiled to generate a binary object 

that is submitted direct to the TFM as an executable object.

4.3 Communication Methods In Helios

Helios provides four different levels of communications. These are: 

o Language level 10.

o Posix Level IO.

o System Level 10.
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o Kernel Level IO.

4.3.1 The language level IO

This is the highest level communication level. The calling convention depends on the 

type of language used. For example, in the 'C' implementation under the Helios 

operating system, these routines are represented as shown in figure 4.2. The 'fread' 

and 'fwrite' are used for direct input and output purposes respectively. These functions 

use a file stream to receive or send a given number of items of a given size and return 

the number of items received of sent respectively. These functions have high error 

recovery, therefore they tend to overload the data communication between two Helios 

objects, which can be a combination of tasks or files or both.

4.3.2 The Posix level IO

In this second level, the IO Posix routines, shown in figure 4.3, are used for data 

communication between two Helios objects. If data is being read from or being 

written into a file, a file descriptor associated to that file is used to transfer data to or 

from that file. If the data is being read from or written into a task, then there is a pipe 

or a FIFO to which the file descriptor is associated, using which data transfer is 

completed. The actions of these 'read* and 'write' routines depend on the state of the 

pipe or FIFO they are using for data communication. An error recovery mechanism is 

also built in to these routines that allows them to return an error message in case of 

failure [49].

4.3.3 The system level 10

The third level communication routines are provided by the system library. These are 

called 'Read' and 'Write' and are shown in figure 4.4. These routines use the Helios
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streams for data communication and transfer data of a given size into or out of a 

buffer. They have builtin error recovery and checking which, although presenting a 

communication overhead, does improve the portability and safety. These routines are 

provided with a timeout facility as well. A timeout value of -1 gives an infinite 

timeout.

4.3.4 The kernel level IO

The prime means of communication under Helios is message passing which is the 

lowest level of communication and is implemented by the kernel. The kernel routines 

that constitute the message passing mechanism use Helios ports for data 

communication and have minimum error recovery and checking associated with 

them.

A message port is a data structure that is implemented by the Helios kernel to make 

message passing transparent to the user. A message port can be a local port for 

message transfers between processes on the same processor or it can be a surrogate 

port which is an entry in the port table referring to a port on a neighbouring processor. 

Figure 4.5 shows the Helios port formats.

Index represents the port's offset into the port table. Cycle is incremented each time a 

table slot is reused. The uses field is there to garbage collect ports that are unused 

because a program has crashed or failed to tidyup. The link field identifies the link 

through which the message must be sent.

A message is divided into three parts: a header, a control vector and a data vector as 

shown in figure 4.6. The message consists of the sizes of the control and data vectors 

and the destination and reply port descriptors through which the message has to pass. 

The ContSize is limited to 256 words whereas the DataSize is limited to 64 kbytes.
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The kernel routines that implement message passing are: 

o NewPort(); 

o PutMsg(mcb);

o GetMsg(mcb);

NewPort allocates an unused slot in the port table, initialises it and returns the port

descriptor for it. PutMsg and GetMsg expect a preinitialised message control block

(MCB) as argument. An MCB is shown in figure 4.7.

PutMsg transmits the message header on the port channel, followed by the contents of 

the control vector, and then the data from the data vector. If the message is not 

delivered before the expiry of the timeout, the whole transfer fails. A timeout of -1 

gives an infinite waiting time.

GetMsg checks the port descriptor given in the MsgHdr.Dest and waits for a message 

header from the channel. It receives appropriate data according to MsgHdr.ContSize 

and MsgHdrJDataSize into the control and data vectors. It can timeout if data does not 

arrive within MgHdr.Timeout period.

PutMsg and GetMsg are point to point message passing routines. PutMsg cannot 

return until its message has been accepted or it has been timed out. Similarly GetMsg 

cannot return until it has received a message or it has timed out. In order to allow the 

main task to carry on doing other jobs while data communication is being done, a 

subprocess has to be forked to do PutMsg and GetMsg. Separate processes have also 

to be forked if a port is to be shared by several tasks as Helios allows only one 

process to transmit or receive a message on a port at one time.
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If a message does not belong to a local process, it passes through to the link to a 

neighbouring processor and, if this is still not the final destination, it is passed through 

another link, and so on until it reaches the processor containing its destination port. 

This routing of the message is done by a high priority kernel process called a Link 

Guardian (LG). Each link in the system has a LG attatched to it. When PutMsg finds 

the type of the port non-local, it sends a protocol header byte followed by the MsgHdr 

and then control and data vectors if they are present. This protocol header byte is 

interrupted by the LG which receives the MsgHdr, replaces the reply port by the 

descriptor of a newly allocated surrogate port, looks up the destination port in the port 

table and examines its type. If it is a local port and there is a receiver waiting for it, 

the LG sends the header to the receiver and waits to allow the receiver to take the 

control vector and data directly from the link. If no receiver is present, the message is 

received into a buffer and queued for later delivery. If the destination port is a 

surrogate and the next link is available, then the LG transmits the protocol byte and 

the message header. The control vector and data are received in parallel and are 

transmitted down the link when ready. If the link is busy, the message is received into 

a buffer and queued for later transmission and, if no buffer is available, the message is 

thrown away.

When a message is thrown away as a result of congestion, an exception message is 

generated and sent back to the reply port. The Link Guardians make a little more 

effort to deliver the messages but congestion may still cause them to be lost [48].

Table 4.1 shows communication speeds using different communication methods 

provided in the Helios operating system when the transmitter and the receiver are on 

adjacent processors [50]. As the simulation time available for a 1 degree step for a 

diesel engine running at 2000 revolutions per minute is 83 microseconds, the 

communication times given in table 4.1 show that using conventional Helios
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communication mechanisms would not give a simulation speed up. Hence special 

hardware features provided in the BUTPC were used for the data communication and 

synchronization in the diesel engine simulator.

Table 4.1: Communication performance using Helios primitives

Message size 
(bytes)

Posix level 
read/write 

(micro second)

System level 
Read/Write 

(micro second)

Kernel level 
GetMsg/PutMsg 
(micro second)

4 1110 1100 125

4.4 New Communication Routines for the 
PDESIM

As mentioned earlier, the Helios communication mechanisms that use links, were not 

suitable for the communication requirements of the diesel engine simulation. 

Therefore new faster communication primitives were developed for data 

communication and task synchronization. The following different methods were used 

for these routine.

o Backplane data communication and synchronization routines using

TAS flags.

o Packet switching using shared memory flags,

o Packet queues using TAS flags,

o Broadcast signals.
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4.4.1 The backplane routines

These software routines were written to make the shared memory system appear as 

much as possible like faster transputer links [33]. Using these routines a direct 

hardware link between any two processors could be simulated. These include:

o BPSemaphorelnit

o BPSignal

o BPWait

o BPInitPort

o BPPutData

o BPGetData

To use these routines, a backplane event handler is installed that reads data off the 

EVENTREG when an event occurs and sends this data through the Helios channel to 

a task which is either waiting for it or is going to wait.

The BPSemaphorelnit is used to initialize a backplane semaphore structure, shown in 

figure 4.8, which is used to simulate the internal semaphore structure of the Helios 

using shared memory.

The BPSignal works by locking the processor to be signalled by reading the TAS 

flag. It then checks if a task on the remote or local processor has already executed a 

BPPWait corresponding to this BPSignal, if not, then it sets the semstate flag to 1, and 

releases the processor. If the remote task has done a BPWait, then, if the task is on the 

local processor, the BPSignal sends a byte at its local channel to inform the waiting 

processor, otherwise it sends an event to the remote processor and releases the 

processor.
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The BPWait also locks the processor using the TAS flag. If the semstate of the 

BPSemaphore has already been set to one, then it means that a BPSignal has already 

been done by another task corresponding to this BPWait, so the BPWait clears the 

semstate flag to 0, and then releases the processor. Otherwise, the BPWait announces 

that it is going to wait for a BPSignal by setting the semstate flag of the BPSemaphore 

to one and then waits on an input channel. The BPWait is only allowed at a 

semaphore which is local to the processor on which the task, that executes a BPWait, 

is running.

The BPPutData and BPGetData use a backplane port structure shown in figure 4.9 for 

data communication. This port structure is initialized using BPInitPort. Each 

communicating task must have an initialized BPPort on its side. The BPPutData 

copies the data directly into the data buffer pointed to by the remote port, whereas the 

BPGetData just waits for the data to arrive.

Table 4.2 shows timings for these backplane communication routines. These timings 

still indicate that using these routines will not achieve a greater speedup for the diesel 

engine simulation. Hence other direct communication methods were investigated.

Table 4.2: Communication performance using backplane
routines

Message size 

(bytes)

BPGetData/BPPutData 

(micro second)

4 75
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4.4.2 Packets

Previously the diesel engine simulations were earned out under the Tripos operating 

system [21, 21]. The main communication mechanism under the Tripos is packet 

switching. A Tripos packet structure is shown in figure 4.10.

Tripos maintains a linked list of packet queues. The link field in the packet structure 

points to the next packet in the linked list queue. The id field is the identity number of 

the task to which this packet is being sent or if it has been received from somewhere 

then it indicates the id of the sender. The type field is the type of action for which this 

packet is intended. The resl and res2 fields are used normally by Tripos but can be 

utilised to send data between two tasks. The argument fields at the end of the packet 

are variable and can carry long word data as permitted by Tripos.

4.4.2.1 Packets switching using flags

While designing new communication primitives for the diesel engine simulation, the 

first approach was to simulate the Tripos packet mechanism using the BUTPC shared 

memory system. For this purpose, a fixed size packet structure, shown in figure 4.11, 

was selected. The packet structure was kept constant in order to keep a consistent 

packet structure throughout.

Two different packet switching methods were tried. In the first method, a shared 

memory flag mechanism was implemented. In this mechanism, each type of packet on 

each task was identified by a unique global flag. The bottom 4 Kbytes of the T800's 

RAM was used to allocate memory to these flags as this area of memory was 

unknown to Helios and could be safely used directly.
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Figure 4.12 shows the flag structure. Here the pktaddr field gives the address of the 

packet for which the flag is used whereas the SHRD_COMM_STRUC is a table of 

the flag structures corresponding to each type of the flag in the PDESIM.

Whenever a packet is to be queued, its address is placed at its corresponding location 

in the remote processor and the flag is set to -1, indicating a new packet has arrived. 

The waiting task keeps on polling its local SHRD_COMM_STRUC table and when it 

finds a flag set to -1, it reads off the corresponding packet address and clears the flag 

to 0. Figure 4.13 shows a packet being queued from processor 0 to processor 1.

This system provided a few drawbacks. For a task that was waiting it was very time 

consuming to poll through all the flags corresponding to each packet type as the 

number of packet actions increased. Similarly increasing the number of tasks also 

increased the polling time as each task had its own set of packets as well. Hence a 

second more general approach was considered.

4.4.2.2 Packet switching using queues

In this implementation of communication routines, each task was allocated a fixed 

size circular buffer to simulate a packet queue. The size of this buffer was selected 

large enough to avoid any congestion on the queue.

All those tasks which want to send a packet to a particular task wait at the queue 

entry and place the packet address on the queue when it is available. The receiving 

task picks up the packet address from the queue and advances the tail of the queue.

A task table is copied onto all the tasks of the PDESIM. A task table is an array of 

task identifiers as shown in figure 4.14. Each task identifier structure contains a 

pointer to the TAS location of the processor on which that task is located, the head
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and tail pointers to the addresses of the head and tail of the task’s packet queue and 

the pointers to the start and end of the queue. The headptrptr and tailptrptr provide the 

critical section of the queue and are manipulated by only one task at a time. The 

qstartptr and qendptr are used to circulate the buffer queuing on the packet buffer.

The communication primitives that simulate this mechanism are: 

o Qpkt

o Taskwait

Qpkt

This routine is used to put the address of a packet on the local queue of a task which 

may be a local or a remote task. A pointer to the identifier of the task is fetched from 

the local task table using the task's ID given in the packet structure. Then the ID field 

in the packet is changed to that of the sender so that this packet could be identified by 

the receiver and sent back if required.

Now an attempt is made to access the queue of the remote task by reading its TAS 

location. If it is less than zero, it means the MSB of the TAS is set to 1 and someone 

else is using the queue. The sender delays itself and checks the TAS flag again. This 

process is repeated until the TAS flag is no longer less than zero.

Once the queue is locked, the current head pointer is read and the next address on the 

queue is calculated. If the next head value is equal to the address of the tail then the 

queue is full. This comparison is carried on until the receiving task takes a packet off 

the queue. Then the sender places the packet address at the head of the queue, 

advances the head pointer and releases the queue so that it could be used by other 

tasks in the system. Figure 4.15 shows a flow diagram of the Qpkt routine.
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Taskwait

This routine is used to wait for any packet to arrive at the task's queue. It does so by 

comparing the head and tail pointers. If these pointers are same then the queue is 

empty, and a special busy wait is carried out that allows the transputer to deschedule 

if necessary. When the queue is not empty the packet address is taken from the tail of 

the queue and the tail pointer is advanced.

Since there is only one task that updates the tail pointer when it executes a Taskwait, 

there is no need to lock the queue while advancing the tail pointer.

The Taskwait routine returns the packet address which was taken from the queue. A 

flow diagram of the Taskwait routine is shown in figure 4.16.

Communicaton performance for the Qpkt and the Taskwait routines is given in table 

4.3. It is clear from the table that these routines provide a considerable improvement 

over the Helios and the backplane primitives.

Table 4.3 Communication performance using packet 
primitives

Message size 

(bytes)

Taskwait/Qpkt 

(micro second)

4 22
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4.4.23 Broadcasting

The broadcast feature provided in the BUTPC provided a means to signal all the 

processing nodes at once. In the PDESIM there exist occasions when a single task 

wants to synchronise with most of the other tasks at once. For example, while trying 

to find out system stability all of the tasks are supposed to reach a particular point 

where they wait for a signal from the stability task. Under such situations, it would be 

quicker to use broadcast and signal all these waiting tasks in one go rather than 

sending them individual signals. Hence the last method tried was a combination of 

Qpkt/Taskwait and Broadcast.

4.5 Data Communication and Synchronization

The data communication and synchronization using above mentioned routines may be 

done in a number of different ways. Some of these which are used to implement the 

DESIM on the BUTPC, described in the next chapter, are:

o The data that is to be sent is written in the argument fields of the 

packet and then the packet is queued into the queue of the remote task. 

The remote task picks up the packet and reads the data directly from its 

arguments fields.

o If some data is required from a remote task, then an empty packet may

be sent to that task, which on receiving that packet will fill the 

argument fields with the required data, and send the packet back.

o Instead of sending data directly via a packet, a pointer to a buffer is

sent to the remote task that reads this address and then uses this 

address to read or write data into that buffer.
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o A two way synchronization can be achieved by sending a particular 

packet to a remote task and then waiting for it to come back.

4.6 Summary

In this chapter, the operating system Helios is described, and different communication 

methods available are discussed. New communication primitives, developed using 

backplane features of the BUTPC, are described. It is found that these new 

communication routines are faster than the Helios functions, and may provide 

significant speedup when used for the Diesel engine simulation.

In the next chapter, different parallel numerical algorithms and their implementation 

on the BUTPC, using a single cylinder model, is described.
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typedef struct IOCCommon {

Offset Context; /* offset of context string */
Offset Name; /* offset of object name string */
Offset Next; /* offset of next element in path */
Capability Access; /* capability of context object */

} IOCCommon;

Figure 4.1 The General Server Protocol structure
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size_t fread ( void *ptr, size_t size, size_t nobj, FILE * stream) 
size_t fwrite (const void *ptr, size_t size, size_t nobj, FILE * stream)

Figure 4.2 The Language Level 10 functions

int read (int fildes, char *buf, unsigned nbyte) 
int write (int fildes, char *buf, unsigned nbyte)

Figure 4.3 The Posix Level 10 functions

WORD Read (Stream *stream, BYTE ^buffer, WORD size, WORD timeout) 
WORD Write (Stream *stream, BYTE *buffer, WORD size, WORD timeout)

Figure 4.4 The System Level IO functions
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typedef struct PORT {

INTI6 Index; /* index into port table */
BYTE Cycle; /* port slot cycle number */
BYTE Flags; /* flag byte */

} PORT;

Figure 4.5a The Port Descriptor.

typedef struct Port {

BYTE Type; /* = TJocal */
BYTE Cycle; /* current cycle value */
bits TxState: 2; /* transmit protocol state */
bits RxState: 2; /* receive protocol state */
bits Flags: 4;
BYTE Uses; /* garbage collection field */
Channel Chan; /* data transfer channel */
WORD *TxId; /* pointer to transmitter */
WORD *RxId; /* pointer to receiver */

} Port;

Figure 4.5b The Port Table Entry.
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typedef struct Surrogate {

BYTE Type; /* = T_suiTOgate */
BYTE Cycle; /* current cycle value */
BYTE Flags; /* flags + number of link */
BYTE Uses; /* garbage collection field */
Port Port; /* remote port descriptor */
WORD *TxId; /* pointer to transmitter */
WORD Unused;

} Surrogate;

Figure 4.5c The Surrogate Port Table Entry.
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typedef struct Message {

struct MsgHdrMsgHdr; 
WORD Control[...];
BYTE Data[..J;

} Message;

Figure 4.6a The message structure

typedef struct MsgHdr {

unsigned DataSize: 8;
unsigned Contsize: 8;
unsigned Flags: 8;
Port Dest;
Port Reply;
WORD FnRc;

} MsgHdr;

Figure 4.6b The message header structure

97



typedef struct MCB {

*/
*/
*/
*/

Figure 4.7 The message control block structure

typedef struct BPSemaphore {

Channel lock;
int semstate;
void *userdata;

} BPSemaphore;

Figure 4.8 The BPSemaphore structure

struct MsgHdr, /* message header buffer
WORD Timeout; /* transfer timeout
WORD *Control; /* pointer to control vec
WORD *Data; /* pointer to data vector

} MCB;
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typedef struct BPPort {

BPSemaphore sem; 
struct BPPort ^brother, 
void buf;
long len;

} BPPort;

Figure 4.9 The BPPort structure

Link

Taskld

ActionType

resl

res2

Figure 4.10 The Tripos packet structure

99



typedef struct PACKET {

int id;
ACTION type;
ARGDATA resl;
ARGDATA res2;
ARGDATA argl;
ARGDATA arg2;
ARGDATA arg3;
ARGDATA arg4;
ARGDATA arg5;
ARGDATA arg6;
ARGDATA arg7;
ARGDATA arg8;
ARGDATA arg9;
ARGDATA arglO;

) PACKET;

typedef union ARGDATA {

char dummy [8]; 
char c, *cp;
int i, *ip;
long 1, *lp;
float f, *fp;

} ARGDATA;

Figure 4.11 The simulated packet structure
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typedef struct FLAGS {

int f; 
long pkt;

} FLAGS;

typedef struct SHRD_COMM_STRUC {

FLAGS flag[LAST_ACTION];

} SHRD_COMM_STRUC;

Figure 4.12 The Flags structure
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Processor 0

a b • • •

PO

PI

•

•

•

Processor 1

a b • • •

PO f Ip

PI

•

•

•

f  = flag corresponding to pkt type b on PO 
p = address of packet 'p' of type 'b'

Figure 4.13 The packet switching using flags from PO to PI
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typedef struct TASOD {

volatile int *semflag; 
volatile long **headptrptr; 
volatile long **tailptrptr; 
volatile long *Qstartptr, 
volatile long *Qendptr,

} TASKID;

Figure 4.14 The Task Identifier structure

void Qpkt ( PACKET * pkt)

{
change pkt id from that of receiver to the sender();
get access to the remote queue();
get current head value and calculate new head value();
if next head value is same as the tail value then wait();
place pkt on the queue();
update the head value();
release the queueQ;

Figure 4.15 Flow chart for Qpkt

103



PACKET *Taskwait ( void)

if head is same as tail then queue is empty, so wait(); 
read packet address from tail(); 
calculate and update new tail value(); 
return packet addressQ;

Figure 4.16 Flow chart for Taskwait



Chapter 5



Parallel Numerical Integration

5.1 Introduction

The state equations describing the Diesel engine model are ordinary differential 

equations (ODEs) and give rates of change of the state variables, mass fuel to air ratio 

and temperature. In order to get the values of these state variables over the engine 

cycle these state equations have to be integrated. Since the initial state of these engine 

variables may be estimated or taken from a knowledge of the engine, the problem is 

reduced to solving ordinary differential equations with initial conditions.

A number of serial methods exist to solve this initial value problem. Two different 

approaches exist to implement a solution using parallel processing; the geometric 

parallelism approach and the algorithmic parallelism approach. In this chapter, four 

different numerical integration methods are described. A single cylinder Diesel 

engine is simulated using three of these methods.

5.2 Geometric Parallelism

In this type of parallelism, the set of n ODEs is partitioned and allocated to each of 

the parallel processors. Then a standard integration algorithm is used with each 

processor responsible for calculating only those equations allocated to it.

The simplest method of integration is Euler's method [51]. If the differential equation 

given in equation 5.1 is to be solved, provided y=yj is known at x=xp then a new 

value of y j + 1  at X j+ 1  at a distance h, can be predicted using the slope of the function 

at the initial point xp
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dy
-  = f(*,y)
dx

5.1

Figure 5.1 represents Euler's method graphically. The extrapolated value is given by

ypi+i = y i + f(xh yi)h 52

A fundamental source of error in Euler's method is that the derivative at the beginning 

of the integration step h is assumed to apply across the entire interval.

One method to improve the estimate of the slope involves the determination of the 

derivative twice for the interval, once at the initial point and once at the end point. 

The derivatives are averaged to obtain an improved estimate of the slope for the entire 

interval, as shown in figure 5.2 and given by equation 5.3.

dy
 = f(x,y) 5.3a
dx

fj = f(xi, yj) 5.3b

ypi+i = y i+ f i h 5-3c

fi+i = f(xi+i*ypi+i) 5-3d

fi + fi+l
yi+i = yi +  h 5-3e

2

Equation 5.3c predicts the first approximation and equations 5.3e corrects it at the end 

point. Hence this gives the name Modified Euler Predictor Corrector Method 

(MEPCM).

107



Since appears on both sides of the corrector formula, it can be applied iteratively 

to improve the predicted solution.

Euler's methods are based on a Taylor series and use only first order terms of the 

series which increases round off errors. Those methods which use higher order terms 

of a Taylor series as well, introduce lesser error but at a computation cost. An 

example of such a method is the Runge-Kutta (RK) method.

A general RK method may be described by equation 5.4 [51].

Yi+1 = yi + 9(xi,yi,h)h 5.4

where (p(xj, ŷ , h) is called an increment function which can be interpreted as a 

representative slope over the integration interval. It can be written in general form as 

shown in equation 5.5.

<P = aiki + a2k2 + -  + 5*5

where the a terms are constants and the k terms are

ki = f(xj, yp

k2 = fCxj+pjh, yi+qj^h)

kji = f(*i+Pn-ih. yi+qn-l,lklh-Kln-l,2k2h+- +qn-l,n-lkn-lh)

If n=l then the general RK formula reduces to the Euler method. The values of p and 

q are evaluated by equating the terms in equation 5.4 to the terms in a Taylor series 

expression. Equation 5.6 gives a classical fourth order RK formula [51].

yi+l = yj + [k1+2k2+2k3+k4] h /6 5.6
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where

kl = f(xi> Yi) 

k -2 = f(x^+0.5h, yj+0.5hkj) 

k3 = f(xj+0.5h, yj+0.5hk2) 

k4 = f(xj+h, yj+hk3)

5.3 Algorithmic Parallelism

In this method, the parallelism is achieved by partitioning across the algorithm rather 

than across the system of equations.

Franklin [52] discusses parallel predictor corrector and RK methods. The numerical 

integration schemes of the RK type proceed a step at a time while performing several 

function evaluations within the step. These internal computations may be interpreted 

as approximations to the solutions at points lying within the step. If acceptable values 

of the discrete solution at equally spaced intervals within a step or block are obtained, 

then the method that does so is called a block method. In a k-point block method, 

each pass through the algorithm simultaneously produces k new equally spaced 

solution values.

Block implicit methods may be applied in a one-step mode or in a predictor corrector 

mode [53]. In one-step mode, only the last point in the block is used to compute the 

first approximations to the k values of the next block. Then, implicit formulas are 

applied iteratively until convergence is achieved to the maximum order of accuracy 

obtainable. An example of a parallel four point block implicit one-step method 

(BIOSM) due to Worland [54] is given in equation 5.7 and is graphically represented 

in figure 5.3.
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Predictor:

yi+r,0 = Yi **•r h fj r=1.2.3.4 5.7a

Corrector:

yi+M+i
yi+2,s+l

= yi + h
yi+3,s+l
yi+4,s+l

251/720 646/720 -264/720 106/720 -19/720 
29/90 124/90 24/90 4/90 -1/90

27/80 102/80
14/45 64/45

72/80 42/80 -3/80
24/45 64/45 14/45

^i+l,s
î+2,s
î+3,s
î+4,s

5.7b

When the block implicit method is adopted to a predictor-corrector mode, then all the 

solution values of a block may be used to predict a solution at each node of the next 

block.

Birta and Abou-Rabia [55] developed a formula for the block implicit predictor- 

corrector method (BIPCM). Equation 5.8 gives predictor and corrector formulas.

Predictor:

ypi = y0 + h ^ j = o Bij f-j

ffi = fOj.yPj)

Corrector:

5.8c

5.8d

yC.i  ~ y0 + h  4 o  ^ij

f?i = f(ti,yci)

where

5.8a

5.8b
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f-j = y.j), f.j = f(t.j, y.j)

t.j = t0 -jh, and tj = t0 +jh

Here (tQ.y^, (t_^,y_|),... (t_jc,y_jc) are known values within the current block and the 

base point, t0, separates the known data from the set of new values. The coefficients 

By and Cy are constants that depend upon the value of k. Equation 5.9 gives a four 

point BIPCM due to Abou-Rabia [56].

Predictor

yPn+i.i
y n+2,1

= yn + h
$>+3,1
y n+4,1

1901/720 -27774/720 2666/720 -1274/720 251/720 
1079/90 -2396/90 2594/90 -1316/90 269/90

2877/80 -7638/80 8712/80 -4698/80 987/80
3914/45 -11456/45 13704/45 -7616/45 1634/45

*n
fn+l,l
fn+2,*
*n+3,l
n̂+4,1

5.9a

Corrector:

$1+1,1
yn+2,1

y % + 3 , i  
J n+4,1

* yn+h

251/720 646/720 -264/720 106/720 -19/720 
29/90 124/90 24/90 4/90 -1/90

27/80 102/80 72/80 42/80 -3/80
14/45 64/45 24/45 64/45 14/45

ffn+l,s
*n+2,s
*n+3,s
*ih4,s

5.9b
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5.4 Power Series Expansions

Another example of 'parallelising' a serial method is the use of the technique of power 

series expansions using symbolic differentiation. The recursive calculation of the 

power series coefficients and in particular the calculation of the total derivatives 

follows a problem-dependent algorithm which may be automated.

In the first step of the procedure, the right hand members of the differential system are 

broken into simple expressions of two operands, such as a+b, and elementary 

functions, such as sin(x), while introducing auxiliary variables for the intermediate 

results. Then, recursive formulas are used to compute the derivatives. These recursive 

routines are independent and may be executed concurrently on a parallel computer of 

the multiple instruction multiple data type.

Equation 5.10 gives a Taylor series expansion for dy/dx = f(x,y).

yj+l =yj+hyW + — y( )̂ + ... + — y00 5.10
2! k!

where

d^y
y(k) = _

dxk

and k is the order of the Taylor series. When k=l the Taylor series reduces to the 

Euler method.

*
Barton et al [57] evaluate Taylor series methods and compare them with predictor- 

corrector and RK methods. They describe it as a highly stable, flexible, and fast 

variable step method.
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Halin [58] and Halin et al. [59] describe a number of recursive formulas to calculate 

the terms of the Taylor series iteratively. Equation 5.11 gives a recursive formula for 

the Taylor series.

^  hfr»
y(t) = yi^)(t0) ------  5.11

u!

where h = t - tQ, D = number of terms in the Taylor series and is the Dth

derivative of yj at tQ. Some of the recursive formulas for addition, multiplication and 

division are given in equation 5.12.

r = p + q
ru = p(v) + qC°) v>=0 5.12a

r = p q

r ^ )  = 2 s_q (  )  p(s) q(v' s) v>=0 5.12b
s

r = p /q

= P0/% ^=0

- ( ^ ) - 2 ^ l (  )  r̂ s) q( '̂s) )  / qQ t»>0 5.12c

The power series method was tried on a simple set of ODEs. Appendix A gives a 

procedure to solve a set of equations. This approach was discontinued because of the 

fine grain parallelism involved in solving the ordinary differential state equations 

describing the Diesel engine.

5.5 Single Cylinder Implementation on 
Transputers

Three different methods were investigated to implement a single cylinder model on 

the BUTPC. These are:

o Modified Euler Predictor-Corrector Method (MEPCM).
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o Block Implicit One-Step Method (BIOSM).

o Block Implicit Predictor-Corrector Method (BIPCM).

A simple cylinder model was taken for these experiments. Apart from having no 

manifolds, a fixed amount of fuel injection was allowed and the speed of the crank 

shaft was kept constant at 1500 rpm. The poppet valves were directly connected to the 

atmosphere. A Watson heat release model was used to calculate heat release due to 

combustion and the Hohenberg heat transfer model was used to calculate the heat loss 

from the cylinder gases to the cylinder walls.

The following sections discuss the above three implementations of the single cylinder 

model on the BUTPC and describe different approaches utilised to solve data transfer 

and synchronisation problem.

5.5.1 Single Cylinder Implementation using the MEPCM

Since the MEPCM does not introduce any algorithmic parallelism, the system must 

be separated across physical boundaries to make it a parallel problem. As a single 

cylinder itself may be taken as a single control volume system, with mass flow across 

the valves and energy flow across the walls while producing power at the input of the 

crankshaft, the solution of system of a single cylinder may be implemented as a single 

task. Figure 5.4 gives the solution algorithm for the MEPCM to solve a single 

cylinder model.

All the cylinder processes are divided into six main sections depending upon the 

physical processes and the valve states; namely: scavenge, induction, and exhaust, 

when both inlet and exhaust valvesare open, when only inlet valve or only exhaust 

valve is open, and compression, combustion, and power, when all the valves are 

closed.
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In order to speed up the calculation the following set of lookup tables are used.

o cylinder volume

o cylinder surface area

o cylinder rate of change of volume

o inlet valve effective flow area

o exhaust valve effective flow area

o heat transfer

o mass flow

The stability criteria used is

yc
1 - e < —  < 1 + e 5.13

yP

where e is the maximum error allowed between two consecutive points. An auto step 

reduction scheme was implemented which reduced the step size by one half if the 

stability criteria did not meet after a predefined number of iterations.

Figure 5.5a shows the effect of step size on the over all computation time. It is clear 

from the graph that as the step length increases the computation time reduces but after 

a certain steplength the computation time starts increasing again. This is because, as 

step size increases the system becomes unstable and the number of substeps per 

integration step increases, which in turn, increases the amount of calculation, 

specially in the scavenge or the combustion sections where the system may exhibit 

stiffness due to valve overlapping or combustion processes. Hence the advantage of 

having a higher stepsize is lost in order to keep the system stable. Figure 5.5b shows 

the same effects for a similar single cylinder engine but using only valve effective 

area tables. The average calculation time is considerably less due to a greater number 

of computations involved in junction flow and cylinder volume calculations. Figure
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5.5 also shows that if the tolerance on the allowable error is increased, the calculation 

time per cycle is reduced.

Figure 5.6 shows one cycle of the state parameters pressure, temperature, fuel to air 

ratio and mass within the cylinder of a single cylinder engine as simulated by the 

MEPCM.

5.5.2 Single Cylinder Implementation using the BIOSM

Unlike the MEPCM, the BIOSM presents algorithmic parallelism. As it is a block 

method, more than one point can be estimated at one time and the solution 

progressed, theoretically, at a speed equal to the number of points in the block times 

the speed of the serial equivalent. In practice, the speed is not a linear function of the 

number of points in the block due to the overheads caused by inter processor 

communications and synchronisations. Haysom [21] has mentioned a figure of two 

for a four point block one-step method.

While implementing a single cylinder model using the BIOSM, the following points 

were considered.

o A fixed step size approach was used and the step sizes used

were taken from the experience of the MEPCM. These are 

given in table 5.1. 

o A four point block was selected, which, along with giving an

accuracy of the order of six, provides a reasonable number of 

processors to see the effects of interprocessor communication., 

o No stability checks were done on the results. Hence a fixed

stepsize BIOSM was implemented.
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Figure 5.7 gives the solution algorithm for the implementation of the single cylinder 

BIOSM. There are two synchronisation points in this algorithm. The first 

synchronisation is just before the correction phase. This is to wait until all the 

processors in the block have predicted their corresponding points as these are needed 

to calculate the corrected values.

Table 5.1 Fixed step sizes for the BIOSM single cylinder 
implementation

Section Stepsize (deg)

Scavenge 0.25

Induction 0.50 0 <= 80°

1.00 0 > 80°

Compression 5.00 ® <== %ij ‘20°

1.00 6 > %lj -2°°

Igdel 0.50

Combustion 0.25 e<=400o

1.00 e >  4oo°

Power 5.00

Exhaust 1.00 e < = 660°

0.50 0 > 6600

The second synchronisation is just before advancing the block calculations to the next 

point. This wait is done in order to keep all the processors together and have same 

base value throughout the block at all times. The synchronising routines are discussed 

in section 5.6.

The BIOSM may be improved if a stability criteria is introduced as in the MEPCM, 

and then the step reduction is allowed through the block. The calculations are 

repeated if the stability does not reach within a certain number of tries [60].
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Figure 5.8 shows pressure, temperature, fuel to air ratio and mass plots over one cycle 

for the simulated single cylinder BIOSM. The calculation time for this simulation is 

0.225 sec per cycle which compares with that of the MEPCM with an accuracy of 

0.5% and a step size of 2°.

5.5.3 Single Cylinder Implementation using the BIPCM

This method has been studied by Birta et al [55] and Abou-Rabia [56]. They also 

describe a number of error functions to test the stability of the system [56]. While 

implementing a single cylinder Diesel engine model on the BUTPC using the 

BIPCM, following points were considered, 

o A four point block was taken,

o A variable step scheme was adopted.

o A stability criteria due to Abou-Rabia and Birta [60] was used

to decide the step reduction.

The integration stepsize adjustment method of Abou-Rabia and Birta is based on an 

analysis of the eiTor characteristics for the previous block. The maximum error for all 

the points in the block is taken as the error for the whole block. The error for each

point in the block is a normalised error derived from the difference of the predicted

and corrected values and a permissible error value. The value of the error is given by 

equation 5.14.

lyi-yPi I
r  = | ------------ | 5.14

I 8 I

The block maximum error, Rm, is used as a basis for a steplength adjustment scheme. 

The size of the steplength adjustment is given by equation 5.15, and is dependent on
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the point in the block from which 

points in the block.

^new -  CT*1old 

a = R“Y

Y = (p + I)'1

p is the order of the solution value corresponding to R. The Rm determines the 

progress of the solution. If it is less than unity, then the solution may proceed, 

otherwise the step is repeated. The new step length is used in both the cases.

Figure 5.9 gives the solution algorithm for the implementation of the single cylinder 

BIPCM Diesel engine on the BUTPC. The Bmatrix is the coefficient matrix for the 

predictor formula, and has to be recalculated as it depends upon the maximum error in 

the whole block [55].

Here again synchronisation between all the processors of the block is needed just 

before the corrector is applied, so that only the latest predicted values are used. 

Similarly synchronisation is required just before a block maximum error value is 

determined so as to decide the system stability later on. The synchronising routines 

are discussed in the next section.

Figure 5.10 shows the state variables pressure, temperature, fuel to air ratio, and mass 

within the cylinder as simulated by the BIPCM. The calculation time for this 

simulation is 4.185 seconds. Such a high value of calculation time is due to a check 

on stability that reduces the block step size to a smaller value, especially when valves 

are about to open or close and also during early stages of combustion.

the maximum error was derived and the number of

5.15a

5.15b

5.15c
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5.6 Synchronisation Mechanism for The Block Methods

Synchronisation in the BIOSM and in the BIPCM requires all the processors in the 

block to reach a fixed point before any of them commence further calculations, such 

as starting the corrector phase. Two different mechanisms were implemented to 

achieve this; one using shared memory flags [21], and the other using backplane 

routines BPSignal and BPWait [33]. Since both of the block algorithms were 

implemented for four points, the routines were written to synchronise four processors.

5.6.1 Four Point Synchronisation Using Flags

In order to synchronise four processors, four flags are needed to represent each 

processor in the block. Similarly each processor keeps a separate flag in its local 

memory for each of the block processors. Hence there are sixteen flags altogether.

On every synchronisation, each processor sets its respective flag on all the other 

processors, and then waits for all its local flags to be set by others. After all the flags 

are found set, calculation is proceeded by clearing all the local flags for the next time 

use.

On the T800, these flags are implemented as 4 bytes of a long word. Each byte 

represents one of the processors in the block, which is set by the corresponding 

processor. The local processor waits by checking the whole long word. It is cleared to 

zero and the synchronisation process is finished.

If only one set of flags is used for synchronisation, then it is possible for a processor 

to continue and reach the next synchronisation point and set its remote flags for a 

second time prior to another processor clearing its local flag for the first 

synchronisation. A processor 'deadlock* will occur as the second setting of the flag
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will be lost when the second processor clears its local flags for the first 

synchronisation point. This loss of signal can be avoided by having two sets of flags, 

one for the first synchronisation, for example before the correction phase, and the 

other for the second synchronisation after the correction phase. In this way double 

buffering is provided between clearing and setting of the flags.

5.6.2 Four Point Synchronisation Using BPSignal and 
BPWait

This method uses the back plane routines implemented on the BUTPC [33]. Each 

processor in the block has a set of backplane semaphores corresponding to the remote 

processors. For a four point block, each processor has three backplane semaphores, on 

which it is going to wait and it also has a pointer to the backplane semaphores on the 

other three processors which belong to it.

All the semaphores are initialised with zero count so that any processor which does a 

BPWait waits utill a BPSignal is executed by a remote processor. Six processes are 

forked on each processor, three for BPSignalling the remote processors and three for 

BPWaiting at the local BPSemaphores. The synchronising routine triggers first the 

signalling processes and then the waiting processes. It exits only when all the local 

BPSemaphores have been signalled.

As the BPSignal and BPWait do not implement actual signal and wait procedures, but 

instead simulate these processes in such a way that the BPSemaphore may have only 

one of the two values, 0 or 1, the actual signalling and waiting mechanism becomes 

like setting and clearing flags. Hence a protective mechanism is needed, just like the 

one described for the flag mode synchronisation, in order to avoid any 'deadlock' due 

to a loss of any BPSignal. Thus two sets of BPSemaphores are maintained, each for 

alternative synchronisation.
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5.7 Summary

In this chapter a single cylinder Diesel engine is simulated on the BUTPC using three 

different numerical algorithms. It is found that a compromise exists between step size, 

simulation speed and accuracy of the solution. The BIOSM, with no step reduction 

and stability test, provides a high speed up ratio compared with the MEPCM, but 

using a stability testing mechanism, the gain in speed is lost due to a reduction in 

actual integration step size, as in the case of the BIPCM. In the next chapter a full 

implementation of a six cylinder turbocharged Diesel engine using MEPCM is 

described.
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Figure 5.1 Graphical representation of Euler method
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Figure 5.2 Graphical representation of Modified Euler Predictor Corrector method
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Figure 5.3 Graphical representation of Block Implicit One Step method



main()
t

initialise();
for (cycle=0; cycle<max_cycles; cycle++)
{

for (ca=CaCycleSiart;ca<CaCycleEnd;ca=ca+CaCycleStep); 
cal = ca;
ca2 = ca + CaCycleStep; 
castep = CaCycleStep; 
castep5 = castep/2; 
castepend = ca2; 
while(cal < castepend)
t

predict();
calculate cylinder volume();
for (loop=0;loop<max_loops;loop++)
{

calculate gas properties(); 
calculate junction flows(); 
correct(); 
find stability() 
if(stable) break loop;

}
if (stable)
{

cal = ca2;
ca2 = cal + castep;
advance point();

)
else (unstable)
{

castep =castep5; 
castep5 = castep/2; 
ca2 = ca l + castep;

}
i
accumulate_cycle_results();

}
output_results();

Figure 5.4 The single cylinder MEPCM algorithm
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biosm
t

get step size for the current cylinder section(); 
while (base angle of block <= section stop angle)
{

get yp0;
calculate t (&ca) for the current processor(); 
predict();
find predicted slopes();
synchroniseO;
correct();
find corrected slopes(); 
synchroniseO;
advance base t (&ca) for the current processor(); 
handle any outstanding packets();

}
)

Figure 5.7 Single cylinder BIOSM algorithm
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bipcm
{

get step size for the current cylinder section(); 
while (base angle o f block <= section stop angle)
{

get current slopesQ;
get yo0;
while (unstable)
{

calculate t (&ca) for the current processor(); 
predict();
find predicted slopes();
synchroniseO;
correct();
find accuracy and Rmax(); 
synchroniseO;
set variables for stability test(); 
calculate new step length(); 
calculate new Bmatrix();

)
find corrected slopes();
advance base t (&ca) for the current processor(); 
handle any outstanding packets();

}
}

Figure 5.9 Single cylinder BIPCM algorithm
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Chapter 6



A Multi Cylinder Diesel Engine 
Simulation

6.1 Introduction

In this chapter the simulation of a six cylinder turbocharged Diesel engine on the 

BUTPC is described. The integration algorithm used is the MEPCM and a 

communication scheme called distributive iteration step communication (DISC) due 

to Haysom [21] is employed for data synchronisation within the simulator. Different 

tasks that constitute the parallel Diesel engine simulator (PDESIM) are also 

described. At the end of the chapter, the performance of the simulation is discussed.

6.2 The DISC

The DISC algorithm under the MEPCM views a Diesel engine as a control system 

consisting of cylinder and manifold control volumes which are interconnected via 

valves and which transfer power via shafts. This provides an inherent 'geometrical' 

parallelism in the system, divided into cylinders, manifolds and shafts. The PDESIM 

consists of six cylinder tasks, three manifold tasks, one dynamics task, one actuator 

task and one stability task.

The cylinder task is responsible for the calculation of cylinder processes, such as 

compression, combustion, etc. It also calculates the flows through valves connected to 

it. The manifold task calculates the states of the gases inside the manifold and is also 

responsible for the flow calculations of any compressor or turbine connected to it. 

This division of junction calculations between cylinders and manifolds provides 

overlapped calculation and hence a parallel path. There are some dynamic processes 

inside a cylinder, such as fuel injection timing and the amount of mass of fuel injected
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into the cylinder, which are separately calculated by a task called the actuator task. 

The dynamics task is responsible for the calculation of shaft speeds and also provides 

an estimate of the cumulative torque produced by the engine shafts. The last task, the 

stability task, does not contribute to any system calculations but it tracks the system 

stability and keeps all the other tasks, which require system stability for their 

progress, informed about the latest stability situation in the system.

The main features of the DISC implementation are:

o It has no centralised task for data communication between 

different tasks. All communication is distributed throughout the 

system and is point to point. For example, if a cylinder task 

wants some data from a manifold, it puts the request directly to 

that manifold and reads from its memory when the data is 

ready.

o Data communication occurs only between those tasks which

are physically connected at that point, for example, when a 

junction valve is open and gas is flowing from the inlet 

manifold to a cylinder. If the valve is closed, then both the 

cylinder and the manifold do not require any data from each 

other, so no communication occurs during a valve close period.

o Lookup tables are used for volume, valve flow and heat

transfer calculations. Table 6.1 gives a list of the look up tables 

used in the simulator.

o The MEPCM is iteratively applied until stability is reached.

Step reduction is allowed only if the system does not stabilise
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within a given number of iterations. In the case of the PDESIM, 

this iteration count is fixed at three. Communication between 

the control volumes occurs at each iteration, for each predictor 

and corrector, until all the control volumes which are connected 

together are stable.

Table 6.1 List of Lookup Tables

Cylinder volume

Cylinder surface area

Cylinder rate of change of volume

Cylinder inlet valve effective flow area

Cylinder exhaust valve effective flow area

(C1HO * cylinder pressure)®-**

(Average piston speed * C2HO)®-** 

(Cylinder volume)®* ̂

(Cylinder temperature)®-^

Figure 6.1 shows a connection diagram of the PDESIM. The following section 

describes how PDESIM is implemented on the BUTPC, which is a transputer based 

parallel computer running the operating system Helios.

6.3 The PDESIM on the BUTPC

The PDESIM is implemented on the BUTPC in a master-slave mode. A master or 

supervisor task called 'engine' is responsible for the initial creation of all the cylinder, 

manifold, actuator, dynamics and stability tasks.
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The engine task reads a data file which provides initial information about the tasks it 

is going to create. Then it creates all the remote tasks and writes the initialisation data 

required by each task to setup its local variables. Each remote task then sends back 

information about itself which is copied to all other tasks in the form of a table. Then 

information about shared variables is exchanged and the simulation is started once all 

the remote tasks are ready. Figure 6.2 shows a distribution of shared data across 

different tasks.

When initialisation is complete, the master task enters an interactive routine which 

helps the user to extract useful information from the PDESIM.

6.3.1 Task Creation and Initialisation

In the PDESIM, each remote task is loaded onto a separate processor. The processor 

name string is provided in a data file called 'proc-alloc'; an example processor 

allocation format is given appendix B. The file starts with a comment and has three 

columns of information. The first column is ignored as it is there only to help identify 

a task by a name. The next column gives the actual name of the task and the last 

column provides the processor name string on which the task has to be loaded. The 

engine task is loaded on any processor other than those given in this list.

A special purpose 'createtask' routine is used to create, load and start a task onto a 

remote processor. The remote task, once started, is sent initial data by copying the 

data across via Helios ports, which are created between the remote task and the 

engine task especially for this purpose. Once initialised, all data communication is 

done using shared memory primitives, Qpkt and Taskwait, described in chapter 4.
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6.3.1.1 'createtask1, 'reply' and 'gettxport'

The 'createtask' routine first locates the processor manager of the processor at which 

the task is to be loaded. Then it locates the task itself and starts it on the remote 

processor. After starting the task, information about the input and output environment 

is sent to the task via Helios streams.

Once a remote task is started, it first prepares the processor to get access to the 

backplane by clearing the 'eventretry' register to zero, so that a maximum of two 

hundred and fifty six tries may be possible. Then it allocates a local Helios port and 

sends it back to the parent task using the routine 'reply'. The parent task receives the 

information about the remote port using the routine 'gettxport' and stores it in a table 

so that data could be sent to the remote task via this port later on. Figure 6.3 gives 

flow diagrams for these routines.

6.3.1.2 'getinfo' and 'putinfo'

These two routines are used to exchange data between two tasks using Helios ports. 

The 'getinfo' routine waits on a port corresponding to the remote task and reads data 

directly into the data area, a pointer to which is provided’ as an argument to the 

routine. The 'putinfo' routine copies data directly to the remote task via the transmitter 

port. The flow diagrams for these routines are given in figure 6.4.

6.3.2 Data file Format

All previous attempts to simulate a parallel Diesel engine by Jones [2d] and Haysom 

[21] were oriented towards a six cylinder diesel engine simulation with embedded 

data for a Leyland TL11 turbocharged Diesel engine. In the present research, a 

separate data file format was adopted in order to facilitate data entry and also to avoid
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recompilation of part or all of the code when a minor change in the engine 

specification was needed. For this purpose, a data format similar to that of SPICE [15] 

was adopted in order to have a similar feel as that of SPICE. Appendix C describes 

how a data file is prepared for the PDESIM, and appendix D provides an example 

data file for the Leyland TL11 turbocharged six cylinder Diesel engine. Table 6.2 

gives those parameters which may be modified.

Another feature of the data file is the ease in the selection of different routines for 

heat release and heat transfer. As described in chapter 2, heat release due to 

combustion in the cylinder can be calculated in different ways. In the case of 

PDESIM either of the two methods, the Watson heat release method or the Wiebe 

heat release method, may be used just by specifying its name at the start of heat 

release data. Similarly, heat transfer between the cylinder gases and the cylinder walls 

may be estimated either by the Hohenberg heat transfer model or by the Woschni heat 

transfer model.

6.3.3 Data Communication and Synchronisation

A two way communication mechanism is used to transfer data between tasks. A 

communication packet is allocated to each of the two way inter-task transfers, which 

controls the reading and writing of data between the tasks. As soon as data is ready, a 

packet is sent to a task which may need this data now or later in the process. Return of 

that packet from the remote task means that the data has been read by that remote task 

and it may now be overwritten by the sender.

If a task needs some data from a remote task, it sends a packet to that task and waits 

for the packet to be returned. It then reads the required data from the memory of the 

remote task directly.
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Table 6.2 Engine parameters that may be modified

Cylinder bore

Cylinder stroke

Cylinder compression ratio

Cylinder connecting rod length

Cylinder offset angle

Cylinder friction mean effective pressure

Manifold volume

Manifold surface area

Manifold heat transfer coefficient

Inlet valve data

Exhaust valve data

Load inertia

Load torque

Shaft speed

Initial

pressure, temperature, and fuel to air 
ratio

of

cylinders, manifolds, and atmosphere

Integration step size

Tolerance for stability test

Section angles corresponding to

valve open, valve close, and

static fuel injection timing

Combustion duration
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In order to make all communication asynchronous, so that overlapped communication 

and calculation is possible, a flag is maintained for each packet on both the 

communicating tasks. This flag is set by a packet handler on the arrival of the 

corresponding packet. The waiting task is only forced to wait if the communication 

flag is not set.

The cylinder control volume task communicates with all other tasks. It needs 

information about pressure, temperature, fuel to air ratio and general gas properties of 

both the inlet and the exhaust manifolds it is connected to. It sends valve flow 

parameters to the connected inlet and exhaust manifolds. From the actuator task, it 

reads static fuel injection timing and the amount of fuel injected, and from the 

dynamics it obtains the speed of the crank shaft. The dynamics task, on the other 

hand, needs torque produced by the cylinders in order to calculate the engine speed, 

and turbine torque from the exhaust manifold and compressor torque from the inlet 

manifold to calculate turbo speed. The actuator task needs only engine speed from the 

dynamics task. The stability task reads the local stabilities of cylinders and manifolds 

and returns them system stability.

There are two different step sizes of the system; one is an overall calculation step size 

which is kept constant and is used to accumulate cycle data at constant intervals, and 

the other is an intermediate iteration step size which happens whenever system 

stability fails and a decision is made to reduce the step. Those control volumes which 

are connected to each other keep on exchanging data during the reduced step. Thus 

communication between the cylinder and the manifold control volume tasks occurs 

for every iteration step of the MEPCM, so that only the latest values of the state 

variables may be used at each point.

The communication between the cylinder and the dynamics tasks occurs at each 

calculation step. This is because the shaft dynamics have a high integration time
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constant, and therefore, are solved by a simple integration formula, given in equation 

6 .1.

yn+ l = y n  + h fn 61

The actuator equations have also a high time constant and are solved independently. 

The synchronisation of the actuator task is provided at each calculation step when it 

reads engine speed from the dynamics task.

The stability task works in a different way. As mentioned earlier, it does not take part 

in any calculations of the system equations. It communicates only with those cylinder 

and manifold control volumes which are connected to one another via an open valve. 

If both the inlet and the exhaust valves of a cylinder are closed, then the cylinder is 

not connected to any of the manifolds. Therefore it does not communicate with any 

manifold or with the stability task. Transition between a closed section and an open 

section occurs when a valve starts to open or close and is described in the next 

section. Figures 6.5a and 6.5b show flow diagrams of a cylinder control volume when 

it is in the power stroke and the exhaust stroke respectively. Similarly figure 6.5c 

shows the flow diagram of an exhaust manifold.

6.3.4 Open and Closed Loop Connections

Communication between different tasks of the PDESIM is divided into two main 

sections depending upon the opening and closing of valves. These are the open loop 

section when at least one of the valves is open and the closed loop section when both 

valves are closed.

The point at which cylinder valves open or close is determined by the engine 

crankshaft angle. The manifold control volume tasks have no absolute knowledge of
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the crankshaft angle, therefore, the detection of opening and closing of valves is done 

by the cylinder control volume tasks.

A valve is presumed to open at the start of the integration step containing the valve 

opening angle and is presumed to close at the end of the integration step containing 

the valve closure angle. This is to allow to overlap between the section of the cylinder 

with the higher number of terms in the state equations, such as scavenge, onto the 

section of the cylinder with the lesser number of terms in the state equations, such as 

exhaust or induction.

A cylinder control volume task uses three different packet types to inform a manifold 

about opening or closing a valve and valve data transfer. These packets are:

o A communication packet

o A valve open packet

o A valve close packet

Each manifold keeps a table for the storage of the cylinder communication packets. 

When a cylinder has to open a communication channel, it sends a valve open packet a 

step in advance to the manifold which stores this packet in its communication packet 

table and increments a counter to indicate that the number of currently open channels 

has been increased. Communication is established at the start of the next iteration. 

When a channel has to be closed, a valve close packet sent by a cylinder to a manifold 

is returned by the manifold after updating a local counter that indicates the number of 

channels currently closed. So at the start of the next step, no packet is sent to that 

cylinder whose valve was closed, and the communication channel is closed.

The opening and closing of the communication channels between the cylinder and the 

manifold control volume tasks is synchronised by sending the valve open or close
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packet to the manifold before communicating with the stability task. In this way the 

manifold task is ensured to receive all the information before it decides to move 

forward, to loop around or to reduce step and iterate, depending upon the system 

stability.

6.4 Speed Performance of the PDESIM

Three different variables are used to observe the speed performance of the PDESIM. 

These parameters are given in table 6.3.

Table 6.3:

Engine speed 1200 rpm - 2000 rpm

Integration step length 0.5°, 1° - 5°

Integration stability criterion 0.1%-0.5%

Figure 6.6a shows the simulation speed as a function of the integration step length for 

different stability criteria. The engine speed is 2000 rpm. It gives a peak simulation 

speed of 140 rpm for a stability criterion of 0.5% and at 2° step length. As the 

integration step length increases, the simulation speed decreases after reaching a peak 

value. This is due to a need to reduce intermediate stepsize in the region of greater 

instability.

In figure 6.6b, a graph of simulation speed as a function of engine speed is plotted for 

different integration step lengths. The stability criterion is 0.5%. It shows that an 

optimum step length for an engine speed below 1600 rpm is 1° and that for an engine 

speed at and above 1600 rpm is 2°.
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6.5 Summary

A six cylinder turbocharged Diesel engine is simulated on a transputer based parallel 

computer. The simulation utilizes the distributive memory features of the BUTPC. All 

data transfer and synchronisation is decentralised and is asynchronous in nature. Data 

entry to the simulator is made flexible by the use of a data file, which allows the user 

to see the effects of changes in different parameters on the engine performance 

without changing actual code. A peak performance simulation speed of 140 rpm is 

achieved which is 14.3 times 'real time'.

In the next chapter, simulation results from the PDESIM and the FJH model are 

compared.
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Object createtask()

{

construct the name of the processor manager(); 

locate the processor manager(); 

locate the program to be loadedO; 

start the program up();

construct suitable environment for the new program(); 

send environment to the new program(); 

return program object();

)

Figure 6.3a: 'createtask'
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replyO

{

send dummy message to the parent task();

}

Figure 6.3b: 'reply'

Port gettxport()

{

get dummy message from the remote task(); 

return reply port();

}

Figure 6.3c: 'gettxport'
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getinfoO

{

get message data from remote task at the given address();

}

Figure 6.4a: ’getinfo'

putinfoO

{

send data from the given address to the remote task();

}

Figure 6.4b: 'putinfo'
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Chapter 7



Engine Simulation Results and Their 
Validation

7.1 Introduction

This chapter describes different engine output parameters and their calculation over a 

cycle in the PDESIM. A six cylinder Diesel engine is simulated and the results are 

compared with those obtained from a similar Diesel engine model due to Haysom 

[21]. At the end of the chapter, a brief comparison is given between the output results 

of an experimental Leyland TL11 turbocharged Diesel engine and the simulated 

results obtained from the PDESIM.

7.2 The Engine Cycle Parameters

An internal combustion engine is characterised by a number of parameters. These 

parameters describe the overall performance of the engine. In general, it is of interest 

to know about the power generated by a particular engine and its efficiency. To get 

this information, a number of engine variables are collected. These variables are of 

two main types; actual engine variables which define the instantaneous engine state 

such as pressure, and temperature, together with overall engine parameters which 

define the performance of the engine such as power and fuel consumption. The 

overall performance parameters are derived from the engine instantaneous variables. 

The following sections describe these parameters.
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7.2.1 The Engine Cycle Variables

The engine cycle variables are spread across the engine system. Some of these belong 

to the cylinders and some belong to the manifolds and shafts. These variables are of 

three different types, average, maximum and accumulative over the engine cycle.

In the PDESIM, each cylinder control volume task collects the following cycle 

information.

o Open cycle work in joules

This is the amount of indicated work done by a piston during the gas 

exchange strokes.

v ^ ^ i n d  /  \  dV Cyi

w oc = ^  (  pcyl J -----------------------------------------------71
BDCexh d0

v

o Closed cycle work in joules

This is the amount of indicated work done by a piston during compression and

expansion strokes.

v ^ ^ ex h  /  \  d^cyl
w cc = L  {  pc ! ) ---  A0 7.2

BDCjjjd de

o Mass flowing through inlet valve in kg

This is the total mass of gas entering the cylinder through the inlet valve 

during a cycle.

v^4n; ^ iv
m lv  =  2 a   A0 7.3

0O d0
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o Mass flowing through exhaust valve in kg

This is the total mass of gas that passed into the exhaust through the exhaust 

valve during a cycle.

^ e v
mPV =  2a  A0 7.4

0O d0

o Enthalpy through inlet valve in joules

This is the total amount of enthalpy associated with the mass that came into 

the cylinder.

S ®4je ^ i v
hjv  A0 7.5

0O d0

o Enthalpy through exhaust valve in joules

It is the total amount of enthalpy associated with the mass that went out to the 

exhaust.

E ®4tu ^ e v
hev   A0 7.6

0O d0

o Maximum cylinder pressure (Pmax) in bar

The highest pressure reached during the entire cycle.

o Wall heat transfer in joules

The amount of heat transferred to the wall of the cylinder.

Ŷ 4rc dqwall
Qwall = ^

0O d0

169



o Volumetric efficiency

This is defined as the ratio between the mass of air trapped inside the cylinder 

to the ideal mass trapped inside the cylinder at mean inlet manifold conditions 

based on the swept volume of the cylinder.

ma,trapped
^vol = ---------------------  7-8

Pirn ^cyl,swept

where

mcyl 

1 + îvc
ma,trapped ~ ..................

and

Pim “ ......................... 7-10
îm,av ^im,av

o Friction mean effective pressure (FMEP) in bar

The work to overcome friction per cycle divided by the swept volume.

o Average engine speed (coe) in revolutions per minute

o Fuel mass injected (mf) in kg

The following cycle variables are collected by each manifold control volume task.

o Average manifold pressure (P) in bar

o Average manifold temperature (T) in Kelvin

o Average turbocharger speed (cotc) in revolutions per minute
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o Mass flow through the compressor or turbine per cycle in kg

Mn  dnitc 

tQ dt

V1= 2mt -------  At 7.11

o Mass flow to or from the cylinders per cycle in kg

^mcyl
mCyj = Z d   At 7.12

tQ dt

o Enthalpy flow out of, or into, the manifold through the turbocharger

compressor or turbine in joules.

V  14jc ^ t c
Htc = I d  htc -------  At 7.13

tQ dt

o Enthalpy flow to or from the manifold through poppet valves in joules

ityjr dmCyi
^  = I d  h„ m -------  At 7.14- 2  ..

tQ dt

where hc in is the enthalpy associated with the mass flows across the junctions 

to or from the cylinders.

o Manifold wall heat transfer in joules

\^47c ^ w a ll
Qwall = ^  7.15

tQ dt
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o Average power generated by the turbine or required to run the compressor in 

Watts

y  14tu
7.16

o Average torque required to move the turbocharger shaft (x^) in Nm

o Average turbocharger efficiency (rjtc)

7.2.2 The Derived Engine Parameters

The engine cycle parameters described above, are used to derive the following engine 

performance characteristics.

o Indicated mean effective pressure (IMEP) in bar

This is the uniform pressure which, acting through the power stroke only, 

would do the same amount of indicated work during one cycle as is done by 

the varying pressure inside the cylinder [61].

IMEP = 7.17

o Pumping mean effective pressure (PMEP) in bar

PMEP = 7.18
cyl,swept
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Brake mean effective pressure (BMEP) in bar

This is the uniform pressure on the cylinder piston which will produce actual 

output at the crankshaft after overcoming the friction.

BMEP = IMEP - FMEP 7.19

Mechanical efficiency

This is a measure of total mechanical losses and is calculated as

T|mech -  BMEP / IMEP 7.20

Indicated power (IP) in Watts

This is the power developed inside the engine cylinders.

(Wcc + Wqc) we
IP = ---------------------  7.21

4ix

Brake power (BP) in Watts

This is the power produces by the engine after overcoming fictional losses. 

BP = IP Tjmeeh 7.22

Indicated specific fuel consumption (ISFC) in kg/kWHr

It is the fuel flow rate necessary to produce unit indicated power from a given

engine.



o Brake specific fuel consumption (BSFC) in kg/kWHr

BSFC = ISFC / T|mech 7.24

o Indicated efficiency

(Wcc + Woc)
Tlind “ 1 .25

mf calval

where the calorific value 'calval' is in J/kg. 

o Brake thermal efficiency

^bk = înd ̂ mech 

o Total work output by engine in joules

Wout = (Wcc + Woc) Tlmech 7,27

o Work done against friction in joules

Wfhc = (w cc + w oc)-w out 7-28

Under steady state operation, that is constant speed and load, the mass and the energy 

balance for each control volume can be used to indicate the correctness of the sub

models and their implementation and to the numerical integrator. For any control

volume, the mass balance MB is given by
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total mass entering per cycle
MB = --------------------------------  7.29

total mass leaving per cycle

and the energy balance EB is given by

total energy entering per cycle
EB = --------------------------------  7.30

total energy leaving per cycle

For a cylinder

total mass entering 

total mass leaving 

total energy entering 

total energy leaving

For a manifold

total mass entering 

total mass leaving 

total energy entering 

total energy leaving

miv + mf 

mev
m f  calval

^ e x " ^ in  + Qwall+ ^ o u t+ ^fric

7.31

mtc

mcyl
Htc (inlet), HCyj (exhaust) 

Htc (exhaust), HCyj (inlet)

7.32

7.3 Collection and Presentation of Engine Cycle 
Parameters

Data from the Diesel engine simulation is collected at two different stages. Firstly, 

results that are recorded at each integration step, and secondly, results that are 

calculated and recorded on completion of a cycle. Table 7.1 gives those parameters 

which are recorded at each integration step and table 7.2 gives those parameters 

which are recorded for every cycle.
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To collect and manipulate engine variables, an interactive task is setup which acts as a 

link between the user and the PDESIM. When information at each integration step is 

required, the interactive task sends a packet to the corresponding task. Each 

simulation task has a logging area for recording step information. On receiving a log 

packet, the simulation task starts logging information in that area. It returns the log 

packet to the interactive task when the logging is finished. The user interface task can 

either display these logged variables immediately or can store the results.

Table 7.1 Variables recorded at each step

Cylinder Manifold

angle relative angle

pressure pressure

temperature temperature

mass fuel to air ratio

volume mass

flow through inlet valve flow through turbocharger

flow through exhaust valve flow through poppet valves

heat transferred to wall turbocharger torque

heat released into cylinder turbine speed

engine torque heat transferred to wall

The cycle results are collected in a different way. Each cylinder and manifold task 

keeps a circular buffer for recording cycle data. It updates this buffer every cycle, and 

advances a pointer to the currently valid cycle data area. When a request for cycle 

data logging is received, the pointer to the latest valid cycle data area is returned. The 

user interface task then reads in data directly from this data location and does all the
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required post-processing to calculate engine performance parameters. The results may 

then be displayed on the monitor or they may be stored so that a hard copy may be 

obtained.

Figure 7.1 gives the structure of the Diesel engine simulation user interface menus. 

The 'record time history’ command records data collected every cycle and the 'log 

cycle data' command records data collected at each step. The 'modify parameters' 

command allows the user to change some of the engine parameters. If a value of -1 is 

sent for the rack position, the injection angle, or the amount of fuel injected, then 

dynamically calculated values of these parameters are used. Otherwise the given 

value is used in the simulation.

Table 7.2 Variables recorded over a cycle

Cylinder Manifold

open cycle work mass flow through valves

closed cycle work mass flow through turbocharger

mass flow through inlet valve energy entering manifold

mass flow through exhaust valve energy leaving manifold

energy flow through inlet valve mean pressure

energy flow through exhaust valve mean temperature

maximum pressure mean turbocharger speed

heat transferred to wall heat transferred to wall

volumetric efficiency mean turbocharger power

FMEP mean turbocharger torque

engine speed mean turbocharger efficiency

mass of fuel injected

swept volume
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The 'display CV data1 command displays either the cylinder or the manifold data on 

the screen. The ’get map data' automatically records engine performance data over a 

range of engine speed and fuelling.

7.4 Validation of Results

In order to validate the simulation results, a Leyland TL11 Diesel engine is simulated 

and the performance characteristics are compared with those obtained from a similar 

engine using FJH Model [21].

7.4.1 The Leyland T ill Diesel Engine

The Leyland TL11 Diesel engine is a high speed truck engine. It is being used as an 

experimental engine in the School of Mechanical Engineering, University of Bath. It 

has six cylinders 'in-line'. It is a four stroke, 11.1 litre turbocharged Diesel engine 

capable of producing 190 KW of power at a maximum speed of 2100 rpm.

The TL11 has a direct fuel injection system. The fuel pump is driven at half engine 

speed from the engine crankshaft and is controlled in two ways; by the rack control 

and by the timing control. The rack control defines the amount of fuel injected into 

the engine and the timing control defines the angle at which the fuel enters the 

cylinders.

Earlier, the TL11 was fitted with a variable geometry Holset turbocharger, which has 

been replaced with a fixed geometry Garrett turbocharger. The engine has an air-to- 

water aftercooler which cools the charge air before it enters the inlet manifold.
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The power from the TL11 engine is absorbed by a hydrostatic dynamometer in three 

different modes; constant speed, constant torque, and with torque proportional to the 

square of the engine speed. A complete description of the Leyland TL11 engine and 

its behaviour is given by Roberts [62].

The TL11 has been extensively instrumented to give as full a picture of the operation 

of the engine as possible. A description of this may be found in the Leyland TL11 

instrumentation manuals [63]. To measure the cylinder pressure, two Kistler 6121 

piezo-electric pressure transducers and their associated amplifiers are fitted at the top 

of cylinders three and six. These pressure transducers are removable to allow the 

deposits from fuel combustion to be removed.

Temperatures in the engine system are measured using Cromel-Alumel (K type) 

thermocouples. These thermocopuples are buffered using conditioning cards which 

allow the user to present temperature readings to a display on the engine 

instrumentation panel or to read using a computer.

The dynamic timing of the injection of fuel into cylinders is indicated by needle lift 

transducers which are fitted to cylinders three and six.

To obtain the speed of the engine, the crankshaft position is monitored using an AVL 

crankshaft optical encoder type 360C/600. It has two rings of dark and bright bands, 

one provides a crankshaft resolution of 0.6 degrees and the other outputs a pulse when 

cylinder one is at TDC.

A number of other transducers are also fitted to the engine to measure turbocharger 

speed, manifold pressures, fuel flow rates, engine torque etc. A description of these is 

given by Haysom [21] and Scaife [64].
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To monitor, record and present results from the TL11 engine, a computer data 

acquisition system has been designed and built by Haysom [21]. This system is based 

on a Motorola MC68000 based single board computer system. It logs analogue and 

digital data at the rate of 25 kHz. The system consists of a master board, slave boards, 

a two megabyte backplane memory board, a multilink local area network board and 

an EFCIS colour graphics board. A complete description of the data acquisition 

system may be found in the theses of Haysom and Scaife.

7.4.2 The FJH Model

The simulation model due to Haysom has data built into the program. It uses a Holset 

turbocharger in the six cylinder TL11 Diesel engine simulation and has been verified 

against the real engine. To allow a comparison between the FJH Model and the 

PDESIM, the Holset turbocharger was modelled. The Watson heat release model [25] 

was used for heat release calculations and the Hohenberg model [28] was used for 

heat transfer calculations. These models were selected because the FJH Model uses 

only these two functions for simulation. The same poppet valve effective area tables 

and initial conditions were fed to the PDESIM as those used in the FJH model.

To compare the steady state performance of the two models, the simulations were 

setup to achieve a constant engine speed by selecting a high load inertia. The amount 

of fuel injected into the system was adjusted so that the same amount of fuel could be 

used in both cases. For each point, the simulations were allowed to reach steady state 

before any results were taken. The simulations were run with an initial integration 

step of 2 degrees and a stability criterion of 0.5 percent.

A comparison of the results from the PDESIM and the FJH Model is shown in figures

7.2 and 7.3. In figure 7.2, the BMEP and the brake power results from the FJH Model
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and the PDESIM are plotted against fuel flow rate. A Willan's line [61] is 

superimposed on these graphs. The Willan's line gives an approximation to the FMEP 

and the friction power of compression ignition engine. In these graphs, the point at 

which the line crosses the x-axis provides the rate of fuel flow needed to overcome 

friction. It gives the value of the FMEP and the friction power required to overcome it 

when it touches the y-axis, where zero fuelling occurs at a particular speed.

In figure 7.3 engine maps showing brake power, maximum cylinder pressure, the 

BSFC, the brake efficiency, the boost pressure, the turbocharger speed, the 

compressor power, and the fuel flow are given. These maps are drawn against the 

BMEP as function of the engine speed and show similar trends for both the models.

7.4.3 The TL11 engine

A new turbocharger has been fitted onto the TL11, and is being tested in the School 

of Mechanical Engineering [65]. In order to have a test comparison, the PDESIM was 

run using data for the new Garrett turbocharger and two of the results compared with 

those available from the engine. These results are shown in figure 7.4, and the 

agreement between theoretical and experimental results is extremely promising.

In figure 7.4a and 7.4b, a Willan's1 line is superimposed on the BMEP plots for engine 

speeds of 1200 rpm and 1600 rpm respectively. It gives a FMEP value of 1.57 bar and 

1.71 bar at 1200 rpm and 1600 rpm respectively. Similarly, the friction power 

required to overcome this friction is 17.4 and 25 KW for the respective speeds.
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7.5 Summary:

The results of the parallel engine simulated on the BUTPC are compared with an 

equivalent simulation due to Haysom which has already been verified against the data 

of a real engine. The results from the present PDESIM show good correspondence 

with results from the FJH Model. BMEP and brake power curves for two different 

engine speeds are also compared with the real experimental results of the TL11 Diesel 

engine.
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Figure 7.1 The user interface menu
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Figure 7.2c A Willan's line superimposed on the BMEP results from the PDESIM and

the FJH Model at 1600 rpm
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the FJH Model at 1800 rpm



BM
EP

 
(b

ar
)

P a r a l l e l  Diese l  Engine S im u la t io n
2000 rpm, 338 degree  i n j e c t i o n

-2

6 8 10 12 142 4
Fuel f lou Cg/sec)

• PDESIM + FJH Model

Figure 1.2c A Willan's line superimposed on the BMEP results from the PDESIM and

the FJH Model at 2000 rpm



Br
ak

e 
po

we
r 

(K
U)

P a r a l l e l  D iese l  Engine S im u la t io n
1200 rpm , 338 degree  i n j e c t i o n

225

200

175

150

125

100

75

50

25

-25

-50
2 60 4 8 10 12 14

Fuel flow (g/sec)
• PDESIM + FJH Model
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PDESIM and the FJH Model at 1200 rpm
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Figure 7.3b Engine contour maps showing maximum cylinder pressure
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Figure 7.3c Engine contour maps showing the BSFC
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Figure 7.3d Engine contour maps showing brake efficiency

The BUTPC Parallel Diesel Engine Model With Holset Turbocharger 
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Figure 7.3e Engine contour maps showing boost pressure

The BUTPC Parallel Diesel Engine Model With Holset Turbocharger 
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Figure 7.3f Engine contour maps showing turbocharger speed
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Figure 7.3g Engine contour maps showing compressor power

The BUTPC Parallel Diesel Engine Model With Holset Turbocharger 
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Figure 7.3h Engine contour maps showing fuel flow
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Chapter 8



Application of the Engine Simulation

8.1 Introduction

Engine simulation has always been used in a number of applications, but its main use 

has been in the areas of engine design and performance comparisons where the 

relative response of the engine simulation is not important. With the introduction of 

high speed computers and the application of parallel processing, the simulation time 

has been considerably reduced. This has opened new potential applications areas 

where the time of simulation is relatively important when compared with the actual 

engine response. The following sections describe some of the possible applications of 

the Diesel engine simulation.

8.2 Simulation as a Design Tool

Existing engine simulation using complex models is slow and can limit the use of the 

engine simulation as a design tool. With a fast simulation, the response time to an 

action is very short. An interactive control of a simulated engine can be given to the 

designer, who can change different engine parameters interactively and see their 

effects on different performance parameters before going into detailed prototype 

design of the engine. This can lead to experiments with novel designs which may be 

expensive to try using real hardware. Simulation can help the understanding of 

combustion and an efficient engine design with less combustion products released to 

exhaust may easily be designed. The parallel Diesel engine simulation developed in 

this thesis has the ability to allow some of the parameters to be modified and their 

effects recorded.
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8.3 Condition Monitoring and Fault Diagnosis

A number of maintenance techniques are employed to keep an engine running. One 

way is to replace or repair when failure occurs. This is not always feasible, 

particularly in cases where continuity of operation is required, such as in case of ship 

engines. Another method is to do maintenance at planned intervals and replace 

components on 'running hour1 bases. This can lead to replacement of those 

components which are still healthy and hence can contribute an overall cost increase 

and produce inefficiency of the system. A third type of maintenance method is based 

on condition of the engine, and is called condition monitoring [66]. Condition 

monitoring is considered the most reliable, cost effective and efficient technique for 

maintaining an engine. It improves safety and gives more running time and less 

maintenance time.

Condition monitoring relies on objective assessment and quantitative measurements 

of the engine by taking regular measurements and analysing them. This is achieved by 

comparing different engine parameters with already established known values of 

these parameters for a healthy engine.

The requirements to compare the engine results with a reference provides some 

difficulties. Uitermarkt [67] notes that a reference database of an engine test-bed 

results for a large ship engine would probably be incomplete due to the huge 

variations in operating and environmental conditions that such an engine would meet. 

Introducing a complete set of operating conditions will increase the size of the 

database to a considerable extent. A fast engine simulation system would help to 

overcome this.

Another aspect of condition monitoring is fault diagnosis. Faults can be simulated 

using a complex engine model and the results stored in a database file. A complete
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condition monitoring system could then compare these simulated faulty results with 

those from an engine and could predict a possible fault in a particular part of the 

engine.

It is envisaged that an on-board condition monitoring and fault diagnostic system 

would be used in conjunction with an expert system. Katsoulakos et al [68] describe 

such a system. Simple engine condition monitoring using test-bed results has already 

been used commercially. A model that is based on test-bed results and makes 

adjustments to these to take account of operating conditions has been implemented by 

the company Mak [69].

8.4 Engine Control

Testing new control strategies using real engines is cosdy because of high amount of 

instrumentation involved. By using a high speed simulation, new management and 

control systems can be investigated before applying these techniques to the real 

engine. This can provide a reduction in cost and effort just by reducing the number of 

trials on a real engine before perfecting the method.

8.5 Summary

The application of high speed simulation to Diesel engine design and subsequent 

control and maintenance offers a great deal of economic and environmental 

advantages. A combination of condition monitoring and control applied in 

conjunction with expert systems may develop into a semi-auto control system that 

will be applied to monitor big engines both in off-shore applications such as ship and 

in inland applications such as power generation.
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Chapter 9



Conclusions

A Diesel engine simulation has been implemented using the distributed memory 

features of the Bath University transputer based parallel computer. A filling and 

emptying model is used to simulate a Diesel engine, which treats a Diesel engine as a 

thermodynamic system consisting of cylinder and manifold control volumes, 

junctions that interconnect these control volumes, and shafts that transfer power 

generated by the engine. An advantage of this method is that a direct correlation 

exists between the real engine and the simulation, and using cylinders and manifolds 

as basic control volume modules almost any type of engine configuration can be 

studied.

The filling and emptying model also provides lesser communication between cylinder 

and manifold tasks as these control volumes are relatively independent and share only 

those variables which affect the flow between them.

A new flexible data entry system has been developed that helps the user to define the 

topology of an engine and initialise different variables of the engine simulation. This 

system also provide the facility to change different parameters, of the engine without 

changing the actual code. It is also possible for the user to change some control 

parameters interactively and see their effect on the engine performance.

Control and synchronisation within the simulation is distributed across all of its 

constituent tasks. Thus, once the simulation is initialised, synchronisation and data 

transfer occurs as and when required by a particular task.

Different communication functions are provided with the operating system Helios, 

but these are slow and do not satisfy the fast data communication requirements for the 

Diesel engine simulation. New communication primitives have been developed using
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the backplane features of the new computer which are faster than the Helios routines. 

These new routines have been used for data transfer and synchronisation within the 

Diesel engine simulation.

The new parallel Diesel engine simulator has been compared with a previous but 

slower, simulator. Results from the two simulators were taken for varying fuelling 

over a range of speeds. Engine maps were plotted and the results were found in 

agreement.

The results from the new simulation have also been compared with results from a real 

engine. An extremely promising correlation has been shown to exist between 

theoretical and experimental results for different speed and fuelling conditions.
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Chapter 10



Further Work

The new parallel Diesel engine simulation implemented using transputers has 

demonstrated a number of areas where further investigation may be carried out. One 

of these is the addition of a database type input to the simulation that defines the 

topology of the engine and initialises different operating and environmental variables. 

This can be extended further by combining the simulation with an expert system to 

provide a better and faster engine management system for condition monitoring and 

fault diagnosis of large industrial and ship engines.

At present, a turbocharged engine can be modelled with a variable number of control 

volumes. An extension to this facility would be to be able to select any number of 

turbochargers.

In the present simulation, only one crankshaft and one turbocharger shaft are allowed. 

The addition of more shafts will add more flexibility in defining the overall topology 

of the engine and it could be possible to simulate any thermodynamic control system 

beside a complete Diesel engine.

The empirical models used in the simulation have values for the constants which are 

suggested by the authors of these models. To simulate a particular engine, more 

appropriate constants should be found that may improve the actual model as well.

A natural enhancement to the simulation will be the addition of a user friendly man- 

machine interface for plotting different parameters of the simulation.

Technology is advancing at a great pace and new and fast processors are appearing in 

the market. An obvious enhancement to the present work would be to adopt it 

accordingly so that the latest computing systems available may be utilised. For
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example, further work could be carried out to port the simulation developed in this 

thesis to an Intel’s i860 based system which would promise a greater speed of 

simulation.
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Appendices



Appendix A 

Solution of Ordinary Differential 

Equations Using Power Series

A.l For y = f(t) Taylor series is defined as

(At)2 (At)3
f(ti+At) = f(ti) + At f(ti) + ------  f  (ti) + -------  f"(ti) +

2! 3!

where At = t - ti or t = ti + At

Rewriting the above equation

f(t) = f(°)(ti) + At fW(ti) + - - - - -  f<2>(ti) + - - - - -  f<%i) +
2! 3!

where f^)(t) is the kth derivative of f(t).

In general

E k=oo (At)k
f(k)(ti). -----------

k=0 k!

Substituting y^ = f̂ k)(ti) . (At)k / k!, the general solution y = f(t) can be 

written as

y = y0 + y i + y2 + y3 + ...
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A.2 Let the example set of ordinary differential equations be

y ^ 1) = y2 A.la

y2(1) = ----- -̂----- ""o“"Tn A* lb
(y 1 + y 2)

where both yj and y2 are functions of t.

The initial conditions are

yi(0) = 1 

y2(0) = 0

The solution of the above equations is

yj = cos (t) A.2a

y2 = sin (t) A.2b

A.3 To integrate these initial value first order ordinary differential equations using 

Taylor series, these equations are required to be broken down into set of equations 

involving two variables only. To do so new auxiliary variables are introduced. These 

sub equations are

yjW  = y2 A.3a

aO = - A.3b

al = yj2 A.3c

a2 = y2^ A.3d
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a3 = al + a2 A.3e

a4 = (a 3 )^  A.3f

a5 = a0/a4  A.3g

y ^ 1) = a5 A.3h

In the following sections, it is assumed that y^Q represents Oth derivative of yj, y2 Q 

represents Oth derivative of y2 , alO represents Oth derivative of al, and so on.

Selecting the number of terms k=4 and the interval At=h for the Taylor series, the 

solution will be:

A#4 Formula:

For = p A.4a

the Taylor series terms are

rk+1 = (h/(k+l))pk A.4b

Applying this formula to equation A.3a gives

YlO = 1 A.5a

k=0 y n  = h y20 A.5b

k=l y12 = (h/2) y21 A.5c

k=2 y13 = (h/3) y22 A.5d

k=3 yi4 = (h/4) y23 A.5e

k=4 y15 = (h/5) y24 A.5f

A.5 Formula:

r = constant. p A.6a

the Taylor series terms are

rk = constant. pk A.6b
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Applying this formula to equation A.3b gives

k=0 aOO = - yio A.7a

k=l aOl = - y n A.7b

k=2 a02 = - yi2 A.7c

k=3 a03 = - y n A.7d

k=4 a04 = - yi4 A.7e

A.6 Formula:
2r = p^ 

the Taylor series terms are

rk = PO• PO

y (k-l)/2
rk = 2 Z a  Ps Pk-s

S = 0

y (k-2)/2
rj, = 2 2 - i  ps p^g (k=even and k>0)

s=0

A.8b

Applying this formula to equation A.3c gives

A.8a

(k = 0)

(k=odd and k>0)

k=0 alO = y10 yio

k=l a ll  = 2 (y 10 yn )

k=2 al2 = 2 (y 10 y12) + y n  y n

k=3 al3 = 2 (y 10 y13 + yn  y ^ )

k=4 al4 = 2 (y 10 y14 + yn  y i3 > + y n  m

A.9a

A.9b

A.9c

A.9d

A.9e
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A.7 Applying the formula A.8 to equation A.3d gives

k=0 = yio y20 A.9a

k=l a21 = 2 (y20 Y2 l) A.9b

k=2 a22 = 2 (Y20 yi2> + >'21 >'21 A.9c

k=3 a23 = 2 (y2o Y23 + y21 >"22) A.9d

k=4 a24 = 2 (y20 )'24 + y21 y23̂ + yil y22 A.9e

A.8 Formula:

r = p + q A. 10a

the Taylor series terms are

rk = Pk + 9k A*10b

Applying this formula to the equation A.3e gives

k=0 a30 = alO + a20 A .lla

k=l a31 = a ll + a21 A .llb

k=2 a32 = al2 + a22 A. 11c

k=3 a33 = al3 + a23 A. l id

k=4 a34 = al4 + a24 A .lle

A.9 Formula:

rk = pconstant A 1

2a

the Taylor series terms are

rk = pconstant (k=0)

rk = ----  [  ^  ( constant. k - (constant+1). s ) 1 (k>0)
kp0 s=l

A. 12b
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Applying this formula to equation A.3f gives

k=0 a40 = a315 A.13a

k=l a41 = 1.5a30°-5 a31 A. 13b

k=2 a42 = 3 y j2  + 1-5 (y2 j)^ A.13c

k=3 a43 = 1.5 a33 A. 13d

k=4 a44 = 1.5 a34 + 0.75 y12a32 + 0.375 (y21)2 a32 A.13e

A.10 Formula:

rk = P/Q A. 14a

the Taylor series terms are

rk = P0/(10 (k=°)

rk = —  [  Pk “  ^  (q s - rk - s ) ]  (k>°)
q0 s=l

A. 14b

Applying this formula to equation A.3g gives

k=0 a50 = a00/a40 A.15a

k=l a51 = (aOl - a41 a00/a40) / a40 A.15b

k=2 a52 = 2 y 12 + 1.5 (y2i)2 A. 15c

k=3 a53 = 2 y 13 + 3 y21 y2 2 A.15d

k=4 a54 = - y i 4 - ( 3 yi2 + 1-5 (y2i)2 ) . (2y12+ 1.5 (y2i)2) + a44

A.15e
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Applying formula A.4 to equation A.3h gives
to O II o A. 16a

k=0 y21 = h a50 A. 16b

k=l y22 = h a51 /2 A. 16c

k=2 y23 = h a52 / 3 A.16d

k=3 y24 = h a53 /4 A.l 6e

k=4 y25 = h a54 /5 A.16f

A.12 Solving the above simultaneous equations and substituting in the Taylor 

series gives

y i  = ylO+ y ll  + yl2 + yl3 + yl4 +...

= 1 - h2/2 + h4/24 + ... 

and

y2 = y20 + y21 + y22 + y23 + y24 + ...

= -h  + h3/6+ ...

Hence if h=0.1 then

yl = 0.99500416 

and

y2 = - 0.09983333 

The actual values are

yl = cos (0.1) = 0.99500416 

and

y2 = - sin (0.1) = -0.09983341
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Appendix B 

An Example Data File For Processor 

Allocation
/*

*_____

* First column will be ignored.

* Second column gives the name of the task to be loaded.

* Third column is the processor name string.

* The engine task should be loaded remotely on a processor

♦

*

other than those given in this list

*/

cyll cylinder 04

cyl2 cylinder 05

cyl3 cylinder 06

cyl4 cylinder 07

cyl5 cylinder 08

cyl6 cylinder 09

manl manifold 10

man2 manifold 11

man3 manifold 12

act actuator 13

dyn dynamics 14

stab stability 15

disp display 03
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Appendix C 

Data Preparation For the PDESIM

There are three different data files for the PDESIM. The first data file describes the 

Diesel engine itself. The second file gives interccooler and compressor data and the 

third file provides turbine data to the PDESIM.

C.l Main Data File:

The main data file for the PDESIM is divided into a number of sections. Each section 

of data must be preceded by a comment terminated by '<space>*A The comment may 

cover any number of lines. The maximum length of any string in a comment line is 

limited to 80 characters.

Any variable preceded by the abbreviation ’int' must be written as an integer. The 

numbers may be delimited by any number of blanks or new lines unless otherwise 

stated.

The volume numbering must start from 1 and manifolds should be preceded by 

cylinders. Numbering of all other data sets should start from zero.

Each section of the data file is explained below individually.

C .l.l Title and Control Data:

Title string may be of any length and includes the title string of the control data as 

well. The control data has four arguments. All of these arguments are zero as dynamic 

data logging is provided in the PDESIM.
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o arg 1 (int) number of cycles for simulation

o arg 2 (int) number of first cycle to be printed out

o arg 3 (int) number of last cycle to be printed out

o arg 4 (int) interval between printout cycles

C.1.2 System Data:

This section provides information about the system components. The maximum 

number of control volumes is limited. At present only one compressor and turbine 

may be connected to the system, and since the governor and load data is not being 

used, no data is provided for these sections.

0 arg 1 (int) number of cylinders (1 to 10)

0 arg 2 (int) number of manifolds (1 to 5)

0 arg 3 (int) number of junctions (1 to 20)

0 arg 4 (int) number of compressors (1)

0 arg 5 (int) number of turbines (1)

0 arg 6 (int) number of poppet valve sets (8)

0 arg 7 (int) number of timing sets (1)

0 arg 8 (int) number of heat release sets (10)

0 arg 9 (int) number of cylinder heat transfer sets (2)

0 arg 10 (int) number of manifold heat transfer sets (3)

0 arg 11 (int) number of shaft sets (2)

0 arg 12 (int) number of governor sets (0)

0 arg 13 (int) number of load sets (0)
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C.1.3 Cylinder Data:

Data for each cylinder is provided in a line and each line consists of nineteen 

arguments. At present it is assumed that all cylinders have only one inlet and one 

exhaust valve. The offset angle of cylinder 1 is taken as zero and all other cylinders 

are referenced from it

o line 1 data related to cylinder 1

o line 2 data related to cylinder 2

0 line n data related to cylinder n

0 arg 1 (int) volume number (1 to n)

0 arg 2 (int) volume type (l=cylinder, 2,3=manifold)

0 arg 3 (int) task type (2=cylinder, 

manifold)

3=inlet manifold, 4=exhaust

0 arg 4 (int) cylinder fault (0, No fault at present)

0 arg 5 (—) cylinder bore (m)

0 arg 6 (—) cylinder stroke (m)

0 arg 7 (—) compression ratio

0 arg 8 (—) offset angle with respect to cylinder 1 (deg)

0 arg 9 (—) connecting rod length (m)

0 arg 10 (—) piston mass (kg) (Not used)

0 arg 11 (—) friction mean effective pressure (bar, or < 0.0 if to be 

calculated by the program

0 arg 12 (int) heat release set

0 arg 13 (int) heat transfer set

235



o arg 14 (int) shaft set associated with cylinder

0 arg 15 (int) timing set associated with cylinder

0 arg 16 (int) number of inlet junction (1)

o arg 17 (int) number of exhaust junction (1)

0 arg 18 (int) array of inlet junction numbers

0 arg 19 (int) array of exhaust junction numbers

C.1.4 Manifold Data:

Data for each manifold is provided in a line and each line consists of eight arguments 

and two arrays.

o line 1 data related to manifold 1

o line 2 data related to manifold 2

0 linem data related to manifold m

0 arg 1 (int) volume number (n+1 to n+m)

0 arg 2 (int) volume type (l=cylinder, 2,3=manifold)

0 arg 3 (int) task type (2=cylinder, 3=inlet manifold, 4=exhaust

manifold)

0 arg 4 (int) associated turbocharger number (0)

0 arg 5 (—) heat transfer set associated with manifold (-1 for no heat 

transfer)

0 arg 6 (—) volume (m3)

o arg 7 (int) number of junctions where flow is normally in



o arg 8 (int) number of junctions where flow is normally out

o arg 9 (int) array of in junction numbers

o arg 10 (int) array of out junction numbers

C.1.5 Junction Data:

Data for each junction is provided in a line and each line consists of seven arguments. 

At present a twin entry turbine is modelled for the PDESIM.

o line 1 data for junction 0

o line 2 data for junction 1

o line j data for junction j-1

o arg 1 (int) junction number (0 to 20)

o arg 2 (int) junction type (l=poppet, 2=orifice, 3=compressor, 4=turbine)

o arg 3 (—) effective area (m^) (Not used)

o arg 4 (—) coefficient of discharge (Not used)

o arg 5 (int) poppet valve set if poppet valve

(int) 0 if compressor

(int) first turbine entry junction number if second turbine for a twin 

entry turbine

o arg 6 (int) entry volume number assuming normal flow direction or highest

volume number plus one if the entry volume is atmosphere, 

o arg 7 (int) exit volume number assuming normal flow direction or highest

volume number plus two if the exit volume is atmosphere.
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C.1.6 Heat Release Data:

Heat release data is provided in lines. Each line gives data for the corresponding heat 

release set. A cylinder may have any one of the data set for the calculation of its heat 

release.

o line 1 data relating to heat release set 0 

o line 2 data relating to heat release set 1

o line r data relating to heat release set r-1

o arg 1 (string) name of the heat release model (Watson or Wiebe)

0 arg 2 (----- ) calorific value of fuel (J/kg K)

o arg 3 (----- ) duration of combustion in degrees

o arg 4 (----- ) fuel pipe length in meters

o arg 5 (----- ) Wiebe combustion coefficient Cl (0.0 for Watson)

o arg 6 (----- ) Wiebe combustion coefficient C2 (0.0 for Watson)

C.1.7 Cylinder Heat Transfer Data:

This data is also divided into lines, each line providing data for the corresponding 

cylinder heat transfer set. For the PDESIM, a uniform temperature distribution is 

assumed over the entire surface of the cylinder and an average value of the wall 

temperature is used to calculate heat transfer through the cylinder walls. This wall 

temperature is dynamically calculated by the program and is initialised by the value 

given by arg 4.
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o line 1 data relating to cylinder heat transfer set 0

o line 2 data relating to cylinder heat transfer set 1

o linet data relating to cylinder heat transfer sett-1

o arg 1 (string) name of the cylinder heat transfer model (Hohen or

Woschni)

o arg 2 (int ) number of heat transfer areas (1)

o arg 3 (----- ) area array (0.0)

o arg 4 (----- ) temperature array corresponding to above areas,

(initial wall temperature in Kelvin)

C.1.8 Manifold Heat Transfer Data:

This data is also divided into lines, each line providing data for the corresponding 

manifold heat transfer set. In the PDESIM, a uniform temperature distribution is 

assumed over the entire surface of the manifold and an average value of the wall 

temperature is used to calculate heat transfer through the manifold walls. This wall 

temperature is dynamically calculated by the program provided it is selected in the 

manifold data. The wall temperature is initialised by the value given by arg 6.

o line 1 data relating to manifold heat transfer set 0

o line 2 data relating to manifold heat transfer set 1

o line u data relating to manifold heat transfer set u-1



0 arg 1 (string) name of the manifold heat transfer model (ht_simple)

0 arg 2 (--— ) surface area of the manifold in m^

0 arg 3 ( - — ) heat transfer coefficient of exhaust gas

0 arg 4 (--— ) thermal resistance of manifold wall

0 arg 5 /V-— ) thermal capacitance of manifold wall

0 arg 6 ( - — ) initial temperature of manifold wall (K)

C.1.9 Poppet Valve Data:

Poppet valve data is divided into section of sets. Each section consists of four 

arguments followed by two arrays, one for crank angle and the other for 

corresponding cross sectional area of the valve.

o arg 1 (int) number of values in each crank angle and area array (max. 50)

o arg 2 (—) shift factor in degrees to shift the camshaft diagram (0 for no

shift)

o arg 3 (—) stretch factor to scale the duration of the valve opening(1.0 for no

scaling)

o arg 4 (—) area scale factor to scale the valve area (1.0 for no

scaling)

o arg 5 (—) array of crank angles in degrees

o arg 6 (—) array of corresponding valve areas in m^

C.1.10 Shaft Data:

Each line in this section provides data for the corresponding shaft and has seven 

arguments and an array which gives the corresponding connected control volumes or 

junctions.
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o line 1 data for shaft 0

o line 2 data for shaft 1

o line s data for shaft s-1

o arg 1 (int) shaft number

o arg 2 (int) shaft type (l=crank, 2=turbo)

o arg 3 (int) speed dynamics (0) (Not used)

o arg 4 (—) shaft inertia (kg/m^)

o arg 5 (—) initial shaft speed(revolutions per minute)

o arg 6 (—) crank case pressure in N/m^ for crank shaft, 0.0 for other cases

o arg 7 (—) mechanical efficiency if turbo shaft, 0.0 for all other cases

o arg 8 (int) number of cylinders connected to crank shaft or number of

junctions connected to turbo shaft 

o arg 9 (int) array of cylinder numbers if crank shaft, array of junction

numbers if turbo shaft

C .l.ll  Initial Volume Conditions:

o line 1 initial conditions for volume 1

o line 2 initial conditions for volume 2

o line i initial conditions for volume i
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J
o arg 1 volume pressure in N/m^

o arg 2 volume temperature in K

o arg 3 volume fuel to air ratio

C.1.12 Initial Ambient Conditions:

There are three lines for ambient data, one for the ambient conditions at the inlet and 

two for the ambient conditions at the exhaust. Each line has three arguments.

o arg 1 ambient pressure in N/m^

o arg 2 ambient temperature in K

o arg 3 ambient fuel to air ratio

C.1.13 Integration Step Information:

This data structure is a single line with six arguments that provide information to 

control the integration algorithm.

o arg 1 (—) step size in seconds (Not used)

o arg 2 (—) step size in degrees

o arg 3 (—) starting crank angle for cylinder 1 (Not used)

o arg 4 (int) number of correction loops before step length is reduced

(Not used)

o arg 5 (—) convergence tolerance of predictor-corrector method form mass,

fuel to air ratio and temperature, fraction of change at each correction, 

o arg 6 (—) convergence tolerance (Not used)
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C.1.14 Timing Information:

This section provides angles in degrees at which valves open or close and static fuel 

injection starts with reference to cylinder 1.

o line 1 data for timing set 0

o line 2 data for timing set 1

0 line n data for timing set n-1

0 arg 1 reference angle at which exhaust valve closes

o arg 2 reference angle at which inlet valve closes

o arg 3 reference angle at which static fuel injection starts

o arg 4 estimated reference angle at which combustion finishes

o arg 5 reference angle at which exhaust opens

o arg 6 reference angle at which inlet opens
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C.2 Compressor and Intercooler Data File:

The intercooler is included as part of the compressor data file. The compressor is 

simulated by using a digitised map of pressure ratio, mass flow parameter and 

efficiency.

C.2.1 Control data:

This file starts with a comment, which is followed by a line that describes different 

variables required to set up compressor map. This line has following six arguments.

o arg 1 number of speed curves (N) (max 11)

o arg 2 number of lines for pressure ratio, mass flow parameter and efficiency

(M) (max 11)

o arg 3 pressure ratio scaling factor

o arg 4 speed curve scale factor

o arg 5 efficiency scale factor(this will convert percentage to fraction of unity)

o arg 6 mass flow scale factor

C.2.2 Intercooler data:

This data follows the compressor setup line. It must have a comment before it. It 

consists of the following three arguments.

o arg 1 intercooler pressure loss (N/m^)

o arg 2 intercooler coolant inlet temperature (K)

o arg 3 intercooler effectiveness
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C.2.3 Compressor data:

This data section consists of N block of digitised compressor map curves. Each 

section consists of one line for the non dimensionlised compressor speed (w /K ^), 

where w is in radians per second, and M lines, each consisting of the following three 

arguments.

o arg 1 pressure ratio

o arg 2 mass flow parameter (kg m^/Ns)

o arg 3 isentropic efficiency (0 to 1)

Each block is delimited by an asterisk on its own line including the last line of the 

file.
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C.3 Turbine Data File:

The turbine is also simulated by using a digitised map of pressure ratio, mass flow 

parameter and efficiency, and is fed as a separate file to the simulator.

C.3.1 Turbine data:

This file starts with a comment, which is followed by a line that describes different 

variables required to set up turbine map. This line has following seven arguments.

o arg 1 number of speed curves (N) (max 11)

o arg 2 number of lines for pressure ratio, mass flow parameter and efficiency

(M) (max 11)

o arg 3 number of turbine inlets

o arg 4 pressure ratio scaling factor

o arg 5 speed curve scale factor

o arg 6 efficiency scale factor (this will convert percentage to fraction of

unity)

o arg 7 mass flow scale factor

C.3.2 Turbine data:

This data section consists of N block of digitised turbine map curves. Each section 

consists of one line for the non dimensionlised turbine speed (w /K ^), where w is in 

radians per second, and M lines, each consisting of the following three arguments.
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o arg 1 pressure ratio

o arg 2 mass flow parameter (kg m^/Ns)

o arg 3 isentropic efficiency (0 to 1)

Each block is delimited by an asterisk on its own line including the last line of the 

file.
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Appendix D 

An Example Engine Data File

/*

* *

* engine.dat

*

* Maximum string length in comments - 80 characters *

* Variable preceded by int need to be integer and not floating point number *

Leyland t i l l  engine (six cylinder engine with Garrett turbocharger), 338 injection 

timing

D .l.l Control data for number of cycles and printout of 
results:

(int) number of cycles, (int) first cycle for printout, (int) last cycle 

for printout, (int) interval between printouts 

*/

0 0 0 0

/*

D.1.2 Number of engine components:

(int) no_cylinders, (int) no_manifolds, (int) no_junctions,

(int) no_compressors, (int) no turbines, (int) no_valve_sets,

(int) no_timing_sets, (int) no_heat_rel_sets,
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(int) no_ht_sets, (int) no_ht_man_sets,

(int) no_shaft_sets, (int) no_guv_sets, (int) no_load_sets, 

output files, turbo files in junction order 

*/

6 3 15 

1 1 2  

1 1 

12  

2 0 0

engine.res engine.plt 

compressor.dat turbine.dat

/*

D.1.3 Cylinder data:

(int) vol.number,(int) vol.type (1 - cylinder, 2, 3- manifold, 4 - atmosphere,), 

(int) task_type (2=cyl,3=im,4=em)

(int) cylinder fault ( 0 - no fault, non_zero - faulty) 

bore(m), stroke(m), comp_ratio, ca offset (deg w.r.L cyl 0), 

con_rod_length(m), piston_mass (including reciprocating mass of con rod), 

fmep (N/m^, <= O.Of for calculation by program),

(int) heat_rel_set,(int) ht_set, (int) shaft_set, (int) timing_set,

(int) no_in junct, (int) no_ex_juncts,

(int) in junct_nos, (int) ex_junct_nos (one of each only at present)

*/

1 12 1 0.12708 0.14605 15.75 000.00.2667 1.0-1 0 0 0 0 1 1 0 1

2 1 2 1 0.12708 0.14605 15.75 240.0 0.2667 1.0 -1 0 0 0 0 1 1 2 3

3 1 2 1 0.12708 0.14605 15.75 480.00.2667 1.0-1 0 0 0 0 1 1 4 5

4 12 1 0.12708 0.14605 15.75 120.00.2667 1.0-1 0 0 0 0 1 1 6 7
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5 1 2 1 0.12708 0.14605 15.75 600.00.2667 1.0-1 0 0 0 0 1 1 8 9

6 1 2 1 0.12708 0.14605 15.75 360.0 0.2667 1.0 -1 0 0 0 0 1 1 10 11

/*

D.1.4 Manifold data:

(int) vol_no, (int) vol_type (2 - no ht, 3 - with ht),

(int) task_type (2=cyl,3= irc i,4=em ), (int) tc_no (which turb/comp to use) 

ht_set (-1 for no ht),

volume (m^), (int) no_in_junct, (int) no_ex_juncts, (int) in_junct_nos, (int) 

ex_junct_nos 

*/

7230-10.00488 16 12 0 2 4 6 8  10

8 3 4 0  00.00138 3 1 1 35 13

9 3 4 0  10.00120 3 1 7911 14

/*

D.1.5 Junction data:

(int) junc_no,

(int) junction type (2 - oriface, 1 - poppet, 3 - comp. 4 - turb),

effective area (m^), cd, (int) poppet valve_set, shaft set (for crank) and number of

first turbine entry (other 0 including first turbine entry),

(int) entry volume, (int) exit volume 

*/

0 1 0.00.0 0 7 1

1 1 0.0 0.0 1 1 8 

2 1 0.00.0 0 7 2
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3 1 0.0 0.0 1 2 8

4 1 0.0 0.0 0 7 3

5 1 0.00.0 1 3 8

6 1 0.0 0.0 0 7 4

7 1 0.0 0.0 1 4 9

8 1 0.0 0.0 0 7 5

9 1 0.00.0 1 5 9 

101 0.00.0 0 76

11 1 0.00.0 1 69

12 3 0.00.0 010 7

13 4 0.00.0 0 8 11

14 4 0.0 0.0 13 9 11

/*

D.1.6 Heat release data:

(int) hr_set_no, cal_value (J/kg K), combustion duration (deg), 

fuel_pipe_length (m) (same for all the models), wiebe_cl, wiebe_c2 

*/

watson 42800000.0 125.0 1.1 0.0 0.0 

/*

D.1.7 Cylinder heat transfer data:

(string) heat transfer model (on own line), 

woschni-(int) number of surface areas 

array of areas (0.0) 

array of temperatures (K) 

hohen— 1 surface area
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0 area

initial wall temp (K)

woschni 1 

0.0 

423 

*/

hohen 1

0.0

423.0

/*

D.1.8 Manifold heat transfer data:

(string) model type (ht_simple) 

surface_area, heat transfer coeff (exhaust gas), 

thermal resistance, thermal capacitance, 

estimated wall temp.

*/

ht_simple 0.15 175. 0.225 450.0 303 

ht_simple 0.15 175. 0.225 450.0 303

/*

D.1.9 Valve data: repeat for each valve:

(int) number of points, shift factor, stretch factor, area factor 

crank angle array (deg), corresponding valve area array (m^) 

*/
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32 0.0 1.0 1.0

000.0 005.0 015.0 025.0 045.0

050.0 055.0 065.0 075.0 085.0

090.0 095.0 100.0 105.0 115.0

125.0 135.0 145.0 150.0 155.0

160.0 165.0 175.0 185.0 190.0

200.0 210.0 220.0 230.0 710.0

715.0 720.0

1.175e-4 2.020e-4 5.570e-4 9.630e-4 1.572e-3

1.633e-3 1.674e-3 1.675e-3 1.634e-3 1.602e-3

1.589e-3 1.581e-3 1.580e-3 1.579e-3 1.580e-3

1.588e-3 1.615e-3 1.655e-3 1.673e-3 1.683e-3

1.674e-3 1.641e-3 1.485e-3 1.167e-3 9.630e-4

5.250e-4 2.310e-4 9.500e-5 000000.0 000000.0 

3.300e-5 1.175e-4

32 0.0 1.0 1.0

000.0 004.0 014.0

494.0 504.0 514.0 534.0 539.0

544.0 549.0 554.0 559.0 564.0

574.0 584.0 594.0 604.0 614.0

624.0 634.0 644.0 654.0 664.0

669.0 674.0 679.0 684.0 689.0

694.0 704.0 714.0 720.0

1.500e-4 8.200e-5 000000.0

253



000000.0 8.200e-5 3.060e-4 9.680e-4 1.104e-3

1.159e-3 1.189e-3 1.201e-3 1.175e-3 1.163e-3

1.092e-3 1.084e-3 1.089e-3 1.091e-3 1.091e-3

1.090e-3 1.088e-3 1.083e-3 1.119e-3 1.175e-3

1.199e-3 1.189e-3 1.160e-3 1.095e-3 9.630e-4

8.010e-4 4.450e-4 1.980e-4 1.500e-4

/*

D.1.10 Shaft details:

(int) shaft no., (int) shaft_type (1 - crank, 2 - turbocharger),

(int) dynamic, (0 - constant shaft speed; 1 - dynamic shaft speed), 

load_inertia, load_torque,

shaft_speed, crankcase pressure, mechanical efficiency (turbocharger)

(int) no_of_cyls or junctions connected to shaft, 

if shaft_type =1:- (int) cylinder numbers, else leave blank 

if shaft_type = 2:- (int) junction (turbine or compressor) numbers, else blank 

*/

0 1 0 le21 300.0 1500.0 le5 0.0 6 01 2 3 4 5

1 2 1 0.0002 0.0001 68829.60 0.0 0.95 3 12 13 14

/*

D .l.ll Initial conditions:

In control volume order.

Pressure (N/m2), Temperature (K), FAR 

*/

117246.78 652.69 2.8482158e-002
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197465.72 387.44 6.6022854e-004

583237.44 1108.38 3.5283495e-002

148741.17 334.12 7.9941779e-004

162893.17 793.59 3.5289638e-002

9415444.00 1426.87 1.0372365e-002

152357.84 300.94 4.0311828e-005

107916.05 653.61 3.5221875e-002

155900.39 785.62 3.5240222e-002

/*

D.1.12 Ambient conditions:

Pressure (N/m^), temperature (k) and fuel/air ratio at inlet and exhaust 

*/

1.0022e5 290.842 0.0000

1.0022e5 290.842 0.0000

1.0022e5 290.842 0.0000

/*

D.1.13 Integration step information:

stepsize in seconds or degrees (set time to zero for degree option),

starting crank angle for cylinder 0

(int) loopcount, tolerance (for LoStab, HiStab)

*/

0.0 2.0 0.0 4 0.005 0.9

/*
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D.1.14 Crankangles at transition points:

In degrees w.r.t. cylinder 0 

eve, ivc, static timing(same for all the sets), 

estimated_pow_angle, evo, ivo 

*/

14.0 230.0 338.0 463.0 494.0 710.0

 */
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D.2 An Example Compressor Data File

/*

H e_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ He

* Compressor data file *
He He

* UNITS - All values are multiplied by the appropriate scaling factor. *

* When this is has been done, the units should be : *

He He

* Speed : Actual turbine speed in rads/s. *

* Pressure Ratio : This is a simple ratio hence is dimensionless. *

* Efficiency : Dimensionless (0  < eff < 1). *

* Mass Flow Rate : Normalised mass flow rate in kg/s. The program scales *

* these values by P(ambient)/sqrt(T ambient). *

He He

* The values for ambient temperature and pressure are in SI units, ie *

* temperature ( K ) *

* pressure ( N/mA2 ) *

He He

He_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ He

* D .2 .1  C o n tro l d a t a :  No.speed curves, No.points, Scaling factors:

pr,np,ef,mp *

*/

11 11 1.0 0.1047 1.2e-3 1.37091e-6
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/*

D.2.2 Intercooler data:
press loss(n/m^),inlet temp(k),effectiveness 

*/

2622 289.6672 0.872592 

/*

D.2.3 Tabulated map:
Pressure ratio, Mass flow parameter, efficiency 

*/

46300

1.300 00 000

1.250 20 725 

1.220 25 650 

1.150 30 520 

1.080 35 425

1.000 40 350

1.000 45 275

1.000 50 225

1.000 55 200

1.000 60 175

1.000 65 150 

*

56300

1.575 00 000 

1.550 20 725 

1.545 25 750
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1.513 30 740

1.450 35 690

1.375 40 575

1.250 45 475

1.100 50 375

1.000 55 300

1.000 60 250

1.000 65 200 

*

67900

1.900 00 000 

1.875 20 670 

1.860 25 710 

1.850 30 750 

1.840 35 760 

1.790 40 740 

1.700 45 700 

1.540 50 585

1.225 55 450

1.000 60 375

1.000 65 325

*

77900

2.275 00 000 

2.255 20 550

2.250 25 630 

2.245 30 700 

2.235 35 745

2.225 40 765
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2.175 45 755

2.075 50 735

1.900 55 660

1.450 60 450

1.100 65 325 

*

87100

2.675 00 000 

2.650 20 450 

2.645 25 525 

2.640 30 600 

2.635 35 675 

2.625 40 725 

2.600 45 750 

2.588 50 755

2.475 55 735

2.275 60 675

1.250 65 000

*

95100

3.140 00 000 

3.063 20 520 

3.056 25 580 

3.050 30 630 

3.044 35 670 

3.038 40 700 

3.031 45 725 

3.025 50 740 

2.975 55 745
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2.825 60 720

2.375 65 600 

*

102700 

3.500 00 000 

3.488 20 490 

3.481 25 565

3.475 30 615 

3.469 35 650 

3.463 40 675 

3.456 45 700

3.450 50 710 

3.438 55 720

3.375 60 720 

2.950 65 650
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D.3 An Example Turbine Data File

i *
* _______________________________________________________________________________________________________*

* Turbine data file *
*  sic

* UNITS - All values are multiplied by the appropriate scaling factor. *

* When this has been done, the units should be : *

* *

* Speed: Normalised turbine speed in rads/s. These speeds are *

* multiplied by sqrt(turb inlet temp) within the model. *

* Pressure Ratio: This is a simple ratio hence is dimensionless. *

* Efficiency: Again dimensionless ( 0 < e f f < l )  *

* Mass Flow: Normalised mass flow in kg/s. The program multiplies *

* these values by P(e_man)/sqrt(turb inlet temp). *

%  afc

* The de-normalising parameters have standard SI units, ie *

* temperature ( K ) *

* pressure ( N/mA2 ) *

* *

*________________________________________________________________ *

D.3.1 Control data:
No. speed curves, No. points, No. inlets,

Scaling Factors: pr, np, ef, mp 

*/

1 11 2 1.0 6.017 le-3 1.0e-3 1.26984e-6
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/*

D.3.2 Tabulated turbine map:
Pressure ratio, Mass flow parameter, Efficiency 

*/

000

1.0 00.0 500

1.1 22.0 640

1.2 30.0 675

1.4 37.6 700

1.6 41.8 705

1.8 44.2 710

2.0 45.5 710

2.2 46.0 700

3.0 44.0 650

4.0 42.0 600

5.0 42.0 600

*
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Figure D.1 Schematic drawing of a six cylinder turbocharged Diesel engine


