26 research outputs found

    DeepZipper. II. Searching for Lensed Supernovae in Dark Energy Survey Data with Deep Learning

    Get PDF
    Gravitationally lensed supernovae (LSNe) are important probes of cosmic expansion, but they remain rare and difficult to find. Current cosmic surveys likely contain 5-10 LSNe in total while next-generation experiments are expected to contain several hundred to a few thousand of these systems. We search for these systems in observed Dark Energy Survey (DES) five year SN fields—10 3 sq. deg. regions of sky imaged in the griz bands approximately every six nights over five years. To perform the search, we utilize the DeepZipper approach: a multi-branch deep learning architecture trained on image-level simulations of LSNe that simultaneously learns spatial and temporal relationships from time series of images. We find that our method obtains an LSN recall of 61.13% and a false-positive rate of 0.02% on the DES SN field data. DeepZipper selected 2245 candidates from a magnitude-limited (m i < 22.5) catalog of 3,459,186 systems. We employ human visual inspection to review systems selected by the network and find three candidate LSNe in the DES SN fields

    Is every strong lens model unhappy in its own way? Uniform modelling of a sample of 13 quadruply+ imaged quasars

    Get PDF
    Strong-gravitational lens systems with quadruply imaged quasars (quads) are unique probes to address several fundamental problems in cosmology and astrophysics. Although they are intrinsically very rare, ongoing and planned wide-field deep-sky surveys are set to discover thousands of such systems in the next decade. It is thus paramount to devise a general framework to model strong-lens systems to cope with this large influx without being limited by expert investigator time. We propose such a general modelling framework (implemented with the publicly available software LENSTRONOMY) and apply it to uniformly model three-band Hubble Space Telescope Wide Field Camera 3 images of 13 quads. This is the largest uniformly modelled sample of quads to date and paves the way for a variety of studies. To illustrate the scientific content of the sample, we investigate the alignment between the mass and light distribution in the deflectors. The position angles of these distributions are well-aligned, except when there is strong external shear. However, we find no correlation between the ellipticity of the light and mass distributions. We also show that the observed flux-ratios between the images depart significantly from the predictions of simple smooth models. The departures are strongest in the bluest band, consistent with microlensing being the dominant cause in addition to millilensing. Future papers will exploit this rich data set in combination with ground-based spectroscopy and time delays to determine quantities such as the Hubble constant, the free streaming length of dark matter, and the normalization of the initial stellar mass function

    Identification of Galaxy-Galaxy Strong Lens Candidates in the DECam Local Volume Exploration Survey Using Machine Learning

    Get PDF
    We perform a search for galaxy-galaxy strong lens systems using a convolutional neural network (CNN) applied to imaging data from the first public data release of the DECam Local Volume Exploration Survey, which contains 1/4520 million astronomical sources covering 1/44000 deg2 of the southern sky to a 5σ point-source depth of g = 24.3, r = 23.9, i = 23.3, and z = 22.8 mag. Following the methodology of similar searches using Dark Energy Camera data, we apply color and magnitude cuts to select a catalog of 1/411 million extended astronomical sources. After scoring with our CNN, the highest-scoring 50,000 images were visually inspected and assigned a score on a scale from 0 (not a lens) to 3 (very probable lens). We present a list of 581 strong lens candidates, 562 of which are previously unreported. We categorize our candidates using their human-assigned scores, resulting in 55 Grade A candidates, 149 Grade B candidates, and 377 Grade C candidates. We additionally highlight eight potential quadruply lensed quasars from this sample. Due to the location of our search footprint in the northern Galactic cap (b > 10 deg) and southern celestial hemisphere (decl. < 0 deg), our candidate list has little overlap with other existing ground-based searches. Where our search footprint does overlap with other searches, we find a significant number of high-quality candidates that were previously unidentified, indicating a degree of orthogonality in our methodology. We report properties of our candidates including apparent magnitude and Einstein radius estimated from the image separation

    LensWatch. I. Resolved HST Observations and Constraints on the Strongly Lensed Type Ia Supernova 2022qmx (“SN Zwicky”)

    Get PDF
    Supernovae (SNe) that have been multiply imaged by gravitational lensing are rare and powerful probes for cosmology. Each detection is an opportunity to develop the critical tools and methodologies needed as the sample of lensed SNe increases by orders of magnitude with the upcoming Vera C. Rubin Observatory and Nancy Grace Roman Space Telescope. The latest such discovery is of the quadruply imaged Type Ia SN 2022qmx (aka, “SN Zwicky”) at z = 0.3544. SN Zwicky was discovered by the Zwicky Transient Facility in spatially unresolved data. Here we present follow-up Hubble Space Telescope observations of SN Zwicky, the first from the multicycle “LensWatch (www.lenswatch.org)” program. We measure photometry for each of the four images of SN Zwicky, which are resolved in three WFC3/UVIS filters (F475W, F625W, and F814W) but unresolved with WFC3/IR F160W, and present an analysis of the lensing system using a variety of independent lens modeling methods. We find consistency between lens-model-predicted time delays (≲1 day), and delays estimated with the single epoch of Hubble Space Telescope colors (≲3.5 days), including the uncertainty from chromatic microlensing (∼1-1.5 days). Our lens models converge to an Einstein radius of θ E = ( 0.168 − 0.005 + 0.009 ) ″ , the smallest yet seen in a lensed SN system. The “standard candle” nature of SN Zwicky provides magnification estimates independent of the lens modeling that are brighter than predicted by ∼ 1.7 − 0.6 + 0.8 mag and ∼ 0.9 − 0.6 + 0.8 mag for two of the four images, suggesting significant microlensing and/or additional substructure beyond the flexibility of our image-position mass models

    Snowmass2021 - Letter of interest cosmology intertwined I: Perspectives for the next decade

    Get PDF
    The standard Cold Dark Matter cosmological model provides an amazing description of a wide range of astrophysical and astronomical data. However, there are a few big open questions, that make the standard model look like a first-order approximation to a more realistic scenario that still needs to be fully understood. In this Letter of Interest we will list a few important goals that need to be addressed in the next decade, also taking into account the current discordances present between the different cosmological probes, as the Hubble constant value, the tension, and the anomalies present in the Planck results. Finally, we will give an overview of upgraded experiments and next-generation space-missions and facilities on Earth that will be of crucial importance to address all these questions

    Cosmology intertwined III: fσ8 and S8

    Get PDF
    The standard Cold Dark Matter cosmological model provides a wonderful fit to current cosmological data, but a few statistically significant tensions and anomalies were found in the latest data analyses. While these anomalies could be due to the presence of systematic errors in the experiments, they could also indicate the need for new physics beyond the standard model. In this Letter of Interest we focus on the tension between Planck data and weak lensing measurements and redshift surveys, in the value of the matter energy density and the amplitude (or the growth rate ) of cosmic structure. We list a few promising models for solving this tension, and discuss the importance of trying to fit multiple cosmological datasets with complete physical models, rather than fitting individual datasets with a few handpicked theoretical parameters

    Snowmass2021 - Letter of interest cosmology intertwined IV: the age of the universe and its curvature

    Get PDF
    A precise measurement of the curvature of the Universe is of prime importance for cosmology since it could not only confirm the paradigm of primordial inflation but also help in discriminating between different early-Universe scenarios. Recent observations, while broadly consistent with a spatially flat standard Cold Dark Matter (CDM) model, show tensions that still allow (and, in some cases, even suggest) a few percent deviations from a flat universe. In particular, the Planck Cosmic Microwave Background power spectra, assuming the nominal likelihood, prefer a closed universe at more than 99% confidence level. While new physics could be at play, this anomaly may be the result of an unresolved systematic error or just a statistical fluctuation. However, since positive curvature allows a larger age of the Universe, an accurate determination of the age of the oldest objects provides a smoking gun in confirming or falsifying the current flat CDM model

    Snowmass2021 - Letter of interest cosmology intertwined II: the hubble constant tension

    Get PDF
    The current cosmological probes have provided a fantastic confirmation of the standard Cold Dark Matter cosmological model, which has been constrained with unprecedented accuracy. However, with the increase of the experimental sensitivity, a few statistically significant tensions between different independent cosmological datasets emerged. While these tensions can be in part the result of systematic errors, the persistence after several years of accurate analysis strongly hints at cracks in the standard cosmological scenario and the need for new physics. In this Letter of Interest we will focus on the tension between the Planck estimate of the Hubble constant and the SH0ES collaboration measurements. After showing the evaluations made from different teams using different methods and geometric calibrations, we will list a few interesting models of new physics that could solve this tension and discuss how the next decade’s experiments will be crucial
    corecore