282 research outputs found

    Critical Evaluation of Branch Polarity and Apical Dominance as Dictators of Colony Astogeny in a Branching Coral

    Get PDF
    The high morphological resemblance between branching corals and trees, can lead to comparative studies on pattern formation traits, best exemplified in plants and in some cnidarians. Here, 81 branches of similar size of the hermatypic coral Stylophora pistillata were lopped of three different genets, their skeletons marked with alizarin red-S, and divided haphazardly into three morphometric treatment groups: (I) upright position; (II) horizontal position, intact tip; and (III) horizontal position, cut tip. After 1 y of in-situ growth, the 45 surviving ramets were brought to the laboratory, their tissues removed and their architectures analyzed by 22 morphological parameters (MPs). We found that within 1 y, isolated branches developed into small coral colonies by growing new branches from all branch termini, in all directions. No architectural dissimilarity was assigned among the three studied genets of treatment I colonies. However, a major architectural disparity between treatment I colonies and colonies of treatments II and III was documented as the development of mirror structures from both sides of treatments II and III settings as compared to tip-borne architectures in treatment I colonies. We did not observe apical dominance since fragments grew equally from all branch sides without documented dominant polarity along branch axis. In treatment II colonies, no MP for new branches originating either from tips or from branch bases differed significantly. In treatment III colonies, growth from the cut tip areas was significantly lower compared to the base, again, suggesting lack of apical dominance in this species. Changes in branch polarity revealed genet associated plasticity, which in one of the studied genets, led to enhanced growth. Different genets exhibited canalization flexibility of growth patterns towards either lateral growth, or branch axis extension (skeletal weight and not porosity was measured). This study revealed that colony astogeny in S. pistillata is a regulated process expressed through programmed events and not directly related to simple energy trade-off principles or to environmental conditions, and that branch polarity and apical dominance do not dictate colony astogeny. Therefore, plasticity and astogenic disparities encompass a diversity of genetic (fixed and flexible) induced responses

    The Relative Contribution of the Admission Criteria of the Faculty of Medicine at The Northern Borders University to The Interpretation of the Theoretical and Clinical Cumulative Variation

    Get PDF
    The current research aimed to identify the relationship between admission criteria of medicine school in Northern Border University that includes(high school grade, general abilities test grade, and achievement test grade)and accumulative GPA both clinical and theoretical , and investigates the predictive power of those criteria by cGPA,and tGPA. The sample research consists of 182 students who earned their bachelor degree between 2007-2017. The researcher used Pearson coefficient index and multiple regression analysis –stepwise method. The results included :There were no correlation between high school degree and tGPA, no correlation between high school degree and cGPA,there were a positive correlation between general abilities test grade and both cGPA and tGPA,there were a positive correlation between achievement test grade and both cGPA and tGPA.Inclusion of all 3 admission criteria in a regression analysis as predictors of GPA performance revealed that only the achievement test grade was statistically predictive of both cGPA and tGPA.20%of variance in the tGPA and 12%of variance in the cGPA can be accounted for by the achievement test grade

    The Reliability of Maslach Burnout Inventory in Arab Studies: Reliability Generalization Meta-Analyses Study

    Get PDF
    The current study aimed to identify the mean effect size of the alpha coefficient for the overall reliability of the MBI scale, and for the sub-dimensions; Emotional exhaustion, depersonalization, and lack of personal achievement through the analysis of (32) studies in which the inclusion criteria were met. The results of the research indicated that the mean alpha coefficient across the studies (n = 32) for overall reliability and dimensions; Emotional exhaustion, depersonalization, and lack of personal achievement were 0.83, 0.83, 0.78, and 0.77, respectively. It indicated that the mean alpha coefficient of the MBI scale varied significantly according to the participants in favor of school principals, and according to gender in favor of the mixed (male/female), and according to the country of application for studies conducted in North and East African countries, while it did not vary according to the sample size. It also showed that the mean alpha coefficient of the emotional exhaustion dimension varied according to the participants in favor of the teachers. The results also showed that there were no differences in the mean alpha coefficient of the dimension of emotional exhaustion according to the factors of sample size, gender, and country of application, and indicated that there were no significant differences in the mean alpha coefficient of the dimensions of depersonalization and lack of personal achievement according to the factors of sample size, participants, gender and country of application. Keywords: Maslach scale, Reliability, Emotional exhaustion, Depersonalization, Lack of personal achievemen

    Towards a sustainable Dunaliella salina microalgal biorefinery for 9-cis β-carotene production

    Get PDF
    Valorisation of the efficacy of 9-cis beta-carotene in treating atherosclerosis, psoriasis, and inhibiting atherogenesis and retinitis pigmentosa is becoming increasingly urgent, but supplies of 9-cis beta-carotene are scarce and this compound is difficult to synthesise chemically, unlike the much more common all-trans form. Innovative products, processes and services in an algal biorefinery that rely on renewable biological resources instead of fossil fuel alternatives offer the potential to lower the energy costs of traditional chemical processes and reduce carbon emissions, water usage and waste. In 2013, the European Commission supported development of 4 microalgal biorefinery projects to assess the potential for innovative approaches to tackle the major challenges intrinsic to the development of the algae biorefineries. One of these was the D-Factory (KBBE.2013.3.2-02) which sought to evaluate requirements for sustainable, industrial-scale production of Dunaliella salina and extraction of its carotenoids, especially 9-cis beta-carotene in a CO2 microalgae biorefinery. Here we present findings of the D-Factory project and propose a way forward for industrial-scale production of 9-cis beta-carotene using biotechnology based on Dunaliella salina biomass. Cultivation improvements are able to deliver more than double the current levels of productivity, with increased sustainability, whilst the use of natural hyper-accumulating carotenogenic strains combined with the use of red light to boost production of the beta-carotene pathway, will increase the relative concentration of 9-cis beta-carotene in extracts of carotenoids with consequent improvements in downstream processing. These developments pave the way for acquiring data for a Medicine Licence and prepare the market for entry of novel 9-cis beta-carotene products

    Omapatrilat, an Angiotensin-Converting Enzyme and Neutral Endopeptidase Inhibitor, Attenuates Early Atherosclerosis in Diabetic and in Nondiabetic Low-Density Lipoprotein Receptor–Deficient Mice

    Get PDF
    Omapatrilat inhibits both angiotensin-converting enzyme (ACE) and neutral endopeptidase (NEP). ACE inhibitors have been shown to inhibit atherosclerosis in apoE-deficient mice and in several other animal models but failed in low-density lipoprotein (LDL) receptor– deficient mice despite effective inhibition of the reninangiotensin- aldosterone system. The aim of the present study was to examine the effect of omapatrilat on atherogenesis in diabetic and nondiabetic LDL receptor–deficient mice. LDL receptor–deficient male mice were randomly divided into 4 groups (n = 11 each). Diabetes was induced in 2 groups by low-dose STZ, the other 2 groups served as nondiabetic controls. Omapatrilat (70 mg/kg/day) was administered to one of the diabetic and to one of the nondiabetic groups. The diabetic and the nondiabetic mice were sacrificed after 3 and 5 weeks, respectively. The aortae were examined and the atherosclerotic plaque area was measured. The atherosclerotic plaque area was significantly smaller in the omapatrilat-treated mice, both diabetic and nondiabetic, as compared to nontreated controls. The mean plaque area of omapatrilattreated nondiabetic mice was 9357 ± 7293 μm2, versus 71977 ± 34610 μm2 in the nontreated mice (P = .002). In the diabetic animals, the plaque area was 8887 ± 5386 μm2 and 23220 ± 10400 μm2, respectively for treated and nontreated mice (P = .001). Plasma lipids were increased by omapatrilat: Meanplasma cholesterol in treated mice, diabetic and nondiabetic combined, was 39.31 ± 6.00 mmol/L, versus 33.12 ± 7.64 mmol/L in the nontreated animals (P = .008). The corresponding combined mean values of triglycerides were 4.83 ± 1.93 versus 3.00 ± 1.26 mmol/L (P = .02). Omapatrilat treatment did not affect weight or plasma glucose levels. Treatment with omapatrilat inhibits atherogenesis in diabetic as well as nondiabetic LDL receptor–deficient mice despite an increase in plasma lipids, suggesting a direct effect on the arterial wall

    How Plastic Can Phenotypic Plasticity Be? The Branching Coral Stylophora pistillata as a Model System

    Get PDF
    Phenotypic plasticity enables multicellular organisms to adjust morphologies and various life history traits to variable environmental challenges. Here, we elucidate fixed and plastic architectural rules for colony astogeny in multiple types of colonial ramets, propagated by cutting from genets of the branching coral Stylophora pistillata from Eilat, the Red Sea. We examined 16 morphometric parameters on 136 one-year old S. pistillata colonies (of seven genotypes), originating from small fragments belonging, each, to one of three single-branch types (single tips, start-up, and advanced bifurcating tips) or to structural preparative manipulations (representing a single or two growth axes). Experiments were guided by the rationale that in colonial forms, complexity of evolving phenotypic plasticity can be associated with a degree of structural modularity, where shapes are approached by erecting iterative growth patterns at different levels of coral-colony organization. Analyses revealed plastic morphometric characters at branch level, and predetermined morphometric traits at colony level (only single trait exhibited plasticity under extreme manipulation state). Therefore, under the experimental manipulations of this study, phenotypic plasticity in S. pistillata appears to be related to branch level of organization, whereas colony traits are controlled by predetermined genetic architectural rules. Each level of organization undergoes its own mode of astogeny. However, depending on the original ramet structure, the spherical 3-D colonial architecture in this species is orchestrated and assembled by both developmental trajectories at the branch level, and traits at the colony level of organization. In nature, branching colonial forms are often subjected to harsh environmental conditions that cause fragmentation of colony into ramets of different sizes and structures. Developmental traits that are plastic, responding to fragment structure and are not predetermine in controlling astogeny, allow formation of species-specific architecture product through integrated but variable developmental routes. This adaptive plasticity or regeneration is an efficient mechanism by which isolated fragments of branching coral species cope with external environmental forces
    corecore