24 research outputs found

    Population genomic analysis reveals a rich speciation and demographic history of orang-utans (Pongo pygmaeus and Pongo abelii)

    Get PDF
    To gain insights into evolutionary forces that have shaped the history of Bornean and Sumatran populations of orang-utans, we compare patterns of variation across more than 11 million single nucleotide polymorphisms found by previous mitochondrial and autosomal genome sequencing of 10 wild-caught orang-utans. Our analysis of the mitochondrial data yields a far more ancient split time between the two populations (~3.4 million years ago) than estimates based on autosomal data (0.4 million years ago), suggesting a complex speciation process with moderate levels of primarily male migration. We find that the distribution of selection coefficients consistent with the observed frequency spectrum of autosomal non-synonymous polymorphisms in orang-utans is similar to the distribution in humans. Our analysis indicates that 35% of genes have evolved under detectable negative selection. Overall, our findings suggest that purifying natural selection, genetic drift, and a complex demographic history are the dominant drivers of genome evolution for the two orang-utan populations.Publisher PDFPeer reviewe

    The inference of sex-biased human demography from whole-genome data.

    No full text
    Sex-biased demographic events ("sex-bias") involve unequal numbers of females and males. These events are typically inferred from the relative amount of X-chromosomal to autosomal genetic variation and have led to conflicting conclusions about human demographic history. Though population size changes alter the relative amount of X-chromosomal to autosomal genetic diversity even in the absence of sex-bias, this has generally not been accounted for in sex-bias estimators to date. Here, we present a novel method to identify sex-bias from genetic sequence data that models population size changes and estimates the female fraction of the effective population size during each time epoch. Compared to recent sex-bias inference methods, our approach can detect sex-bias that changes on a single population branch without requiring data from an outgroup or knowledge of divergence events. When applied to simulated data, conventional sex-bias estimators are biased by population size changes, especially recent growth or bottlenecks, while our estimator is unbiased. We next apply our method to high-coverage exome data from the 1000 Genomes Project and estimate a male bias in Yorubans (47% female) and Europeans (44%), possibly due to stronger background selection on the X chromosome than on the autosomes. Finally, we apply our method to the 1000 Genomes Project Phase 3 high-coverage Complete Genomics whole-genome data and estimate a female bias in Yorubans (63% female), Europeans (84%), Punjabis (82%), as well as Peruvians (56%), and a male bias in the Southern Han Chinese (45%). Our method additionally identifies a male-biased migration out of Africa based on data from Europeans (20% female). Our results demonstrate that modeling population size change is necessary to estimate sex-bias parameters accurately. Our approach gives insight into signatures of sex-bias in sexual species, and the demographic models it produces can serve as more accurate null models for tests of selection

    Outdoor Experience with the TrafficView Application

    No full text
    TrafficView is an application that collects and displays traffic information by means of peer-to-peer inter-vehicular communication. We have evaluated TrafficView outdoors under realistic traffic conditions. In the process of development and experimentation, we have learned valuable lessons about the kind of challenges that can hinder development and deployment of simple vehicular applications. In this paper, we describe our experiences and findings with respect to TrafficView. 1

    Population genomic analysis reveals a rich speciation and demographic history of orang-utans (Pongo pygmaeus and Pongo abelii)

    Get PDF
    To gain insights into evolutionary forces that have shaped the history of Bornean and Sumatran populations of orang-utans, we compare patterns of variation across more than 11 million single nucleotide polymorphisms found by previous mitochondrial and autosomal genome sequencing of 10 wild-caught orang-utans. Our analysis of the mitochondrial data yields a far more ancient split time between the two populations (~3.4 million years ago) than estimates based on autosomal data (0.4 million years ago), suggesting a complex speciation process with moderate levels of primarily male migration. We find that the distribution of selection coefficients consistent with the observed frequency spectrum of autosomal non-synonymous polymorphisms in orang-utans is similar to the distribution in humans. Our analysis indicates that 35% of genes have evolved under detectable negative selection. Overall, our findings suggest that purifying natural selection, genetic drift, and a complex demographic history are the dominant drivers of genome evolution for the two orang-utan populations

    Distance from Sub-Saharan Africa Predicts Mutational Load in Diverse Human Genomes

    No full text
    The Out-of-Africa (OOA) dispersal ∌50,000 y ago is characterized by a series of founder events as modern humans expanded into multiple continents. Population genetics theory predicts an increase of mutational load in populations undergoing serial founder effects during range expansions. To test this hypothesis, we have sequenced full genomes and high-coverage exomes from seven geographically divergent human populations from Namibia, Congo, Algeria, Pakistan, Cambodia, Siberia, and Mexico. We find that individual genomes vary modestly in the overall number of predicted deleterious alleles. We show via spatially explicit simulations that the observed distribution of deleterious allele frequencies is consistent with the OOA dispersal, particularly under a model where deleterious mutations are recessive. We conclude that there is a strong signal of purifying selection at conserved genomic positions within Africa, but that many predicted deleterious mutations have evolved as if they were neutral during the expansion out of Africa. Under a model where selection is inversely related to dominance, we show that OOA populations are likely to have a higher mutation load due to increased allele frequencies of nearly neutral variants that are recessive or partially recessive

    Phylogenetic tree of mtDNA HVRI region and allele sharing matrix of mtDNA and autosomes.

    No full text
    <p>(<b>A</b>) The phylogenetic tree among human, chimpanzee, Bornean (red) and Sumatran (blue). The nodes shaded in cyan represent the grouping of the three Sumatran individuals that has the furthest distance to the rest clustering of the Sumatran group. The 10 re-sequenced individuals from our study are colored as red (Bornean) or blue (Sumatran). The corresponding geographic origins are shown on the right with the following annotation (SU: Sumatran; TU/SL: Tuanan or Sungai Lading; DV/K: Danum Valley or Kinabatangan; SA/GP: Sabangau or Gunung Palung; EK: East Kalimantan including Kutai national park or Sangatta; SAR/DS: Semongok Wildlife Rehabilitation Centre or Danau Sentarum). (<b>B</b>) The IBS allele sharing matrix among the 10 individuals from our study with the same group coloring scheme. The upper and lower triangular matrix represents the IBS sharing of all mtDNA variation loci (n = 1084) and autosomal variation loci (n = 11,866,619), respectively.</p
    corecore