147 research outputs found

    Necessary condition for null controllability in many-server heavy traffic

    Full text link
    Throughput sub-optimality (TSO), introduced in Atar and Shaikhet [Ann. Appl. Probab. 19 (2009) 521-555] for static fluid models of parallel queueing networks, corresponds to the existence of a resource allocation, under which the total service rate becomes greater than the total arrival rate. As shown in Atar, Mandelbaum and Shaikhet [Ann. Appl. Probab. 16 (2006) 1764-1804] and Atar and Shaikhet (2009), in the many server Halfin-Whitt regime, TSO implies null controllability (NC), the existence of a routing policy under which, for every finite TT, the measure of the set of times prior to TT, at which at least one customer is in the buffer, converges to zero in probability at the scaling limit. The present paper investigates the question whether the converse relation is also true and TSO is both sufficient and necessary for the NC behavior. In what follows we do get the affirmation for systems with either two customer classes (and possibly more service pools) or vice-versa and state a condition on the underlying static fluid model that allows the extension of the result to general structures.Comment: Published in at http://dx.doi.org/10.1214/13-AAP1001 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Multi-condition of stability for nonlinear stochastic non-autonomous delay differential equation

    Get PDF
    A nonlinear stochastic differential equation with the order of nonlinearity higher than one, with several discrete and distributed delays and time varying coefficients is considered. It is shown that the sufficient conditions for exponential mean square stability of the linear part of the considered nonlinear equation also are sufficient conditions for stability in probability of the initial nonlinear equation. Some new sufficient condition of stability in probability for the zero solution of the considered nonlinear non-autonomous stochastic differential equation is obtained which can be considered as a multi-condition of stability because it allows to get for one considered equation at once several different complementary of each other sufficient stability conditions. The obtained results are illustrated with numerical simulations and figures.Comment: Published at https://doi.org/10.15559/18-VMSTA110 in the Modern Stochastics: Theory and Applications (https://www.i-journals.org/vtxpp/VMSTA) by VTeX (http://www.vtex.lt/

    Queueing systems with many servers: Null controllability in heavy traffic

    Full text link
    A queueing model has J≥2J\ge2 heterogeneous service stations, each consisting of many independent servers with identical capabilities. Customers of I≥2I\ge2 classes can be served at these stations at different rates, that depend on both the class and the station. A system administrator dynamically controls scheduling and routing. We study this model in the central limit theorem (or heavy traffic) regime proposed by Halfin and Whitt. We derive a diffusion model on RI\mathbb {R}^I with a singular control term that describes the scaling limit of the queueing model. The singular term may be used to constrain the diffusion to lie in certain subsets of RI\mathbb {R}^I at all times t>0t>0. We say that the diffusion is null-controllable if it can be constrained to X−\mathbb {X}_-, the minimal closed subset of RI\mathbb {R}^I containing all states of the prelimit queueing model for which all queues are empty. We give sufficient conditions for null controllability of the diffusion. Under these conditions we also show that an analogous, asymptotic result holds for the queueing model, by constructing control policies under which, for any given 0<ϵ<T<∞0<\epsilon <T<\infty, all queues in the system are kept empty on the time interval [ϵ,T][\epsilon, T], with probability approaching one. This introduces a new, unusual heavy traffic ``behavior'': On one hand, the system is critically loaded, in the sense that an increase in any of the external arrival rates at the ``fluid level'' results with an overloaded system. On the other hand, as far as queue lengths are concerned, the system behaves as if it is underloaded.Comment: Published at http://dx.doi.org/10.1214/105051606000000358 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Stability of a stochastically perturbed model of intracellular single-stranded RNA virus replication

    Full text link
    Replication of single-stranded RNA virus can be complicated, compared to that of double-stranded virus, as it require production of intermediate antigenomic strands that then serve as template for the genomic-sense strands. Moreover, for ssRNA viruses, there is a variability of the molecular mechanism by which genomic strands can be replicated. A combination of such mechanisms can also occur: a fraction of the produced progeny may result from a stamping-machine type of replication that uses the parental genome as template, whereas others may result from the replication of progeny genomes. F. Mart\'{\i}nez et al. and J. Sardany\'{e}s at al. suggested a deterministic ssRNA virus intracellular replication model that allows for the variability in the replication mechanisms. To explore how stochasticity can affect this model principal properties, in this paper we consider the stability of a stochastically perturbed model of ssRNA virus replication within a cell. Using the direct Lyapunov method, we found sufficient conditions for the stability in probability of equilibrium states for this model. This result confirms that this heterogeneous model of single-stranded RNA virus replication is stable with respect to stochastic perturbations of the environment

    Multi-condition of stability for nonlinear stochastic non-autonomous delay differential equation

    Full text link
    A nonlinear stochastic differential equation with the order of nonlinearity higher than one, with several discrete and distributed delays and time varying coefficients is considered. It is shown that the sufficient conditions for exponential mean square stability of the linear part of the considered nonlinear equation also are sufficient conditions for stability in probability of the initial nonlinear equation. Some new sufficient condition of stability in probability for the zero solution of the considered nonlinear non-autonomous stochastic differential equation is obtained which can be considered as a multi-condition of stability because it allows to get for one considered equation at once several different complementary of each other sufficient stability conditions. The obtained results are illustrated with numerical simulations and figures.Comment: Published at https://doi.org/10.15559/18-VMSTA110 in the Modern Stochastics: Theory and Applications (https://www.i-journals.org/vtxpp/VMSTA) by VTeX (http://www.vtex.lt/

    Optimal control of Volterra type stochastic difference equations

    Get PDF
    AbstractMany processes in automatic regulation, physics, etc. can be modelled by stochastic difference equations. One of the main problems of the theory of difference equations and their applications is connected with stability and optimal control [1]. In this paper we discuss the optimal control of second-kind Volterra type stochastic difference equations. In [2–9] for Volterra type stochastic integral equations, analogous results were obtained

    Power Strip Packing of Malleable Demands in Smart Grid

    Full text link
    We consider a problem of supplying electricity to a set of N\mathcal{N} customers in a smart-grid framework. Each customer requires a certain amount of electrical energy which has to be supplied during the time interval [0,1][0,1]. We assume that each demand has to be supplied without interruption, with possible duration between ℓ\ell and rr, which are given system parameters (ℓ≤r\ell\le r). At each moment of time, the power of the grid is the sum of all the consumption rates for the demands being supplied at that moment. Our goal is to find an assignment that minimizes the {\it power peak} - maximal power over [0,1][0,1] - while satisfying all the demands. To do this first we find the lower bound of optimal power peak. We show that the problem depends on whether or not the pair ℓ,r\ell, r belongs to a "good" region G\mathcal{G}. If it does - then an optimal assignment almost perfectly "fills" the rectangle time×power=[0,1]×[0,A]time \times power = [0,1] \times [0, A] with AA being the sum of all the energy demands - thus achieving an optimal power peak AA. Conversely, if ℓ,r\ell, r do not belong to G\mathcal{G}, we identify the lower bound Aˉ>A\bar{A} >A on the optimal value of power peak and introduce a simple linear time algorithm that almost perfectly arranges all the demands in a rectangle [0,A/Aˉ]×[0,Aˉ][0, A /\bar{A}] \times [0, \bar{A}] and show that it is asymptotically optimal

    Critically loaded queueing models that are throughput suboptimal

    Full text link
    This paper introduces and analyzes the notion of throughput suboptimality for many-server queueing systems in heavy traffic. The queueing model under consideration has multiple customer classes, indexed by a finite set I\mathcal{I}, and heterogenous, exponential servers. Servers are dynamically chosen to serve customers, and buffers are available for customers waiting to be served. The arrival rates and the number of servers are scaled up in such a way that the processes representing the number of class-ii customers in the system, i∈Ii\in\mathcal{I}, fluctuate about a static fluid model, that is assumed to be critically loaded in a standard sense. At the same time, the fluid model is assumed to be throughput suboptimal. Roughly, this means that the servers can be allocated so as to achieve a total processing rate that is greater than the total arrival rate. We show that there exists a dynamic control policy for the queueing model that is efficient in the following strong sense: Under this policy, for every finite TT, the measure of the set of times prior to TT, at which at least one customer is in the buffer, converges to zero in probability as the arrival rates and number of servers go to infinity. On the way to prove our main result, we provide a characterization of throughput suboptimality in terms of properties of the buffer-station graph.Comment: Published in at http://dx.doi.org/10.1214/08-AAP551 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore