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Abstract A nonlinear stochastic differential equation with the order of nonlinearity higher
than one, with several discrete and distributed delays and time varying coefficients is consid-
ered. It is shown that the sufficient conditions for exponential mean square stability of the linear
part of the considered nonlinear equation also are sufficient conditions for stability in probabil-
ity of the initial nonlinear equation. Some new sufficient condition of stability in probability for
the zero solution of the considered nonlinear non-autonomous stochastic differential equation
is obtained which can be considered as a multi-condition of stability because it allows to get
for one considered equation at once several different complementary of each other sufficient
stability conditions. The obtained results are illustrated with numerical simulations and figures.
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1 Introduction

Stability problems for non-autonomous systems are very popular in theoretical re-
searches and applications and are difficult enough even in the deterministic case (see,
for instance, [1–3, 6–13, 17]). In this paper via the general method of the Lyapunov
functionals construction [14–16] some new multi-condition of stability in probability
is obtained for the zero solution of a nonlinear stochastic differential equation with
the order of nonlinearity higher than one, with several discrete and distributed delays
and time varying coefficients. It is shown that the obtained multi-condition of stability
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gives for one considered equation at once a set of different complementary of each
other sufficient stability conditions. Note that other approaches to analyzing stability
in random systems are presented for example in [4, 18].

Consider the scalar nonlinear stochastic differential equation with discrete and
distributed delays and time varying coefficients

dx(t) +
( n∑

k=0

ak(t)x(t − hk) +
n∑

k=1

∫ t

t−hk

bk(s)x(s)ds + g(t, xt )

)
dt

+ σ(t)x(t − τ)dw(t) = 0,

x(s) = φ(s) ∈ H2, s ∈ [−h, 0], h = max[h1, . . . , hn, τ ], (1.1)

|g(t, ϕ)| ≤
∫ 0

−h

|ϕ(s)|αdG(s), α > 1, G =
∫ 0

−h

dG(s) < ∞.

Here ak(t), bk(t), σ(t) are bounded functions, w(t) is the standard Wiener pro-
cess on a probability space {Ω,F, P} [5, 16], H2 is a space of F0-adapted stochastic
processes φ(s), s ∈ [−h, 0],

‖φ‖0 = sup
s∈[−h,0]

|φ(s)|, ‖φ‖2 = sup
s∈[−h,0]

E|φ(s)|2,

E is the mathematical expectation, h0 = 0, hk > 0, k = 1, . . . , n, τ ≥ 0, G(t) is
a nondecreasing function of bounded variation, the integral with respect to dG(s) is
understood in the Stiltjes sense.

Definition 1.1. The zero solution of Equation (1.1) is called:

– mean square stable if for each ε > 0 there exists a δ > 0 such that E|x(t, φ)|2 <

ε, t ≥ 0, provided that ‖φ‖2 < δ;

– asymptotically mean square stable if it is mean square stable and

lim
t→∞ E|x(t, φ)|2 = 0

for each initial function φ;

– exponentially mean square stable if it is mean square stable and there exists
λ > 0 such that for each initial function φ there exists C > 0 (which may
depend on φ) such that E|x(t, φ)|2 ≤ Ce−λt for t > 0;

– stable in probability if for any ε1 > 0 and ε2 > 0 there exists δ > 0 such
that the solution x(t, φ) of Equation (1.1) satisfies the condition
P{supt≥0 |x(t, φ)| > ε1} < ε2 for any initial function φ such that P{‖φ‖0 <

δ} = 1.

Consider the stochastic differential equation [5]

dx(t) = a1(t, xt )dt + a2(t, xt )dw(t), (1.2)
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where x(t) ∈ Rn, xt = x(t + s), s ≤ 0, a1(t, ϕ) ∈ Rn, a2(t, ϕ) ∈ Rn×m, w(t) ∈ Rm,
along with some functional V (t, ϕ) : [0,∞) × H2 → R+ that can be presented in
the form V (t, ϕ) = V (t, ϕ(0), ϕ(s)), s < 0, and for ϕ = xt put

Vϕ(t, x) = V (t, ϕ) = V (t, xt ) = V
(
t, x, x(t + s)

)
,

x = ϕ(0) = x(t), s < 0.
(1.3)

Denote by D the set of functionals, for which the function Vϕ(t, x) defined in
(1.3) has a continuous derivative with respect to t and second continuous derivative
with respect to x. For functionals from D the generator L of Equation (1.2) has the
form [5, 16]

LV (t, xt ) = ∂Vϕ(t, x(t))

∂t
+ ∇V ′

ϕ

(
t, x(t)

)
a1(t, xt )

+ 1

2
T r

[
a′

2(t, xt )∇2Vϕ

(
t, x(t)

)
a2(t, xt )

]
.

(1.4)

If in Equation (1.2) a1(t, 0) ≡ 0, a2(t, 0) ≡ 0 then Equation (1.2) has the zero
solution and the following theorems hold.

Theorem 1.1. Let there exist a functional V (t, ϕ) ∈ D, positive constants c1, c2
and the function μ(t) such that the following conditions hold: μ(t) ≥ c1 for t ≥ 0,
limt→∞ μ(t) = ∞ and

EV (t, xt ) ≥ μ(t)E|x(t)|2, EV (0, φ) ≤ c2‖φ‖2, ELV (t, xt ) ≤ 0. (1.5)

Then the zero solution of Equation (1.2) is asymptotically mean square stable. If, in
particular, μ(t) = c1e

λt , λ > 0, then the zero solution of Equation (1.2) is exponen-
tially mean square stable.

Proof. Integrating the last inequality in (1.5), we obtain EV (t, xt ) ≤ EV (0, φ). So,

c1E|x(t)|2 ≤ μ(t)E|x(t)|2 ≤ EV (t, xt ) ≤ EV (0, φ) ≤ c2‖φ‖2.

It means that the zero solution of (1.2) is mean square stable. Besides, from the
inequality E|x(t)|2 ≤ μ−1(t)EV (0, φ) it follows that the zero solution of (1.2) is
asymptotically mean square stable or exponentially mean square stable if μ(t) =
c1e

λt . The proof is completed.

Theorem 1.2. [16] Let there exist a functional V (t, ϕ) ∈ D such that for any solution
x(t) of Equation (1.2) the following inequalities hold:

V (t, xt ) ≥ c1|x(t)|2, V (0, φ) ≤ c2‖φ‖2
0,

LV (t, xt ) ≤ 0, c1, c2 > 0,
(1.6)

for any initial function φ such that P(‖φ‖0 ≤ δ) = 1, where δ > 0 is small enough.
Then the zero solution of Equation (1.2) is stable in probability.

Via Theorems 1.1, 1.2 a construction of stability conditions for a given stochastic
differential equation is reduced to construction of appropriate Lyapunov function-
als. Via the general method of the Lyapunov functionals construction [14–16], below
some multi-condition of stability in probability for the zero solution of Equation (1.1)
is obtained.
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2 Exponential mean square stability of the linear equation

In this section sufficient conditions of exponential mean square stability are obtained
for the linear part of Equation (1.1), i.e., for Equation (1.1) with g(t, xt ) ≡ 0.

Let ni , i = 1, 2, be integers such that 0 ≤ ni ≤ n. Put

S(t) =
n1∑

k=0

ak(t + hk)+
n2∑

k=1

bk(t)hk, m1 = min{n1, n2}, m2 = max{n1, n2},

Rk(t, s) =
⎧⎨
⎩

ak(s + hk) + (s − t + hk)bk(s), k = 1, . . . , m1
ak(s + hk) if n1 > n2, k = m1 + 1, . . . , m2,

(s − t + hk)bk(s) if n1 < n2, k = m1 + 1, . . . , m2,

R(t) =
m2∑
k=1

∫ t

t−hk

|Rk(t, s)|ds, Ik(i, j) =
{

1 if k ∈ [i, j ],
0 if k /∈ [i, j ],

Rλ
k (t, s) = (

S(t) − λ
)
Rk(t, s)Ik(1,m2) − bk(s)Ik(n2 + 1, n),

Pλ(t) = λR(t) +
n∑

i=n1+1

|ai(t)| +
n∑

i=n2+1

∫ t

t−hi

|bi(θ)|dθ,

Qλ
k(t, s) = |Rλ

k (t, s)| + Pλ(t)|Rk(t, s)|Ik(1,m2) + R(t)|bk(s)|Ik(n2 + 1, n),

F (t, λ) = λ − 2S(t) +
n∑

k=1

(∫ t

t−hk

|Rλ
k (t, s)|ds +

∫ t+hk

t

eλhkQλ
k(θ, t)dθ

)

+
n∑

k=n1+1

(|ak(t)| + eλhk
(
1 + R(t + hk)

)|ak(t + hk)|
) + eλτ σ 2(t + τ).

(2.1)
By virtue of S(t) and Rk(t, s) defined in (2.1) Equation (1.1) can be presented in

the form of a neutral type stochastic differential equation [16]

dz(t, xt ) =
(

−S(t)x(t) −
n∑

k=n1+1

ak(t)x(t − hk)

−
n∑

k=n2+1

t∫
t−hk

bk(s)x(s)ds − g(t, xt )

)
dt

− σ(t)x(t − τ)dw(t),

(2.2)

where

z(t, xt ) = x(t) −
m2∑
k=1

∫ t

t−hk

Rk(t, s)x(s)ds. (2.3)

Theorem 2.1. If g(t, xt ) = 0,

inf
t≥0

S(t) > 0, sup
t≥0

R(t) < 1, (2.4)

and there exists λ > 0 such that F(t, λ) ≤ 0 then the zero solution of Equation (1.1)
is exponentially mean square stable.
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Proof. Via (2.4), the zero solution of the auxiliary equation ẏ(t) = −S(t)y(t) is
exponentially stable and the function v(t) = eλty2(t), λ > 0, is a Lyapunov function
for this equation. Following the procedure of the Lyapunov functionals construction
[14–16], we will construct Lyapunov functional V for Equations (2.2), (2.3) in the
form V = V1 + V2, where V1(t, xt ) = eλt z2(t, xt ) and the additional functional V2
will be chosen below. Using (1.4) and (2.2) with g(t, xt ) = 0, we have

LV1(t, xt ) = eλt

[
λz2(t, xt ) + σ 2(t)x2(t − τ) − 2z(t, xt )

(
S(t)x(t)

+
n∑

k=n1+1

ak(t)x(t − hk) +
n∑

k=n2+1

∫ t

t−hk

bk(s)x(s)ds

)]
.

Calculating and estimating z2(t, xt ) via (2.3), (2.1), one can show that

LV1(t, xt ) ≤ eλt

[(
λ − 2S(t) +

n∑
k=1

∫ t

t−hk

|Rλ
k (t, s)|ds +

n∑
k=n1+1

|ak(t)|
)

x2(t)

+
n∑

k=1

∫ t

t−hk

Qλ
k(t, s)x

2(s)ds +
n∑

k=n1+1

(
1 + R(t)

)|ak(t)|x2(t − hk)

+ σ 2(t)x2(t − τ)

]
.

To neutralize the terms with delays in the estimate of LV1 consider the additional
functional

V2(t, xt ) =
n∑

k=1

∫ t

t−hk

∫ s+hk

t

eλ(s+hk)Qλ
k(θ, s)x2(s)dθds

+
∫ t

t−τ

eλ(s+τ)σ 2(s + τ)x2(s)ds

+
n∑

k=n1+1

∫ t

t−hk

eλ(s+hk)
(
1 + R(s + hk)

)|ak(s + hk)|x2(s)ds.

Calculating LV2(t, xt ), via (2.1) and F(t, λ) ≤ 0 for V = V1 + V2 we obtain
LV (t, xt ) ≤ eλtF (t, λ)x2(t) ≤ 0. So, the constructed functional V (t, xt ) satisfies
Conditions (1.5). Via Theorem 1.1 the zero solution of Equation (1.1) with g(t, xt ) =
0 is exponentially mean square stable. The proof is completed.

Corollary 2.1. If Conditions (2.4), supt≥0 S(t) < ∞ and

sup
t≥0

1

S(t)

[ n∑
k=1

(∫ t

t−hk

|R0
k (t, s)|ds +

∫ t+hk

t

Q0
k(θ, t)dθ

)

+
n∑

k=n1+1

(|ak(t)| + (
1 + R(t + hk)

)|ak(t + hk)|
) + σ 2(t + τ)

]
< 2

(2.5)

hold then the zero solution of Equation (1.1) is exponentially mean square stable.
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For the proof it is enough to note that (2.5) is equivalent to the condition
supt≥0 F(t, 0) < 0 from which it follows that there exists small enough λ > 0 such
that the condition F(t, λ) ≤ 0 holds too.

3 Stability in probability of the nonlinear equation

In this section it is shown that the sufficient conditions for exponential mean square
stability of the linear part of Equation (1.1) also are sufficient conditions for stability
in probability of the initial nonlinear equation.

Theorem 3.1. Let Conditions (2.4) hold and there exist λ > 0 and ε > 0 such that

F(t, λ) + εα−1G

(
1 + 2eλh +

m2∑
k=1

eλhk

∫ t+hk

t

|Rk(θ, t)|dθ

)
≤ 0, (3.1)

where F(t, λ) is defined in (2.1). Then the zero solution of Equation (1.1) is stable in
probability.

Proof. Using the functionals V1, V2, defined in the proof of Theorem 2.1, via (2.2),
(2.3) we obtain

L
(
V1(t, xt ) + V2(t, xt )

) ≤ eλt

[
F(t, λ)x2(t) − 2x(t)g(t, xt )

+ 2
m2∑
k=1

∫ t

t−hk

Rk(t, s)x(s)dsg(t, xt )

]
.

(3.2)

Note that for |x(s)| ≤ ε, s ≤ t , via (1.1) and (2.1) we have

2|x(t)g(t, xt )| ≤ 2
∫ 0

−h

|x(t)||x(t + s)|αdG(s)

≤ εα−1
∫ 0

−h

(
x2(t) + x2(t + s)

)
dG(s)

= εα−1
(

Gx2(t) +
∫ 0

−h

x2(t + s)dG(s)

)
(3.3)

and

2

∣∣∣∣
m2∑
k=1

∫ t

t−hk

Rk(t, s)x(s)dsg(t, xt )

∣∣∣∣
≤ 2

m2∑
k=1

∫ t

t−hk

∫ 0

−h

|Rk(t, s)||x(s)||x(t + τ)|αdsdG(τ)

≤ εα−1
m2∑
k=1

∫ t

t−hk

∫ 0

−h

|Rk(t, s)|
(
x2(s) + x2(t + τ)

)
dsdG(τ)

= εα−1
(

G

m2∑
k=1

∫ t

t−hk

|Rk(t, s)|x2(s)ds + R(t)

∫ 0

−h

x2(t + τ)dG(τ)

)
.

(3.4)
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Substituting (3.3), (3.4) into (3.2), we obtain

L
(
V1(t, xt ) + V2(t, xt )

) ≤ eλt

[
F(t, λ)x2(t) + εα−1

(
Gx2(t)

+ (
1 + R(t)

) ∫ 0

−h

x2(t + τ)dG(τ)

+ G

m2∑
k=1

∫ t

t−hk

|Rk(t, s)|x2(s)ds

)]
.

Using the additional functional

V3(t, xt ) = εα−1
(

2
∫ 0

−h

∫ t

t+s

eλ(τ+h)x2(τ )dτdG(s)

+ G

m2∑
k=1

∫ t

t−hk

∫ s+hk

t

eλ(s+hk)|Rk(θ, s)|x2(s)dθds

)

with

LV3(t, xt ) = εα−1eλt

[
2

∫ 0

−h

(
eλhx2(t) − eλ(s+h)x2(t + s)

)
dG(s)

+ G

m2∑
k=1

(
eλhk

∫ t+hk

t

|Rk(θ, t)|dθx2(t)

−
∫ t

t−hk

eλ(s+hk−t)|Rk(t, s)|x2(s)ds

)]
,

for the functional V = V1 + V2 + V3 via (3.1) we obtain

LV (t, xt )

≤ eλt

[
F(t, λ) + εα−1G

(
1 + 2eλh +

m2∑
k=1

eλhk

∫ t+hk

t

|Rk(θ, t)|dθ

)]
x2(t)

≤ 0.

So, the constructed functional V (t, xt ) satisfies Conditions (1.6). Via Theorem 1.2 the
zero solution of Equation (1.1) is stable in probability. The proof is completed.

Corollary 3.1. If Conditions (2.4), supt≥0 S(t) < ∞ and (2.5) hold then the zero
solution of Equation (1.1) is stable in probability.

For the proof it is enough to note that (2.5) is equivalent to the condition
supt≥0 F(t, 0) < 0 from which it follows that there exist small enough λ > 0 and
ε > 0 such that Condition (3.1) holds.

Remark 3.1. From 0 ≤ ni ≤ n, i = 1, 2, it follows that the couple (n1, n2) in
Equation (2.2) has (n + 1)2 different values. Thus, Theorem 3.1 generally speaking
gives (n + 1)2 different stability conditions at once. Some of these conditions can
be infeasible, from some of these conditions can follow some other conditions, the
remaining conditions will complement each other.
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4 Particular cases of stability condition (2.5)

Following Remark 3.1 let us consider some of possible values of the couple (n1, n2)

and obtain appropriate different stability conditions.
If n1 = n2 = 0 then via (2.1) m1 = m2 = 0, S(t) = a0(t), Rk(t, s) = 0,

R(t) = 0, Q0
k(t, s) = |R0

k (t, s)| = |bk(s)|, and Condition (2.5) takes the form

sup
t≥0

1

a0(t)

[ n∑
k=1

(
|ak(t)|+|ak(t+hk)|+|bk(t)|hk+

∫ t

t−hk

|bk(s)|ds

)
+σ 2(t+τ)

]
< 2.

(4.1)
If n1 = n, n2 = 0 then via (2.1) m1 = 0, m2 = n, and Condition (2.5) gives

sup
t≥0

1

S0(t)

[ n∑
k=1

(∫ t

t−hk

|S0(t)ak(s + hk) − bk(s)|ds

+
∫ t+hk

t

|S0(θ)ak(t + hk) − bk(t)|dθ

+ |bk(t)|
∫ t+hk

t

A0(θ)dθ + |ak(t + hk)|
∫ t+hk

t

B0(θ)dθ

)

+ σ 2(t + τ)

]
< 2,

(4.2)

where

S0(t) =
n∑

k=0

ak(t + hk), A0(t) =
n∑

k=1

∫ t+hk

t

|ak(s)|ds,

B0(t) =
n∑

k=1

∫ t

t−hk

|bk(s)|ds.

If n1 = 0, n2 = n then m1 = 0, m2 = n, and from Condition (2.5) we obtain

sup
t≥0

[
1

S1(t)

( n∑
k=1

|bk(t)|
∫ t+hk

t

(
S1(θ) +

n∑
i=1

|ai(θ)|
)

(t − θ + hk)dθ

+
n∑

k=1

(|ak(t)| + (
1 + B1(t + hk)

)|ak(t + hk)|
) + σ 2(t + τ)

)

+ B1(t)

]
< 2,

(4.3)

where

S1(t) = a0(t) +
n∑

k=1

bk(t)hk, B1(t) =
n∑

k=1

∫ t

t−hk

(s − t + hk)|bk(s)|ds.
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If at last n1 = n2 = n then m1 = m2 = n, and Condition (2.5) takes the form

sup
t≥0

[ n∑
k=1

∫ t

t−hk

|ak(s + hk) + (s − t + hk)bk(s)|ds

+ 1

S2(t)

( n∑
k=1

∫ t+hk

t

S2(θ)|ak(t + hk) + (t − θ + hk)bk(t)|dθ

+ σ 2(t + τ)

)]
< 2,

(4.4)

where S2(t) = a0(t) + ∑n
k=1(ak(t + hk) + bk(t)hk).

Using different other combinations of n1 and n2, one can get different other sta-
bility conditions.

Example 4.1. To demonstrate a possible connection between the obtained different
stability conditions consider, for the sake of simplicity, the equation with constant
coefficients and without a non-delay term

dx(t)+
(

ax(t −h)+ b

∫ t

t−h

x(s)ds + cx2(t −h)

)
dt +σx(t − τ)dw(t) = 0. (4.5)

For Equation (4.5) n = 1, so, via Remark 3.1 there are 4 possible stability conditions.
Since in Equation (4.5) a0 = 0 Condition (4.1) does not hold.

Put p = 1
2σ 2. Condition (4.2) gives p + |a2 − b|h + a|b|h2 < a and can be

presented in the form

b >
p − a(1 − ah)

h(1 + ah)
if b ≤ 0,

b >
p − a(1 − ah)

h(1 − ah)
if b ∈ (

0, a2), 0 < ah < 1,

b <
a(1 + ah) − p

h(1 + ah)
if b ≥ a2.

(4.6)

Conditions (4.3) take the form

|a| <
bh(1 − 1

2bh2) − p

1 + 1
2bh2

, 0 < bh2 < 2. (4.7)

Calculating the integrals in (4.4) separately for a ≥ 0 and a < 0, from Condition
(4.4) we obtain

p <

{
(a + bh)(1 − ah − 1

2bh2) if a ≥ 0,

(a + bh)(1 − ah − 1
2bh2 − a2

b
) if a < 0,

a + bh > 0. (4.8)

So, if at least one of Conditions (4.6)–(4.8) holds then the zero solution of Equation
(4.5) is stable in probability and the zero solution of the linear part (g(t, xt ) ≡ 0) of
this equation is exponentially mean square stable.
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Fig. 1. Stability regions (1), (2), (3) for Equation (4.5), defined by Conditions (4.6), (4.7), (4.8)
respectively, for the values of the parameters h = 0.5, p = 0.2

Fig. 2. Picture similar to Fig. 1 for the values of the parameters h = 0.5, p = 0.55

In Fig. 1 stability regions for Equation (4.5), given by Conditions (4.6) (the re-
gion (1)), (4.7) (the region (2)) and (4.8) (the region (3)) are shown in the space of
the parameters (a, b) for h = 0.5 and p = 0.2. Note that the regions (1) and (3)
complement of each other but the region (2) is included in the region (3). It means
that Condition (4.8) is less conservative than (4.7). Note also that Condition (4.8) co-
incides with (4.7) for a = 0 only. In Fig. 2 the similar picture is shown for h = 0.5
and p = 0.55.

In the deterministic case (p = 0) the characteristic equation of the linear part of
Equation (4.1) has the form

ω + ae−hω + b

ω

(
1 − e−hω

) = 0. (4.9)

Using ω = iβ, i = √−1, we obtain the system of two algebraic equations for a and
b:

a cos(hβ) + b

β
sin(hβ) = 0, a sin(hβ) + b

β

(
1 − cos(hβ)

) = β
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Fig. 3. Deterministic case (p = 0) with h = 0.5. The regions (1), (2), (3) are obtained as in the
previous figures, (4) is the exact stability region given by (4.10)

with the solution

a = β sin(hβ)

1 − cos(hβ)
, b = − β2 cos(hβ)

1 − cos(hβ)
. (4.10)

In Fig. 3 the stability regions (1), (2), (3) obtained respectively from the sufficient
conditions (4.6), (4.7), (4.8) in the deterministic case (p = 0) are shown for compar-
ison with the exact stability region (4) given by Conditions (4.10) for h = 0.5. The
straight line a + bh = 0 follows from (4.9) if ω → 0.

In Fig. 4, 50 trajectories of the solution of Equation (4.5) are shown at the point
A(−2, 9) (see Fig. 2) for c = 1, h = 0.5, p = 0.55, τ = 0 and the initial function
x(s) = 0.6 cos(s), s ∈ [−h, 0]. The point A(−2, 9) is included in the stability region,
thus, all trajectories converge to zero.

Remark 4.1. Suppose that in Equation (1.1) discrete delays are absent, i.e., ak(t) =
0, k = 1, . . . , n. Then Conditions (4.2) and (4.4) coincide respectively with (4.1) and
(4.3) and are

sup
t≥0

1

a0(t)

[ n∑
k=1

(
|bk(t)|hk +

∫ t

t−hk

|bk(s)|ds

)
+ σ 2(t + τ)

]
< 2, (4.11)

sup
t≥0

[
1

S1(t)

( n∑
k=1

|bk(t)|
∫ t+hk

t

S1(θ)(t − θ + hk)dθ + σ 2(t + τ)

)
+ B1(t)

]
< 2,

(4.12)

B1(t) =
n∑

k=1

∫ t

t−hk

(s − t + hk)|bk(s)|ds,

S1(t) = a0(t) +
n∑

k=1

bk(t)hk.
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Example 4.2. Consider the stochastic differential equation (1.1) with n = 1, a0(t) =
a, h1 = h, b1(t) = be−μt , μ > 0, σ(t) = σe−νt , ν > 0, g(t, xt ) = cx2(t − h), i.e.,

dx(t) +
(

ax(t) + b

∫ t

t−h

e−μsx(s)ds + cx2(t − h)

)
dt

+ σe−νtx(t − τ)dw(t) = 0.

(4.13)

From (4.11) we obtain the first condition for stability in probability of the zero solu-
tion of Equation (4.13)

1

2
|b|

(
h + 1

μ

(
eμh − 1

)) + pe−2ντ < a, p = 1

2
σ 2. (4.14)

Note that the stability condition (4.14) holds for a > 0 only. Using (4.12) one can
get a complementary condition of stability in probability that holds for a = 0, b > 0,
μ ≤ 2ν. Really, in this case

B1(t) = b

μ2 e−μt
(
eμh − 1 − μh

)
, S1(t) = bhe−μt ,

∫ t+h

t

S1(θ)(t − θ + h)dθ = bh

μ2 e−μt
(
e−μh − 1 + μh

)
,

and stability condition (4.12) takes the form

sup
t≥0

[
b

μ2 e−μt
(
cosh(μh) − 1

) + p

bh
e(μ−2ν)t e−2ντ

]
< 1,

cosh(μh) = 1

2

(
eμh + e−μh

)
, p = 1

2
σ 2.

Fig. 4. 50 trajectories of the solution of Equation (4.5), a = −2, b = 9, c = 1, h = 0.5,
p = 0.55, τ = 0, x(s) = 0.6 cos(s), s ∈ [−h, 0]

Via μ ≤ 2ν, the supremum is reached at t = 0, so, we obtain b
μ2 (cosh(μh)−1)+

p
bh

e−2ντ < 1 or

p < bh

(
1 − b

cosh(μh) − 1

μ2

)
e2ντ , a = 0, μ ≤ 2ν. (4.15)
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Fig. 5. 50 trajectories of the solution of Equation (4.13), a = 3, b = 4, c = 3, μ = 0.1,
ν = 0.01, h = 0.5, p = 0.5, τ = 0, x(s) = −0.09 cos(s), s ∈ [−h, 0]

Fig. 6. 50 trajectories of the solution of Equation (4.13), a = 0, b = 8.5, c = 1, μ = 0.008,
ν = 0.15, h = 0.3, p = 0.2, τ = 0, x(s) = 0.55, s ∈ [−h, 0]

So, if one of Conditions (4.14), (4.15) holds then the zero solution of Equation (4.13)
is stable in probability.

Note that for μ = ν = 0 Conditions (4.14), (4.15) imply, respectively, two known
stability conditions for stochastic differential equations with constant coefficients a >

|b|h + p and bh(1 − bh2

2 ) > p ([16], p. 169).

In Fig. 5, 50 trajectories of the solution of Equation (4.13) are shown for a = 3,
b = 4, c = 3, μ = 0.1, ν = 0.01, h = 0.5, p = 0.5, τ = 0 and the initial
function x(s) = −0.09 cos(s), s ∈ [−h, 0]. The stability condition (4.14) holds, thus
all trajectories converge to zero. In Fig. 6, 50 trajectories of the solution of Equation
(4.13) are shown for a = 0, b = 8.5, c = 1, μ = 0.008, ν = 0.15, h = 0.3, p = 0.2,
τ = 0 and the initial function x(s) = 0.55, s ∈ [−h, 0]. The stability condition (4.15)
holds and all trajectories converge to zero.



350 L. Shaikhet

5 Conclusions

In this paper, a nonlinear stochastic non-autonomous differential equation with dis-
crete and distributed delays and the order of nonlinearity higher than one is consid-
ered. It is shown that investigation of stability in probability of the nonlinear equation
of such type can be reduced to investigation of exponential mean square stability of
the linear part of the considered equation. A general multi-condition for stability in
probability of the zero solution of the considered equation is obtained which allows
in applications to get at once a set of different complementary sufficient stability con-
ditions. Some of these conditions can be infeasible, from some of these conditions
can follow some other conditions, the remaining conditions will complement each
other. The idea of construction of this multi-condition of stability can be used also for
systems of nonlinear stochastic differential equations of such type.
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