

PERGAMON

Applied
Mathematics
Letters
www.elsevier.com/locate/aml

Some Conditions for Boundedness of Solutions of Difference Volterra Equations

V. Kolmanovskif
Department of Automatic Control
CINVESTAV-IPN, Av.ipn 2508, ap-14-740
col.S.P.Zacatenco, CP 07360, Mexico DF, Mexico
vkolmanoectrl.cinvestav.mx
L. Shaikhet
Department of Mathematics, Informatics and Computing
Donetsk State Academy of Management
Chelyuskintsev, 163-a, Donetsk 83015, Ukraine
leonidedsam.donetsk.ua
leonid.shaikhetQusa.net

(Received May 2002; revised and accepted October 2002)
Keywords-Difference Volterra equation, Conditions of boundedness.

1. INTRODUCTION

Boundedness of solutions of some difference Volterra equations is investigated, using some ideas from the books $[1,2]$.

2. EQUATION WITH NONNEGATIVE COEFFICIENTS

Consider the scalar equation

$$
\begin{equation*}
x(i+1)=x(i)+\sum_{j=0}^{i} A(i, j) x(j), \quad i \geq 0 \tag{2.1}
\end{equation*}
$$

It is supposed that

$$
\begin{equation*}
A(i, j) \geq 0, \quad i \geq j \geq 0 \tag{2.2}
\end{equation*}
$$

THEOREM 2.1. The necessary and sufficient condition for boundedness of the solution of equation (2.1) is

$$
\begin{equation*}
\sum_{i=0}^{\infty} \sum_{j=0}^{i} A(i, j)<\infty \tag{2.3}
\end{equation*}
$$

Proof. Necessity. Assume that all solutions of equation (2.1) are bounded, i.e.,

$$
\begin{equation*}
\sup _{i \geq 0}|x(i)|<\infty, \tag{2.4}
\end{equation*}
$$

[^0]and prove that inequality (2.3) is valid. Assume that $x(0) \geq 0$. Then from equation (2.1) for $i=0$ and condition (2.2), it follows that $x(1) \geq x(0) \geq 0$. Note also that if $x(j+1) \geq x(j) \geq x(0)$ for $j=0, \ldots, i-1$, then from (2.1),(2.2) it follows that $x(i+1) \geq x(i) \geq x(0)$ for $i \geq 0$. Therefore, after summing equation (2.1) from $i=0$ to k, we obtain
$$
x(k+1)=x(0)+\sum_{i=0}^{k} \sum_{j=0}^{i} A(i, j) x(j) \geq x(0)\left[1+\sum_{i=0}^{k} \sum_{j=0}^{i} A(i, j)\right]
$$

From here and (2.4) follows (2.3).
SUFFICIENCY. Assume that inequality (2.3) is valid, but there exists unbounded solution $x(i)>0$ of equation (2.1) such that $\Delta x(i)=x(i+1)-x(i) \geq 0$. Dividing equation (2.1) by $x(i)$ and summing both parts of the obtained equality from $i=0$ to k, we obtain

$$
\begin{equation*}
\sum_{i=0}^{k} \frac{\Delta x(i)}{x(i)}=\sum_{i=0}^{k} \sum_{j=0}^{i} A(i, j) \frac{x(j)}{x(i)} \tag{2.5}
\end{equation*}
$$

Consider the continuous function $x(t)=x(i)+(t-i) \Delta x(i)$ for $t \in[i, i+1]$. Then $\dot{x}(t)=\Delta x(i)$ and $x(t) \geq x(i)$. Therefore,

$$
\begin{equation*}
\frac{\Delta x(i)}{x(i)}=\int_{i}^{i+1} \frac{\Delta x(i)}{x(i)} d t \geq \int_{i}^{i+1} \frac{\dot{x}(t)}{x(t)} d t=\ln x(i+1)-\ln x(i) \tag{2.6}
\end{equation*}
$$

Substituting (2.6) into (2.5) and using (2.3) and $x(j) \leq x(i)$ for $j \leq i$, we obtain

$$
\ln x(k+1)-\ln x(0) \leq \sum_{i=0}^{k} \sum_{j=0}^{i} A(i, j) \frac{x(j)}{x(i)} \leq \sum_{i=0}^{\infty} \sum_{j=0}^{i} A(i, j)<\infty
$$

So, as a result we obtain the absurdity of the assumption about unboundedness of $x(k)$. Theorem 2.1 is proven.
Example 2.1. Consider the equation

$$
x(i+1)=x(i)+\sum_{j=0}^{i} q^{i+j} x(j), \quad q \in(0,1)
$$

The solution of this equation is bounded since

$$
\sum_{i=0}^{\infty} \sum_{j=0}^{i} q^{i+j}=\sum_{i=0}^{\infty} q^{i} \frac{1-q^{i+1}}{1-q}<\frac{1}{(1-q)^{2}}<\infty
$$

Example 2.2. Consider the equation

$$
x(i+1) \doteq x(i)+\sum_{j=0}^{i} \frac{1}{(i+j+1)^{\alpha}} x(j)
$$

If $\alpha>2$, then the solution of this equation is bounded since

$$
\sum_{i=0}^{\infty} \sum_{j=0}^{i} \frac{1}{(i+j+1)^{\alpha}}<\sum_{i=0}^{\infty} \frac{i+1}{(i+1)^{\alpha}}=\sum_{i=0}^{\infty} \frac{1}{(i+1)^{\alpha-1}}<\infty
$$

3. NONOSCILLATORY SOLUTIONS

Consider the Volterra difference equation in the form

$$
\begin{equation*}
x(i+1)=a_{0}(i) x(i)-\frac{a_{1}(i-1)}{a_{1}(i)} x(i-1)-\sum_{j=0}^{i-2} A(i, j) x(j), \quad i \geq 0 \tag{3.1}
\end{equation*}
$$

Theorem 3.1. Assume that equation (3.1) has nonoscillatory solutions, and the following inequalities are valid:

$$
\begin{gather*}
a_{0}(i)-\frac{a_{1}(i-1)}{a_{1}(i)} \leq 1, \quad a_{1}(i)>0, \quad i \geq 0 \tag{3.2}\\
A(i, j) \geq 0, \quad i \geq 2, \quad j=0, \ldots, i-2 \\
\sum_{i=0}^{\infty} \frac{1}{a_{1}(i)}<\infty \tag{3.3}
\end{gather*}
$$

Then all nonoscillatory solutions of equation (3.1) are bounded.
Proof. Without loss of generality we can assume that the solution $x(i)$ of equation (3.1) is greater than 0 for all $i \geq-1$ and nonoscillatory. Hence, from equation (3.1) and inequalities (3.2) it follows that

$$
\begin{aligned}
x(i+1) & \leq\left(a_{0}(i)-\frac{a_{1}(i-1)}{a_{1}(i)}\right) x(i)+\frac{a_{1}(i-1)}{a_{1}(i)} \Delta x(i-1) \\
& \leq x(i)+\frac{a_{1}(i-1)}{a_{1}(i)} \Delta x(i-1)
\end{aligned}
$$

or

$$
\begin{equation*}
a_{1}(i) \Delta x(i) \leq a_{1}(i-1) \Delta x(i-1) \tag{3.4}
\end{equation*}
$$

Continuing inequality (3.4), we have

$$
a_{1}(i) \Delta x(i) \leq a_{1}(-1) \Delta x(-1)
$$

or

$$
\begin{equation*}
x(i+1) \leq x(i)+\frac{a_{1}(-1)}{a_{1}(i)} \Delta x(-1) \tag{3.5}
\end{equation*}
$$

Summing both parts of inequality (3.5), we obtain

$$
x(i+1) \leq x(0)+a_{1}(-1) \Delta x(-1) \sum_{j=0}^{i} \frac{1}{a_{1}(j)}
$$

From here and (3.3), it follows that the nonoscillating solutions of Volterra equation (3.1) are bounded for all values of $i \geq 0$. Theorem 3.1 is proven.
Example 3.1. Consider the difference equation

$$
\begin{equation*}
a_{1}(i) \Delta x(i)=a_{1}(i-1) \Delta x(i-1)-a_{1}^{-1}(i) x(i) \tag{3.6}
\end{equation*}
$$

where $a_{1}(i)>0$ for $i \geq 0$ and satisfies the condition $\sum_{i=0}^{\infty} a_{1}^{-1}(i)<\infty$.
Equation (3.6) can be rewritten in form (3.1) with $A(i, j)=0$ for $0 \leq j \leq i-2$ and

$$
a_{0}(i)=1+\frac{a_{1}(i-1)}{a_{1}(i)}-\frac{1}{a_{1}^{2}(i)}
$$

From Theorem 3.1, it follows that all nonoscillatory solutions of equation (3.6) are bounded.

4. BEHAVIOR OF SOLUTION INCREMENT

Consider Volterra difference equation in the form

$$
\begin{equation*}
x(i+1)=a_{0}(i) x(i)-\frac{a_{1}(i-1)}{a_{1}(i)} x(i-1)+\frac{a_{2}(i)}{a_{1}(i)} \sum_{j=0}^{i-2} A(i, j) x(j), \quad i \geq 0 \tag{4.1}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{2}(i)=a_{1}(i)\left(a_{0}(i)-\frac{a_{1}(i-1)}{a_{1}(i)}-1\right) \tag{4.2}
\end{equation*}
$$

Theorem 4.1. Let

$$
\begin{array}{cl}
a_{1}(i)>0, & a_{2}(i) \geq 0, \quad i \geq 0 \\
A(i, j) \geq 0, & i \geq 2, \quad j=0, \ldots, i-2 \tag{4.3}
\end{array}
$$

Then the necessary condition for every function $a_{1}(i) \Delta x(i)$ of equation (4.1) to be bounded are

$$
\begin{equation*}
\sum_{i=0}^{\infty} \sum_{j=0}^{i} \frac{a_{2}(i+1)}{a_{1}(j)}<\infty \tag{4.4}
\end{equation*}
$$

Proof. It is easy to see that equation (4.1) can be rewritten as Volterra difference equation in the following form:

$$
\begin{equation*}
\Delta\left[a_{1}(i) \Delta x(i)\right]=a_{2}(i+1)\left(x(i+1)+\sum_{j=0}^{i-1} A(i+1, j) x(j)\right) \tag{4.5}
\end{equation*}
$$

Choose the initial condition of equation (4.1) such that $x(0)>x(-1)>0$ and assume that the function $a_{1}(i) \Delta x(i)$ is bounded. Then the solution of equation (4.1) satisfies the conditions

$$
\begin{equation*}
x(i)>0, \quad \Delta x(i)>0, \quad i \geq 0 \tag{4.6}
\end{equation*}
$$

From (4.5), it follows that

$$
\begin{equation*}
\Delta\left[a_{1}(i) \Delta x(i)\right] \geq a_{2}(i+1) x(i+1) \geq 0, \quad i \geq 0 \tag{4.7}
\end{equation*}
$$

Summation of inequality (4.7) gives

$$
\begin{equation*}
a_{1}(i) \Delta x(i) \geq a_{1}(0) \Delta x(0) \tag{4.8}
\end{equation*}
$$

Dividing both parts of inequality (4.8) on $a_{1}(i)$ and summing it, we obtain

$$
\begin{equation*}
x(i+1) \geq x(0)+a_{1}(0) \Delta x(0) \sum_{j=0}^{i} \frac{1}{a_{1}(j)} \tag{4.9}
\end{equation*}
$$

From (4.7),(4.9) it follows

$$
\begin{equation*}
\Delta\left[a_{1}(i) \Delta x(i)\right] \geq a_{2}(i+1)\left(x(0)+a_{1}(0) \Delta x(0) \sum_{j=0}^{i} \frac{1}{a_{1}(j)}\right) \tag{4.10}
\end{equation*}
$$

Summation of inequality (4.10) from $i=0$ to k gives

$$
a_{1}(k+1) \Delta x(k+1) \geq x(0) \sum_{i=0}^{k} a_{2}(i+1)+a_{1}(0) \Delta x(0)\left(1+\sum_{i=0}^{k} \sum_{j=0}^{i} \frac{a_{2}(i+1)}{a_{1}(j)}\right) \geq 0
$$

Consequently, because of boundedness of the function $a_{1}(k) \Delta x(k)$, we can conclude that inequality (4.4) is valid. Theorem 4.1 is proven.

ThEOREM 4.2. Assume that conditions (4.3), (4.4), and

$$
\begin{equation*}
\hat{A}=\sup _{i \geq 2} \sum_{j=0}^{i-2} A(i, j)<\infty \tag{4.11}
\end{equation*}
$$

are satisfied. Then for all solutions of equation (4.1), the function $a_{1}(k) \Delta x(k)$ is bounded.

Proof. Without loss of generality, we can assume that the solution of equation (4.1) is positive and increasing, i.e., inequalities (4.6) are valid. Using inequalities (4.6) and $a_{1}(i)>0$, let us find the first difference of the fraction $x(i+1) / a_{1}(i) \Delta x(i)$. We have

$$
\begin{align*}
\Delta\left[\frac{x(i+1)}{a_{1}(i) \Delta x(i)}\right] & =\frac{x(i+2)}{a_{1}(i+1) \Delta x(i+1)}-\frac{x(i+1)}{a_{1}(i) \Delta x(i)} \tag{4.12}\\
& =\frac{a_{1}(i) x(i+2) \Delta x(i)-a_{1}(i+1) x(i+1) \Delta x(i+1)}{a_{1}(i) a_{1}(i+1) \Delta x(i) \Delta x(i+1)}
\end{align*}
$$

In the first of the right-hand side of equality (4.12), we have

$$
\begin{equation*}
a_{1}(i) x(i+2) \Delta x(i)=a_{1}(i) \Delta x(i+1) \Delta x(i)+a_{1}(i) x(i+1) \Delta x(i) \tag{4.13}
\end{equation*}
$$

From (4.12), (4.13), (4.7) it follows that

$$
\Delta\left[\frac{x(i+1)}{a_{1}(i) \Delta x(i)}\right]=\frac{1}{a_{1}(i+1)}-\frac{x(i+1) \Delta\left[a_{1}(i) \Delta x(i)\right]}{a_{1}(i) a_{1}(i+1) \Delta x(i) \Delta x(i+1)} \leq \frac{1}{a_{1}(i+1)}
$$

Consequently, summing this inequality we obtain

$$
\begin{equation*}
\frac{x(i+1)}{a_{1}(i) \Delta x(i)} \leq \frac{x(1)}{a_{1}(0) \Delta x(0)}+\sum_{j=0}^{i} \frac{1}{a_{1}(j)} \tag{4.14}
\end{equation*}
$$

Dividing both parts of equation (4.5) on $a_{1}(i) \Delta x(i)$ and using inequality (4.14), we conclude that

$$
\begin{aligned}
\frac{\Delta\left[a_{1}(i) \Delta x(i)\right]}{a_{1}(i) \Delta x(i)} & =a_{2}(i+1)\left(\frac{x(i+1)}{a_{1}(i) \Delta x(i)}+\frac{S(i+1)}{a_{1}(i) \Delta x(i)}\right) \\
& \leq a_{2}(i+1)\left(\frac{x(1)}{a_{1}(0) \Delta x(0)}+\sum_{j=0}^{i} \frac{1}{a_{1}(j)}+\frac{S(i+1)}{a_{1}(i) \Delta x(i)}\right)
\end{aligned}
$$

where

$$
S(i)=\sum_{j=0}^{i-2} A(i, j) x(j)
$$

Summing the above inequality over i, we have

$$
\begin{equation*}
\sum_{i=0}^{k} \frac{\Delta\left[a_{1}(i) \Delta x(i)\right]}{a_{1}(i) \Delta x(i)} \leq \sum_{i=0}^{k} \sum_{j=1}^{i} \frac{a_{2}(i+1)}{a_{1}(j)}+\frac{x(1)}{a_{1}(0) \Delta x(0)} \sum_{i=0}^{k} a_{2}(i+1)+\sum_{i=0}^{k} \frac{a_{2}(i+1) S(i+1)}{a_{1}(i) \Delta x(i)} \tag{4.15}
\end{equation*}
$$

Now let us use inequality (4.14) in the following form:

$$
\begin{equation*}
\frac{1}{a_{1}(i) \Delta x(i)} \leq \frac{1}{x(i+1)}\left(\frac{x(1)}{a_{1}(0) \Delta x(0)}+\sum_{j=0}^{i} \frac{1}{a_{1}(j)}\right) \tag{4.16}
\end{equation*}
$$

As a result from inequalities (4.15),(4.16) it follows that

$$
\begin{gather*}
\sum_{i=0}^{k} \frac{\Delta\left[a_{1}(i) \Delta x(i)\right]}{a_{1}(i) \Delta x(i)} \leq \sum_{i=0}^{k} \sum_{j=0}^{i} \frac{a_{2}(i+1)}{a_{1}(j)}+\frac{x(1)}{a_{1}(0) \Delta x(0)} \sum_{i=0}^{k} a_{2}(i+1) \\
\quad+\sum_{i=0}^{k} \frac{a_{2}(i+1) S(i+1)}{x(i+1)}\left(\frac{x(1)}{a_{1}(0) \Delta x(0)}+\sum_{j=0}^{i} \frac{1}{a_{1}(j)}\right) \tag{4.17}
\end{gather*}
$$

At the left-hand side of inequality (4.17) we can replace sum by the integral using the functions

$$
\begin{gathered}
x(t)=a_{1}(i) \Delta x(i)+(t-i) \Delta\left[a_{1}(i) \Delta x(i)\right], \quad i \leq t \leq i+1, \\
\dot{x}(t)=\Delta\left[a_{1}(i) \Delta x(i)\right], \quad x(i)=a_{1}(i) \Delta x(i)
\end{gathered}
$$

As a result, we have

$$
\begin{align*}
& \sum_{i=0}^{k} \frac{\Delta\left[a_{1}(i) \Delta x(i)\right]}{a_{1}(i) \Delta x(i)} \geq \sum_{i=0}^{k} \int_{i}^{i+1} \frac{\dot{x}(t)}{x(t)} d t=\sum_{i=0}^{k} \ln \left[a_{1}(i+1) \Delta x(i+1)\right] \tag{4.18}\\
& \quad-\ln \left[a_{1}(i) \Delta x(i)\right]=\ln \left[a_{1}(k+1) \Delta x(k+1)\right]-\ln \left[a_{1}(0) \Delta x(0)\right]
\end{align*}
$$

Now let us estimate the right part of (4.17). Because the sequence $x(i)$ is increasing and (4.11), we have

$$
\begin{equation*}
\frac{S(i+1)}{x(i+1)}=\sum_{j=0}^{i-1} A(i+1, j) \frac{x(j)}{x(i+1)} \leq \sum_{j=0}^{i-1} A(i+1, j) \leq \hat{A} \tag{4.19}
\end{equation*}
$$

From (4.17)-(4.19), it follows that

$$
\begin{gather*}
\ln \left[a_{1}(k+1) \Delta x(k+1)\right]-\ln \left[a_{1}(0) \Delta x(0)\right] \\
\leq(1+\hat{A})\left(\sum_{i=0}^{k} \sum_{j=0}^{i} \frac{a_{2}(i+1)}{a_{1}(j)}+\frac{x(1)}{a_{1}(0) \Delta x(0)} \sum_{i=0}^{k} a_{2}(i+1)\right) \tag{4.20}
\end{gather*}
$$

Using (4.4), note that

$$
\infty>\sum_{i=0}^{\infty} \sum_{j=0}^{i} \frac{a_{2}(i+1)}{a_{1}(j)}>\frac{1}{a_{1}(0)} \sum_{i=0}^{\infty} a_{2}(i+1)
$$

From here and (4.4), it follows that the right part of (4.20) is bounded. Hence, the function $a_{1}(k) \Delta x(k)$ is bounded. Theorem 4.2 is proven.
Example 4.1. Consider the difference equation

$$
\begin{equation*}
a_{1}(i) \Delta x(i)=a_{1}(i-1) \Delta x(i-1)+a_{1}^{-1}(i) x(i) \tag{4.21}
\end{equation*}
$$

where $a_{1}(i)>0$ for $i \geq 0$ and satisfies the condition $\sum_{i=0}^{\infty} a_{1}^{-1}(i)<\infty$.
Equation (4.21) can be rewritten in form (4.1) with $A(i, j)=0$ for $0 \leq j \leq i-2$ and

$$
a_{0}(i)=1+\frac{a_{1}(i-1)}{a_{1}(i)}+\frac{1}{a_{1}^{2}(i)}
$$

As follows from (4.2), in this case $a_{2}(i)=a_{1}^{-1}(i)$, and condition (4.4) takes the form

$$
\sum_{i=0}^{\infty} \frac{1}{a_{1}(i+1)} \sum_{j=0}^{i} \frac{1}{a_{1}(j)}<\left(\sum_{i=0}^{\infty} \frac{1}{a_{1}(i)}\right)^{2}<\infty
$$

So, all conditions of Theorem 4.2 are valid. Therefore, for each solution $x(i)$ of equation (4.21) the function $a_{1}(i) \Delta x(i)$ is bounded.

REFERENCES

1. V.B. Kolmanovskii and A.D. Myshkis, Introduction to the Theory and Application of Functional Differential Equations, Kluwer Academic, (1999).
2. R.P. Agarwal, Difference Equations and Inequalities, Marcel Dekker, (1992).

[^0]: 0893-9659/03/\$ - see front matter (C) 2003 Elsevier Science Ltd. All rights reserved. Typeset by $\mathcal{A}_{\mathcal{M}} \mathcal{S}-T_{E} X$ PII: S0893-9659(03)00105-8

