558 research outputs found

    Using TurbSim stochastic simulator to improve accuracy of computational modelling of wind in the built environment

    Get PDF
    Small wind turbines are often sited in more complex environments than in open terrain. These sites include locations near buildings, trees and other obstacles, and in such situations, the wind is normally highly three-dimensional, turbulent, unstable and weak. There is a need to understand the turbulent flow conditions for a small wind turbine in the built environment. This knowledge is crucial for input into the design process of a small wind turbine to accurately predict blade fatigue loads and lifetime and to ensure that it operates safely with a performance that is optimized for the environment. Computational fluid dynamics is a useful method to provide predictions of local wind flow patterns and to investigate turbulent flow conditions at small wind turbine sites, in a manner that requires less time and investment than actual measurements. This article presents the results of combining a computational fluid dynamics package (ANSYS CFX software) with a stochastic simulator (TurbSim) as an approach to investigate the turbulent flow conditions on the rooftop of a building where small wind turbines are sited. The findings of this article suggest that the combination of a computational fluid dynamics package with the TurbSim stochastic simulator is a promising tool to assess turbulent flow conditions for small wind turbines on the roof of buildings. In particular, in the prevailing wind direction, the results show a significant gain in accuracy in using TurbSim to generate wind speed and turbulence kinetic energy profiles for the inlet of the computational fluid dynamics domain rather than using a logarithmic wind-speed profile and a pre-set value of turbulence intensity in the computational fluid dynamics code. The results also show that small wind turbine installers should erect turbines in the middle of the roof of the building and avoid the edges of the roof as well as areas on the roof close to the windward and leeward walls of the building in the prevailing wind direction

    Ductile bulk metallic glass by controlling structural heterogeneities

    Get PDF
    A prerequisite to utilize the full potential of structural heterogeneities for improving the room-temperature plastic deformation of bulk metallic glasses (BMGs) is to understand their interaction with the mechanism of shear band formation and propagation. This task requires the ability to artificially create heterogeneous microstructures with controlled morphology and orientation. Here, we analyze the effect of the designed heterogeneities generated by imprinting on the tensile mechanical behavior of the ZrTiCuNiAl BMG by using experimental and computational methods. The imprinted material is elastically heterogeneous and displays anisotropic mechanical properties: strength and ductility increase with increasing the loading angle between imprints and tensile direction. This behavior occurs through shear band branching and their progressive rotation. Molecular dynamics and finite element simulations indicate that shear band branching and rotation originates at the interface between the heterogeneities, where the characteristic atomistic mechanism responsible for shear banding in a homogeneous glass is perturbed

    Improving on whole-brain radiotherapy in patients with large brain metastases: a planning study to support the AROMA clinical trial

    Get PDF
    PURPOSE: To develop a novel dose-escalated volumetric modulated arc therapy (VMAT) strategy for patients with single or multiple large brain metastases which can deliver a higher dose to individual lesions for better local control (LC), and to compare dosimetry between whole brain radiotherapy (WBRT), hippocampal-sparing whole brain radiotherapy (HS-WBRT) and different VMAT-based focal radiotherapy approaches. METHODS AND MATERIALS: We identified 20 patients with one to ten brain metastases and at least one lesion larger than 15 cm3 who had received WBRT as part of routine care. For each patient, we designed and evaluated five radiotherapy treatment plans, including WBRT, HS-WBRT and three VMAT dosing models. A dose of 20 Gy in 5 fractions was prescribed to the whole brain or target volumes depending on the plan, with higher doses to smaller lesions and dose-escalated inner planning target volumes (DE-iPTV) in VMAT plans, respectively. Treatment plans were evaluated using the efficiency index, mean dose and D0.1cc to the target volumes and organs at risk. RESULTS: Compared with WBRT, VMAT plans achieved a significantly more efficient dose distribution in brain lesions, especially with our DE-iPTV model, while minimising the dose to the normal brain and other organs at risks (OARs) (p < 0.05). CONCLUSIONS: VMAT plans obtained higher doses to brain metastases and minimised doses to OARs. Dose-escalated VMAT for larger lesions allows higher radiotherapy doses to be delivered to larger lesions while maintaining safe doses to OARs

    The attainment of physician's professional identity through meaningful practice: A qualitative study

    Get PDF
    Background: Medical professional identity is how an individual perceives him/herself as a doctor. Formation of professional identity includes development, advancement, and socialization through social learning of specific knowledge, skills obtained while performing professional roles, practicing, and new attitudes and values. A qualitative study was performed to examine live experience of undergraduate medical science students with regards to obtaining professional identity. Methods: This qualitative study was performed using a conventional content analysis method. Participants were students who were studying medicine at Iran University of Medical Sciences. Sampling was done based on a purposeful sampling method. A total of 23 students took part in semi-structured interviews until data saturation was reached. The interviews were transcribed verbatim. Also, to develop themes, data were analyzed using conventional content analysis. Moreover, data management was done using MAXQDA software. Results: Based on data analysis, 2 main themes were as follow: meaningful medical practice" and "professional medical practice". The first theme had 3 categories: (i) self-insight; (ii) manner; and (iii) values and beliefs. The second theme had 2 categories: (i) professionalism; and (ii) holistic view of medicine. Conclusion: Certain individual characteristics and personality type were factors that affected participants' choice of their field of study. The participants' understanding of their profession was formed, not only by studying in the university through learning relevant knowledge, skills, and practice, but also by perceived attitude, views, and values in their profession. © Iran University of Medical Sciences

    Cutting tool tracking and recognition based on infrared and visual imaging systems using principal component analysis (PCA) and discrete wavelet transform (DWT) combined with neural networks

    Get PDF
    The implementation of computerised condition monitoring systems for the detection cutting tools’ correct installation and fault diagnosis is of a high importance in modern manufacturing industries. The primary function of a condition monitoring system is to check the existence of the tool before starting any machining process and ensure its health during operation. The aim of this study is to assess the detection of the existence of the tool in the spindle and its health (i.e. normal or broken) using infrared and vision systems as a non-contact methodology. The application of Principal Component Analysis (PCA) and Discrete Wavelet Transform (DWT) combined with neural networks are investigated using both types of data in order to establish an effective and reliable novel software program for tool tracking and health recognition. Infrared and visual cameras are used to locate and track the cutting tool during the machining process using a suitable analysis and image processing algorithms. The capabilities of PCA and Discrete Wavelet Transform (DWT) combined with neural networks are investigated in recognising the tool’s condition by comparing the characteristics of the tool to those of known conditions in the training set. The experimental results have shown high performance when using the infrared data in comparison to visual images for the selected image and signal processing algorithms

    Clinical and Mucosal Immune Correlates of HIV-1 Semen Levels in Antiretroviral-Naive Men.

    Get PDF
    Background. This study was done to characterize parameters associated with semen human immunodeficiency virus (HIV)-1 ribonucleic acid (RNA) viral load (VL) variability in HIV-infected, therapy-naive men. Methods. Paired blood and semen samples were collected from 30 HIV-infected, therapy-naive men who have sex with men, and 13 participants were observed longitudinally for up to 1 year. Human immunodeficiency virus RNA, bacterial load by 16S RNA, herpesvirus (Epstein-Barr virus and cytomegalovirus [CMV]) shedding, and semen cytokines/chemokines were quantified, and semen T-cell subsets were assessed by multiparameter flow cytometry. Results. Semen HIV RNA was detected at 93% of visits, with \u3e50% of men shedding high levels of virus (defined as \u3e5000 copies/mL). In the baseline cross-sectional analysis, an increased semen HIV VL correlated with local CMV reactivation, the semen bacterial load, and semen inflammatory cytokines, particularly interleukin (IL)-8. T cells in semen were more activated than blood, and there was an increased frequency of Th17 cells and γδ-T-cells. Subsequent prospective analysis demonstrated striking interindividual variability in HIV and CMV shedding patterns, and only semen IL-8 levels and the blood VL were independently associated with semen HIV levels. Conclusions. Several clinical and immune parameters were associated with increased HIV semen levels in antiretroviral therapy-naive men, with induction of local proinflammatory cytokines potentially acting as a common pathway

    Clinical utility of chromogranin A and octreotide in large cell neuro endocrine carcinoma of the uterine corpus

    Get PDF
    Primary neuroendocrine tumors of the female genital tract have been described in the cervix, ovaries and uterus. Large cell neuroendocrine carcinoma (LCNC) of the uterine corpus is the least common and appears to behave the most aggressively. We report a rare case of a large cell neuroendocrine tumor of the endometrium. These tumors are not well characterized, unlike neuroendocrine tumors of the uterine cervix. Consequently, the optimal management remains still unclear. The treatment of our case consisted of surgery, radiotherapy, chemotherapy, and octreotide. Despite the aggressive treatment, the patient died of disease progression 12 months after the initial diagnosis. We discuss the diagnosis, prognosis, and treatment options for LCNC of the genital tract, and potential future therapeutics

    Gis-based gully erosion susceptibility mapping: a comparison of computational ensemble data mining models

    Get PDF
    Gully erosion destroys agricultural and domestic grazing land in many countries, especially those with arid and semi-arid climates and easily eroded rocks and soils. It also generates large amounts of sediment that can adversely impact downstream river channels. The main objective of this research is to accurately detect and predict areas prone to gully erosion. In this paper, we couple hybrid models of a commonly used base classifier (reduced pruning error tree, REPTree) with AdaBoost (AB), bagging (Bag), and random subspace (RS) algorithms to create gully erosion susceptibility maps for a sub-basin of the Shoor River watershed in northwestern Iran. We compare the performance of these models in terms of their ability to predict gully erosion and discuss their potential use in other arid and semi-arid areas. Our database comprises 242 gully erosion locations, which we randomly divided into training and testing sets with a ratio of 70/30. Based on expert knowledge and analysis of aerial photographs and satellite images, we selected 12 conditioning factors for gully erosion. We used multi-collinearity statistical techniques in the modeling process, and checked model performance using statistical indexes including precision, recall, F-measure, Matthew correlation coefficient (MCC), receiver operatic characteristic curve (ROC), precision-recall graph (PRC), Kappa, root mean square error (RMSE), relative absolute error (PRSE), mean absolute error (MAE), and relative absolute error (RAE). Results show that rainfall, elevation, and river density are the most important factors for gully erosion susceptibility mapping in the study area. All three hybrid models that we tested significantly enhanced and improved the predictive power of REPTree (AUC=0.800), but the RS-REPTree (AUC= 0.860) ensemble model outperformed the Bag-REPTree (AUC= 0.841) and the AB-REPTree (AUC= 0.805) models. We suggest that decision makers, planners, and environmental engineers employ the RS-REPTree hybrid model to better manage gully erosion-prone areas in Iran
    corecore