36,429 research outputs found

    Energy-irrigation nexus in South Asia: Improving groundwater conservation and power sector viability

    Get PDF
    Tube wells / Energy consumption / Costs / Electricity supplies / Groundwater irrigation / Water policy / Pumps / Water rates

    Probabilistic sizing of laminates with uncertainties

    Get PDF
    A reliability based design methodology for laminate sizing and configuration for a special case of composite structures is described. The methodology combines probabilistic composite mechanics with probabilistic structural analysis. The uncertainties of constituent materials (fiber and matrix) to predict macroscopic behavior are simulated using probabilistic theory. Uncertainties in the degradation of composite material properties are included in this design methodology. A multi-factor interaction equation is used to evaluate load and environment dependent degradation of the composite material properties at the micromechanics level. The methodology is integrated into a computer code IPACS (Integrated Probabilistic Assessment of Composite Structures). Versatility of this design approach is demonstrated by performing a multi-level probabilistic analysis to size the laminates for design structural reliability of random type structures. The results show that laminate configurations can be selected to improve the structural reliability from three failures in 1000, to no failures in one million. Results also show that the laminates with the highest reliability are the least sensitive to the loading conditions

    Plane-stress, elastic-plastic states in the vicinity of crack tips

    Get PDF
    Plane stress analysis of elastic-plastic states in vicinity of straight crack tip in thin plat

    Prediction of the capacitance lineshape in two-channel quantum dots

    Full text link
    We propose a set-up to realize two-channel Kondo physics using quantum dots. We discuss how the charge fluctuations on a small dot can be accessed by using a system of two single electron transistors arranged in parallel. We derive a microscopic Hamiltonian description of the set-up that allows us to make connection with the two-channel Anderson model (of extended use in the context of heavy-Fermion systems) and in turn make detailed predictions for the differential capacitance of the dot. We find that its lineshape, which we determined precisely, shows a robust behavior that should be experimentally verifiable.Comment: 4 pages, 3 figure

    Pose consensus based on dual quaternion algebra with application to decentralized formation control of mobile manipulators

    Full text link
    This paper presents a solution based on dual quaternion algebra to the general problem of pose (i.e., position and orientation) consensus for systems composed of multiple rigid-bodies. The dual quaternion algebra is used to model the agents' poses and also in the distributed control laws, making the proposed technique easily applicable to time-varying formation control of general robotic systems. The proposed pose consensus protocol has guaranteed convergence when the interaction among the agents is represented by directed graphs with directed spanning trees, which is a more general result when compared to the literature on formation control. In order to illustrate the proposed pose consensus protocol and its extension to the problem of formation control, we present a numerical simulation with a large number of free-flying agents and also an application of cooperative manipulation by using real mobile manipulators

    Stroboscopic back-action evasion in a dense alkali-metal vapor

    Full text link
    We explore experimentally quantum non-demolition (QND) measurements of atomic spin in a hot potassium vapor in the presence of spin-exchange relaxation. We demonstrate a new technique for back-action evasion by stroboscopic modulation of the probe light. With this technique we study spin noise as a function of polarization for atoms with spin greater than 1/2 and obtain good agreement with a simple theoretical model. We point that in a system with fast spin-exchange, where the spin relaxation rate is changing with time, it is possible to improve the long-term sensitivity of atomic magnetometry by using QND measurements

    Optimizing photon indistinguishability in the emission from incoherently-excited semiconductor quantum dots

    Full text link
    Most optical quantum devices require deterministic single-photon emitters. Schemes so far demonstrated in the solid state imply an energy relaxation which tends to spoil the coherent nature of the time evolution, and with it the photon indistinguishability. We focus our theoretical investigation on semiconductor quantum dots embedded in microcavities. Simple and general relations are identified between the photon indistinguishability and the collection efficiency. The identification of the key parameters and of their interplay provides clear indications for the device optimization

    Probabilistic analysis of bladed turbine disks and the effect of mistuning

    Get PDF
    Probabilistic assessment of the maximum blade response on a mistuned rotor disk is performed using the computer code NESSUS. The uncertainties in natural frequency, excitation frequency, amplitude of excitation and damping are included to obtain the cumulative distribution function (CDF) of blade responses. Advanced mean value first order analysis is used to compute CDF. The sensitivities of different random variables are identified. Effect of the number of blades on a rotor on mistuning is evaluated. It is shown that the uncertainties associated with the forcing function parameters have significant effect on the response distribution of the bladed rotor

    Locating the Source of Diffusion in Large-Scale Networks

    Get PDF
    How can we localize the source of diffusion in a complex network? Due to the tremendous size of many real networks--such as the Internet or the human social graph--it is usually infeasible to observe the state of all nodes in a network. We show that it is fundamentally possible to estimate the location of the source from measurements collected by sparsely-placed observers. We present a strategy that is optimal for arbitrary trees, achieving maximum probability of correct localization. We describe efficient implementations with complexity O(N^{\alpha}), where \alpha=1 for arbitrary trees, and \alpha=3 for arbitrary graphs. In the context of several case studies, we determine how localization accuracy is affected by various system parameters, including the structure of the network, the density of observers, and the number of observed cascades.Comment: To appear in Physical Review Letters. Includes pre-print of main paper, and supplementary materia

    Effect of Berberine on in vitro metabolism of Sulfonylureas: a herb-drug interactions study

    Get PDF
    Rationale: Patients with type 2 diabetes may co-ingest herbal and prescription medicine to control their blood sugar levels. Competitive binding of drug and herb may mutually affect their metabolism. This can alter the level of drug and its kinetics in the body, potentially causing toxicities or loss of efficacy. Understanding how metabolism of sulfonylureas like glyburide and gliclazide can be affected by the presence of berberine and vice versa can provide valuable information on the possible risk of toxicities caused by co-ingestion of drugs. Methods: Berberine and sulfonylureas (glyburide and gliclazide) were co-incubated with rat liver microsomes in the presence of NADPH regenerating system. The metabolites of berberine and sulfonylureas were analysed using liquid chromatography with high resolution mass spectrometry in the positive ion mode. The role of individual isozymes in the metabolism of berberine, glyburide and gliclazide was investigated by using specific inhibitors. Results: In vitro metabolism of berberine lead to the formation of demethyleneberberine (B1a) and B1b through demethylenation. Berberrubine (B2a) and its isomer (B2b) was formed through demethylation. The isozymes CYP3A and CYP2D were found to be involved in the metabolism of berberine. In vitro metabolism of glyburide and gliclazide lead to the formation of hydroxylated metabolites. The isozymes CYP3A and CYP2C were found to be involved in the metabolism of glyburide. Gliclazide was metabolised by CYP2C. In vitro co-incubation of glyburide or gliclazide with berberine showed that each drugs metabolism was compromised as both share a common isozymes. A strong negative linear correlation of glyburide or gliclazide metabolites levels and the concentration of berberine confirmed the effect of berberine on the metabolism of sulfonylurea
    • …
    corecore