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PLANE-STRESS, ELASTIC-PLASTIC STATES IN THE
VICINITY OF CRACK TIPS

By A. S. Kobayashi, S. Woo, and R. C. Shah

ABSTRACT

The von Mises yield condition and flow rule are used to analyze the elas-
tic-plastic states in the vicinity of the tip of a straight crack in a thin
plate. Elastic-perfectly-plastic material is considered, and the yield zone
is assumed to be small in comparison to the crack length.

The numerical method of finite differences is used together with a spe-
cially developed iteration operation to solve the nonlinear equations involved.
Two cases are analyzed: a plate subjected to uniform in-plane shear and a plate
subjected to uniform tension. States of stress in the elastic-plastic regions
are determined together with the boundaries of the yield zone.

The numerical results show that stress distributions satisfy the l//;
relation approximately for points away from the crack tip but in the plastic
region. These results lend some theoretical support to the plasticity correc~
tion factor as utilized in the Griffith-Irwin approach to fracture.

INTRODUCTION

When an infinitely elastic solid with an embedded crack is subjected to a
loading condition, the stresses at the crack tip are infinite in magnitude and
share a common factor, K, which is referred to as the stress intensity factor.
(See, for example, reference 1.) The Griffith-Irwin theory of fracture assumes
that this stress intensity factor at the onset of rapid fracture is related to
the fracturing force for a brittle material. Experimental evidence indicates
that this postulate is correct for many practical problems in engineering.

In a ductile material, however, the stresses at the crack tip are finite in
magnitude and the concept of stress intensity factor no longer holds. For such
a ductile material, the computed critical fracturing force according to the
Griffith-Irwin theory and measured forces are not always in good agreement. In
order to compensate for this discrepancy, Irwin suggested that a portion of the
width of the plastically yielded region be added to the actual crack length at
fracture and that this corrected crack lensth be used to compute the critical
fracturing force (ref. 2). Substantial experimental evidence now exists to
show that such corrections could be used to extend the theory of linear frac-
ture mechanics to cover the ductils material., The exact amount of added crack
length for such yield correction is a subject of debate. It depends on the
state of stresses in the plastically yielded region as well as the surrounding
elastic field. In order to determine Irwin's yield correction factor with accu-
racy, then, it is necessary to know the state of stresses in the viecinity of
the crack tip.



Another modification of the Griffith-Irwin theory when applied to a duc-
tile material was proposed by Williams (ref. 3). In this ductile-fracture hy-
pothesis, Williams suggests that the exact amount of plastic energy dissipated
in the plastically yielded region must be accounted for in computing the criti-
cal fracturing force. The shape and volume as well as the stress and plastic
strain distribution in the yielded region at the crack tip must then be known a
priori in order to apply Williams' hypothesis to ductile materials.

As a somewhat different fracture criterion, McClintock postulates that
fracture occurs in a ductile material when a critical strain is reached in a
critical volume of the yielded region (ref. k). The plastically yielded region
has also been observed to control the crack-extension rate under fatigue load-
ing, and based on these observations Valluri has proposed a theory on cumula-
tive damage (ref. 5). On the other hand, Liu proposed a theory on the crack-
extension rate in fatigue based on the hysteresis energy absorbed in the yield-
ed region (ref. 6).

For each case described above, the shape, stresses, and the total strains
in the plastically yielded region at the crack tip must be known before further
analytical deductions can be made. Thus, there exists a dire need for detailed
information on the states of stresses and strains in these elastic-plastic
regions.

Two numerical analyses were conducted on a thin cracked strip under uni-
axial tension (refs. T and 8), where Mises-Hencky's yield criterion and flow
rule due to Prandtl and Reuss were used. The nonlinear elastic-plastic field
equations were replaced by the associated finite-difference equations and relax-
ation techniques were used to solve these equations numerically*® in the first
paper. In either case, the effects of finite geometries on the crack and the
strip width were considered and yield regions were assumed to be relatively
large with respect to these geometries. Physically, the results thus obtained
corresponded to the elastic-plastic states in the plate composed of an extreme-
ly ductile material. It should be noted that Jacobs had solved a similar prob-
lem under the condition of plane strain by the finite difference and relaxa-
tion method (ref. 10).

Among the other elastic-plastic problems related to cracked structural
components, the solution by Hult which deals with a crack in a twisted bar com-
posed of a non-strain hardening material should be noted (ref. 11). Recently,
Rice completed a similar analysis in a strain hardening material (ref. 12).
Also Koskinen analyzed a grooved bar subjected to longitudinal shear (ref. 13).

In view of the lack of available elastic-plastic solutions for problems
involving cracks in thin plates of infinite extent and subjected to tension as
well as other modes of loading, namely, in-plane shear in this case, a research
program was initiated to obtain elastic-plastic solutions for various cracked
structural elements. This report deals with the initial phase of this research

* The basic procedure for such numerical analysis was developed by Allen
and Southwell (ref. 9).
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Two problems were analyzed

and the states of stresses in the vicinity of a crack tip were determined for
the following loading conditions.
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SYMBOLS

Half crack length of a straight crack
yield function

modulus of elasticity

shear modulus

yield stress in tension

stress intensity factor

integer

radial distance from the crack tip
rectangular coordinates
incremental quantity

strain

angular coordinate

g + 0
XX yy

Poisson's ratio

A thin infinite plate subjected to uniform tension and composed
of elastic, perfectly plastic material.
A thin infinite plate subjected to uniform in-plane shear loading
and composed of elastic, perfectly plastic material.

stress or applied uniform tension stress when used without

subscripts
epplied uniform in-plane shear stress

g -0
Yy X

-20
Xy

Airy's stress function
strain function
plastic modulus, a positive constant
a2 32
harmonic operator — + —
ax? 2

X

4 3k

biharmonic operator G + 2
ax™ ax23y2

Superscript

e
p
t

glastic component
plastic component
total quantity




Subscripts

I uniform tension case

I1 uniform in-plane shear case

i i-th increment

X,¥,2 refer to x, y, z coordinates

~ normalized pseudo stress intensity factor

- normalized quantity. For the case of uniform tension, all quanti-
ties are divided by ova/2. For the case of uniform in-plane shear,
all quantities are divided by 1v2a.

DERIVATION OF BASIC EQUATIONS

Introduction

It is assumed that the elastic-plastic boundary of the yield region in the
vicinity of the crack tip, although changing in size, will remain relatively
the same in shape during successive increase in load. This postulate is based
on the assumption that the half crack length, a, is large with respect to the
largest radial distance r from the crack tip considered in this analysis, or
a>>r. Thus, the problems such as those considered in references 7 and 8 where
subsequent growth in the yield zones is influenced by the effects of finite
geometries, are excluded.

By determining the shape of the elastic-plastic boundary and the associ-
ated state of stresses, the stress distributions at each subsequent increment
of increasing load can be determined provided a scaling law is established to
relate the size of the elastic-plastic boundary with the applied load.

This basic elastic-plastic state was established by finding a statically
admissible stress distribution of the elastic-plastic field in the vicinity of
the crack tip. An Airy's stress function, x, which satisfies the stress equa-
tion of compatibility in the elastic region and the Mises-Hencky yield criter-
ion in the plastic region was determined by the method of finite difference
combined together with an iterative procedure developed in this program. Some
details of this procedure are described in the following sectionms.

Knowing the elastic-plastic boundary for a given load and with the assump-
tion that the elastic-plastic boundary remains the same in shape but grows in
size with increasing applied load as shown in figure 1, it is then possible to
determine the numerical value of Airy's stress function at each generic point
in the elastic-plastic region with increasing load. Using the flow rule in
plasticity, it is also possible to determine the strain distribution in the
elastic~plastic region by linear superposition of incremental strain components
corresponding to the incremental increase in load.




Statically Admissible Stress Field

When the state of stresses in a plane problem is represented by Airy's
stress function x(x,y), then in the absence of a body force the stress compati-
<, bility equation in the elastic region is satisfied when

4 y _ at at
Vix = 0 where V' = + 2 + (1)
axlo ax23y2 ayk
and the stresses are represented by

g =

XX X’yy

(8] =

vy = Foxx (2)
g =

Xy Xory

In the plastically yielded region, the Mises-Hencky yield criterion for an
elastic perfectly plastic material in plane stress is

02 4+ 3(9%2 + y2) = o2 (3)
where 6 =0 + 0
xx Yy
¢ =0 - O
Yy XX
Y = -20
ba'g

and ¢ = bk where 2k is the yield stress in uniaxial tension. Using equations

(1) and (3), it is then possible to obtain an elastic-plastic solution of a

plane stress problem which is statically admissible but in general will not be

kinematically admissible. The possibility of the statically admissible solu-

tion being also kinematically admissible is governed to a certain extent by w
appropriate choice of elastic-plastic boundary for a given applied load as well

as the method of superimposing successive incremental changes of stirains.

In applying the method of finite-difference to determine numerically the
stress function, x(x,y), a rectangular region in the vicinity of the crack tip
was divided into a grid array with equal spacing, h, as shown in figure 2.
Using the nodal locations shown in figure 3, equations (2) and (3) are repre-
sented in terms of finite difference equations as follows:



In the elastic region, the stress equation of compatibility becomes
20)(0 - 8()(1 + X2 + X3 + X)-t) + 2()(5 + X6 + X-( + x8) + X9 + xlO +
0 (L)

Y1t X T

In the plastic region, the Mises-Hencky yield criterion is

2 2 2) = o2
0,2 + 3(03 + ¥d) = c (5)
Xe * Xo * Xq t Xy - bx
where 6., = 1 2 3 4 0
0 h2
° - Xl + X3 = X2 = Xh
0 n2
a XS + X'( - X8 - X6
wo =

2h?

It is then assumed that the nodes which belong to the yielded region in
figure 1 are known a priori. Combining the appropriate boundary conditions
such as the applied surface tractions, together with the field equations com-
posed of equation (4) or (5), the unknown stress function, x(x,y), at each node
can be determined by the array of equations (4) and (5) which will constitute a
set of n equations corresponding to a set of n nodes with n unknown x's.
It should be noted that a numerical solution to this set of n algebraic equa-
tions is complicated by the nonlinearity of equation (5).

In order to apply linear analysis with a digital computer, the nonlinear
equation (5) was modified as follows. For a node in a plastically yielded
region, y is considered to be composed of two parts, namely

x = x° + 6x (6)

where xe is the value of the stress function at the particular node for an in-
finitely elastic material and 6y is the incremental change in the value of the
stress function due to plastic yielding. Equation (5) with equation (6) can
then be rewritten as




8" 60, + 3(¢Oe<sq>0 + 9, 8uy) = 1/2 (e - (8,%)2 - 30(e,%)2 +
(N
e
+ (95)2] - (88,)% - 3[(60,)% + (6y,)?]}

If 690, 6¢O and 6¢0 are relatively small quantities, then as a first approxima-

tion the square of these terms can be ignored and equation (7) becomes a linear
equation in terms of unknown quantities of §y due to plastic yielding at the
crack tip (ref. 7). Returning to the elastic region, the new value of the
stress function at these nodes can also be represented by equation (6) which
upon substituting into equation (1) yields

vt (6x) = 0 (8)

The approximate form of equation (7) together with equation (8) will yield a set
of n linear slgebraic equations which can be solved for n unknown quanti-
ties of dx provided x for the infinitely elastic solid is known.

In order to improve the numerical accuracy of d&x, an iteration process
was used. The process consisted of computing &y repeatedly after previous
values of &x were backsubstituted into the righthand side of equation (7).
(See Appendix A.) This iteration process converged in general when the esti-
mated yield region was close to what could be expected and when the backsub-
stituted d&x values were close to the final values of d&yx. From practical con-
siderations, the number of nonlinear nodes which could be handled satisfactori-
ly by this procedure was approximately four.

Having established the four yield nodes in the rectangular field, a cen-
tral portion of this field was cut out and the grid distances were halved, as
shown in figure 2. The boundary conditions prescribed in this finer meshed
grid network were the numerical values established by the coarser grid which
accounted for the elastic-plastic state involving four yield nodes. With the
fine grid network, the number of yield nodes approximately tripled to twelve
nodes. The state of stresses determined by the finite difference method of
this mesh side was considered sufficiently accurate since the stress distribu-
tion by nature would not change appreciably in the plastic yielded zone.

The iteration process used in the coarse grid analysis described previous-
1y would not converge when applied to the fine grid analysis despite the many
fruitless efforts involved in conditioning the nonlinear equations.¥ For small
incremental changes in §y, however, the nonlinear terms, (66.)2 ete., could
be considered second order quantities. Thus these nonlinear terms in equation
(7) were discarded and a different iteration technique was performed by using
the following equation:

Numerical difficulties encountered are discussed in reference 15.




By 86 *+ 3(ey 80, + yg 8yy) = 1/2 {c? - (8,)% - 3((e4)% + (v,)%1} (9)

Note that the superscript of "e" in equation (7) is missing in equation (9)

since eo, QO’ and wo now correspond to the plastically yielded state deter-

mined by the coarse grid analysis. This procedure after considerable manipula-
tion converged to somewhat satisfactory values.

Another procedure attempted was to shift the grid network but maintain
the mesh size at h = 1 and to cover the plastic yield region with more nodes.
The motivation for this shifted grid procedure was to continue the successful
iteration procedure involving four yielded nodes on the assumption that the
stress distribution 4id not change appreciably in the yield zone. This shifted
grid procedure which is reported in Appendix B did not yield satisfactory
results for this problem.

Having established the necessary field equations suitable for computer
analysis, the first step in the numerical analysis was to compute the elastic
and initial value of xe for each problem. Xe for the two problems reported
here are determined by the use of Westergard's stress functions for a cracked
plate subjected to uniform tension and uniform in-plane shear at infinity.

Assuming that the half crack length a 1is sufficiently large with re-
spect to the elastic-plastic region at the crack tip in figure 2, the stress

function x for a cracked plate subjected to uniform tension, o, is repre-
sented as(ref.

e

X
. x{ 3/2 [3 cos %ﬂ + cos —4 (10)
g vYa/2

where r and 6 are local polar coordinates with origin at the crack tip as
shown in figure 4. x is a normalized stress function independent of the half
crack length. For a plate loaded with uniform in-plane shear, 1, the nor-
malized stress function, can be represented as

e

X11 e 3/2 )
==Xy = T (sin 6 cos 5) . (11)
T Y2a

If it can be further assumed that the plastic region is sufficiently small
with respect to the elastic-plastic region, then the small plastic region in
the center of the rectangular region will not affect values of x on the exte-
rior boundaries of the region. The first step in the numerical procedure then
is to compute x© by equation (10) or_(11) and then prescribe these x* along the
nodes on the exterior boundaries. ¥ values at location one grid distance out-
side of the exterior boundary are also needed for finite difference analysis
of a biharmonic equation.




Incremental Growth of Elastic-~Plastic Boundary

Having established the statically admissible stress field for one partic-
ular load, the stress function for each increment of increasing load can be
egsily obtained by observation of equations (10) and (11). Since the prescribed
X on the rectangular boundary is inversely proportional to the applied load o
or 1, the effect of an increase in ¢ or 1t can be accounted for by an
appropriate increase in the size of the rectangular boundaries as shown in fig-
ure 1, 6y or x = xe + 8y as well as the elastic-plastic boundary will remain
the same for a point in the same position relative to the enlarged rectangular
region. For a stationary generic point in the elastic-plastic region, the
stress function and the state of stress can then be determined as a function of
increasing load.

At a generic point in the elastic-plastic regioh, the change in the stress
function per incremental loading of the nth step can be represented as

(1) (2) (n)

X=xe+6)( + 6y + ...+ 8y (12)

Postulating a flow rule for the stress-strain relation in the plastically yield-
ed region, the nth incremental change in the strains can be represented as

Ge(n) = l-[60(n) - vdo(n) ] + 5x(n) [20(n) - on) ]

XX E XX Yy XX yy
6553) = %-[605;) - véoii) ] + Gk(n) [20;;) --cii) ] (13)
o0 - 3 (aal®) o)y _ () (ol oy

(n) (n)

(n) _ 1ty 4,(n) + 3 6 o
Xy

B Goxy

where E and v are elastic modulus of elasticity and the Poisson's ratio respec-

tively and 6A(n) is an undetermined constant of flow.

éo(n), «svey and o(n), .+s are known {g3m our previous analysis. Also,
from the strain compatibility relation, &) can be determined as
L (n)
™) = - O T @) ()
2EVY (x~ + 8% + 6y + ...+ 8) )




Knowing 6A(n) then, it is possible to compute the four incremental strain
components by equation (13). This portion of the computation was not performed
since 8\ could not be determined with sufficient accuracy to carry out this
computation.

Numerical Procedure and Results

The first step in the elastic-plastic analysis is to yield the most obvi-
ous point, namely the node at the crack tip by estimating a value of ¢ 2(nor-
malized function of yield stress) in equation (7) for this node. The remain-
ing nodes are assumed elastic and therefore equation (8) is assigned to these
nodes and €y is determined by linear analysis combined with the iteration pro-
cedure described previously.

If the material is weakened, the strain energy stored in the vicinity of
the crack tip is distributed to adjacent areas; hence, more nodes undergo
yielding and the plastic enclave is enlarged. With the value of g? for one-
node plastic enclave, plastic enclave which includes four yielded nodes was
established and a new E? was estimated. The numerical method described pre-
viously was carried out again with the exception that four nonlinear equations
were used in the iteration. The results of the stress functions, stresses, and
g? computed are shown in figures 5 to 10.

As mentioned previously the plastic enclave could not be enlarged further
to take in more yielded nodes, since the iteration procedure diverged numeri-
cally for more than four yielded nodes. Therefore, the original grid (h = 1)
was halved into a finer mesh (h = 1/2). 1In order to keep the size of the com-
puter program within its storage capacity and to allow interchangeability in
computer program of one grid mesh to the other, only one quarter of the origi-
nal region was considered in the fine grid analysis. Complete linear analysis
plus successive matrix inversion technique in place of iteration procedure was
employed in the fine grid analysis. Details of this procedure are found in
reference 15,

The numerical values of stress function thus obtained together with the
stresses and c which were calculated by finite difference are shown in figures
11 to 16. Althouph the a551yned maximum value of c2 for this calculation was
4.17, higher values of c were obtained in the plastlcally yielded region in
figure 16, This dlscrepancy somewhat indicates the inadequacy of the numerical
procedure employed here. Despite this discrepancy, the sufficiently continuous
values of the stresses and the stress function leads one to believe that these
values are substantially correct within the first two significant figures.

Cracked Plate Subjected to Uniform In-Plane Shearing

Except for equation (11), similar numerical procedures as described above
were used to determine the stress function, stresses, and ¢ 2 gistribution in the
coarse and fine grid analyses, Figures 17 through 22 and flgures 23 through 28
show these distributions for regions with grid spacing of h = 1 and a subregion
with a grid spacing of h = 1/2. Againi the discrepancy between the calculated

g? and the assigned maximum value of c* = 2.87 is to be noted in figure 28.

10




DISCUSSION

As noted in the first section, the intention of this investigation was to
establish a ductile fracture criterion. With the intention of extending the
Griffith~Irwin theory of fracture into ductile fracture following Irwin's yield
correction factor, the numerical results were compared with equivalent elastic
results.

Figures 29 through 32 show the stress function versus radial distances from
the crack tip for the two problems. These figures show that on a log-log plot,
the stress function remains essentially a straight line with a slope of close
tom = 1.5. The values of m - 2 represent the negative power of r or the order
in which the stresses increase as they approach the crack tip. Tables I and II
show the slopes of these lines fitted through points in figures 29 through 32
by the method of least square. Normalized pseudo stress intensity factors were
then determined from these fitted lines sas

r X1
K1 =3 39 5 for uniform tension (15)
‘3‘ cos —é"" cos 5
T Xy : .
K1 = - AR for uniform in-plane shear (16)
2

These values are also tabulated in Tables I and II.

From the above results it can be seen that the stress singularity of r_l/e
is essentially maintained at a small distance away from the crack tip and
thereafter. Thus, the states of stresses in these two problems can be repre-
sented in the form of equation (10) or (11) with a magnification factor of 1.05
to 1.10 for regions ahead of the crack tips. Details of the latter values are
shown in figures 33 and 3i.

Irwin proposed that the plasticity effect can be handled by increasing the
2
effective crack length for the state of plane stress from a to a(l + ——g————)
4/2 Lx2
(ref. 2). The stress intensity factor determined by Irwin's correction for the
tension problem will be

2 . 2
K=/1?o/£/1+____g~___?/?o»/£(1+o.o889——) (17)
W2 o? hk2
o
For a nominal loading condition of é%-= 0.7, equation (17) yields K = 1.05

which is in the realm of the correction factor obtained by this analysis.

11



APPENDIX A

A flow chart of the computer program is shown on the next page to help to
visualize the iteration procedure described in the main text.

12




FLOW CHART:

~ Start

L]

@ad X,Y (rectangular coordinates))

Calculate elastic stress function xe

_y

Calculate ge, $ }p_e from xe by finite
difference methods (yielded nodes only)

8x = 0.

Y

——— e —’-ﬁ)o K =1, 30  iteration process beginS]

y

Calculate 86, 8¢, 8y from 8y by finite
difference methods (yielded nodes only)

[BB] = 0.
OR V*x~ = 0.

@ead pre-estimated 5_2)

‘ [BB] of the yielded node by Mises-Hencky's
yield criterion, e.g.,

[BB] = 1/2 [c2 - 082 ~ 3(92 + y2) - (88)2 - 3{(8) + (&y)2})

'
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Read {AA} of the non-yielded
nodes, where {AA} are the co-
efficients (V*) of the bihar-
monic equations (V“§y = 0.)

A ‘
{AA} of the yielded nodes where
{aa}sy = 8550 + 3(p%69 + v 6y)

'

Call subroutine matrix inversion
{aa} {6x]) = [BB]
hence [6x] = {aA}"! [BB]

Write &y

=

Indicates iteration
process diverge

Calculate necessary ¢_ , 0, g, T and c?
xx’ yy’ xy’® _max -
from x by finite difference methods

: 2
Write ¥, Slﬁf g ., 0, Tex and _;J

Y

Stop |-
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APPENDIX B

The procedure which appeared moderately successful was the procedure of
the shifting of the coarse finite difference grid. By parallel and perpendic-
ular shifting of the coarse grid in the region, it is possible to obtain an
estimate of the stress function at any particular point in the region. This
procedure has the advantage of assured convergence because the number of plas-
tically yielded nodal points was confined to approximately four or five points.
Obviously, the use of such coarse finite difference grid could yield only aver-
age values of the state of stresses. Fluctuations of the state of stresses in
the plastically yielded region were believed to be sufficiently small such that
the results thus obtained could not be in substantial error.

Figures 35 and 36 show stress component gyy and g? computed by this pro-~

cedure. As self evident, the state of stresses determined by this procedure
was not sufficiently smooth and continuous to continue with this procedure. It
is believed, however, that the shifted grid approach could find application in
other elastic-plastic problems with relatively small stress gradients.

15



APPENDIX C

Another approach was to use stable numerical results obtained by the
coarse grid finite difference network for the stress distribution and to devel-
op a curve fitting procedure to the strain function separately. In an elastic-
plastic analysis where the stress singularity is removed, it seems reasonable
to assume that the state of stresses will not vary rapidly and therefore the
state of stresses obtained by a coarse finite difference grid network should be
a fair representation of the true state of stresses. The state of stresses
would thus be determined by linear interpolation of the results obtained by the
coarse grid work.

The strain function, which will represent the total strain at all points,
must be biharmonic from the compatibility of the total strains. For an Airy
stress function, x, which is biharmonic and which satisfies the following
relation,

I%x = Xoyy Opy = Xoxx Oy = Xoxy

a similar strain function can be determined as

e =% (w - vew, ]
xx E "Tlyy *xx
e =% [w,__ - vew, ]
yw E"7xx 'Yy

I T
xy . T E “xy

In the elastic region, the strain function as defined above will coincide
with the stress function or x = w. In the plastically yielded region, how-
ever, the two functions will differ.

A plot of stress function obtained from the finite difference analysis
with respect to distance, r, from the crack tip, shows that possibly

o(r,8) = w(2) « () + w, (-/11?) - w,(8)

in the elastic region. Assuming that the same trend holds true in the plasti-
cally yielded region, a strain function which is equal to the stress function
in the elastic region could be determined.

16




Appendix C (cont'd.)

The state of strain was determined from this strain function and checks
were made if the Prandtl-Reuss flow rule can be satisfied between the states

of stresses and strains thus determined. The results turned out to be nega-
tive and this approach was also abandoned.

17
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TABLE I-a

UNIFORM TENSION LOADING

COARSE GRID

6 m K1
0° 1.36 1.19
26.6° 1.L45 1.18
45.0° 1.50 1.12
63.4° 1.53 1.03
90.0° 1.58 .965
116.6° 1.7k LTkl
135.0° 2.19 .281
TABLE I-b
UNIFORM TENSION LOADING
FINE GRID
) m K1
0° 1.35 1.08
26.6° 1.40 1.16
45,0° 1.6 1.17
63.4° 1.50 1.06
90.0° 1.59 .969
116.6° 1.75 .T9h
135.0° 1.93 .562




TABLE II-a

UNIFORM IN-PLANE SHEAR LOADING

COARSE GRID
6 m K11

26.6° 1.4 1.14
45° 1.k2 1.13
63.4° 1.h42 1.11
90° 1.38 1.17
116.6° 1.40 1.15
135° 1.%0 1.18
153.4° 1.43 1.1k

TABLE II-b

UNIFORM IN-PLANE SHEAR LOADING

FINE GRID
6 m K11
26.6° 1.35 1.18
us° 1.4 1.07
63.4° 1.L5 1.07
90° 1.40 1.08
116.6° 1.44 1.09
135° 1.2 1.11
153.4° 1.33 1.28
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FIGURE |. GROWTH OF ELASTIC~-PLASTIC BOUNDARY WHEN
MATERIAL IS WEAKENED WITH CONSTANT APPLIED
LOAD

FIGURE 2. FINITE DIFFERENCE GRID IN THE VICINITY
OF A CRACK TIP
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FIGURE 3. NODAL LOCATION FOR BI-
HARMONIC FINITE DIFFER-
ENCE OPERATOR

FIGURE 4. LOCAL POLAR COORDINATES IN
THE VICINITY OF A CRACK TIP
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FIGURE 5. X, DISTRIBUTION IN CRACKED PLATE SUBJECTED TO UNIFORM TENSION

ELASTIC-PLASTIC BOUNDARY AT ¢? =325
COARSE GRID (GRID LENGTH hx1)

[

Y

0.20

B
T

L
J .19 Al
J> /
T
. .2k 22! / .
/,
\ yk .y
5\ AN \ W i D
Fex=0.20 I
11 85\—1& NS R)
.3 b A U
FIGURE 6. Za DISTRIBUTION IN CRACKED PLATE SUBJECTED TO UNIFORM TENSION

ELASTIC-PLASTIC BOUNDARY AT ¢2=3.25
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FIGURE 7. %y DISTRIBUTION IN CRACKED PLLATE SUBJECTED TO UNIFORM TENSION
ELASTIC-PLASTIC BOUNDARY AT ¢2:325
COARSE GRID (GRID LENGTH h =1}
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FIGURE 8. Zxy DISTRIBUTION IN CRACKED PLATE SUBJECTED TO UNIFORM TENSION
ELASTIC-PLASTIC BOUNDARY AT ¢2:3.25
COARSE GRID {GRID LENGTH h=1)
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FIGURE 9. Imox DISTRIBUTION IN CRACKED PLATE SUBJECTED TO UNIFORM TENSION

ELASTIC-PLASTIC BOUNDARY AT ¢2=3.25
COARSE GRID (GRID LENGTH hs1) ; SOLID LINES = ELASTIC-PLASTIC ANALYSIS ; DASHED LINES = ELASTIC ANALYSIS

Z
T

A:2 1

FIGURE 10. ¢2 DISTRIBUTION IN GRACKED PLATE SUBJECTED TO UNIFORM TENSION
ELASTIC-PLASTIC BOUNDARY AT ¢223.25
COARSE GRID (GRID LENGTH h=1)
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FIGURE 7. X, DISTRIBUTION IN CRACKED PLATE SUBJECTED TO UNIFORM IN-PLANE SHEAR
ELASTIC-PLASTIC BOUNDARY AT ¢2 = 157
COARSE GRID (GRID LENGTH h=1)

FIGURE 18. Ty DISTRIBUTION IN CRACKED PLATE SUBJECTED TO UNIFORM IN-PLANE SHEAR
ELASTIC-PLASTIC BOUNDARY AT ¢2=1.57
COARSE GRID (GRID LENGTH hs=|)
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FIGURE 19. Oy DISTRIBUTION IN CRACKED PLATE SUBJECTED TO UNIFORM IN-PLANE SHEAR
ELASTIC-PLASTIC BOUNDARY AT ¢Z= |57
COARSE GRID (GR!D LENGTH h=1)
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FIGURE 20. Jyxy DISTRIBUTION IN CRACKED PLATE SUBJECTED TO UNIFORM IN-PLANE SHEAR
ELASTIC-PLASTIC BOUNDARY AT ¢2=1.57-
COARSE GRID (GRID LENGTH h =)
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FIGURE 2I. Tmox DISTRIBUTION IN CRACKED PLATE SUBJECTED TO UNIFORM IN-PLANE SHEAR
ELASTIC-PLASTIC BOUNDARY AT ¢2=157
COARSE GRID (GRID LENGTH h=1) ; SOLID LINES = ELASTIC-PLASTIC ANALYSIS ; DASHED LINES = ELASTIC ANALYSIS
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FIGURE 22. ¢2 DISTRIBUTION IN CRACKED PLATE SUBJECTED TO UNIFORM IN-PLANE SHEAR

ELASTIC-PLASTIC BOUNDARY AT g2= .57
COARSE GRID (GRID LENGTH hs=1)
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PLASTIC ANALYS|S —————— PLASTIC ANALYSIS
COARSE GRID FINE GRID

ELASTIC
ANALYSIS

FIGURE 33. VALUES OF K, AT VARIOUS ANGLES.
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FIGURE 34. VALUES OF K, AT VARIOUS ANGLES .
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¢? DISTRIBUTION IN CRACKED PLATE SUBJECTED TO UNIFORM TENSION

FIGURE 36.

DASHED LINES = SHIFTED GRID
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SOLID LINES = ORIGINAL GRID
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“The aeronautical and space activities of the United States shall be
conducted so as to contribute . . . to the expansion of buman kuowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof.”

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scieatific and technical information considered
important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of
importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distribu-
tion because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated
under 2 NASA contract or grant and considered an important contribution to
existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign
language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information detived from or of value to NASA
activities. Publications include conference proceedings, monographs, data
compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION PUBLICATIONS: Information on tech-
nology used by NASA that may be of particular interest in commercial and other
non-aerospace applications. Publications include Tech Briefs, Technology
Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546
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