11 research outputs found
Zinc cluster transcription factors frequently activate target genes using a non-canonical half-site binding mode
Gene expression changes are orchestrated by transcription factors (TFs), which bind to DNA to regulate gene expression. It remains surprisingly difficult to predict basic features of the transcriptional process, including in vivo TF occupancy. Existing thermodynamic models of TF function are often not concordant with experimental measurements, suggesting undiscovered biology. Here, we analyzed one of the most well-studied TFs, the yeast zinc cluster Gal4, constructed a Shea-Ackers thermodynamic model to describe its binding, and compared the results of this model to experimentally measured Gal4p binding in vivo. We found that at many promoters, the model predicted no Gal4p binding, yet substantial binding was observed. These outlier promoters lacked canonical binding motifs, and subsequent investigation revealed Gal4p binds unexpectedly to DNA sequences with high densities of its half site (CGG). We confirmed this novel mode of binding through multiple experimental and computational paradigms; we also found most other zinc cluster TFs we tested frequently utilize this binding mode, at 27% of their targets on average. Together, these results demonstrate a novel mode of binding where zinc clusters, the largest class of TFs in yeast, bind DNA sequences with high densities of half sites
Comparing cortical signatures of atrophy between late-onset and autosomal dominant Alzheimer disease
Defining a signature of cortical regions of interest preferentially affected by Alzheimer disease (AD) pathology may offer improved sensitivity to early AD compared to hippocampal volume or mesial temporal lobe alone. Since late-onset Alzheimer disease (LOAD) participants tend to have age-related comorbidities, the younger-onset age in autosomal dominant AD (ADAD) may provide a more idealized model of cortical thinning in AD. To test this, the goals of this study were to compare the degree of overlap between the ADAD and LOAD cortical thinning maps and to evaluate the ability of the ADAD cortical signature regions to predict early pathological changes in cognitively normal individuals. We defined and analyzed the LOAD cortical maps of cortical thickness in 588 participants from the Knight Alzheimer Disease Research Center (Knight ADRC) and the ADAD cortical maps in 269 participants from the Dominantly Inherited Alzheimer Network (DIAN) observational study. Both cohorts were divided into three groups: cognitively normal controls (nADRC = 381; nDIAN = 145), preclinical (nADRC = 153; nDIAN = 76), and cognitively impaired (nADRC = 54; nDIAN = 48). Both cohorts underwent clinical assessments, 3T MRI, and amyloid PET imaging with either 11C-Pittsburgh compound B or 18F-florbetapir. To generate cortical signature maps of cortical thickness, we performed a vertex-wise analysis between the cognitively normal controls and impaired groups within each cohort using six increasingly conservative statistical thresholds to determine significance. The optimal cortical map among the six statistical thresholds was determined from a receiver operating characteristic analysis testing the performance of each map in discriminating between the cognitively normal controls and preclinical groups. We then performed within-cohort and cross-cohort (e.g. ADAD maps evaluated in the Knight ADRC cohort) analyses to examine the sensitivity of the optimal cortical signature maps to the amyloid levels using only the cognitively normal individuals (cognitively normal controls and preclinical groups) in comparison to hippocampal volume. We found the optimal cortical signature maps were sensitive to early increases in amyloid for the asymptomatic individuals within their respective cohorts and were significant beyond the inclusion of hippocampus volume, but the cortical signature maps performed poorly when analyzing across cohorts. These results suggest the cortical signature maps are a useful MRI biomarker of early AD-related neurodegeneration in preclinical individuals and the pattern of decline differs between LOAD and ADAD.Fil: Dincer, Aylin. Washington University in St. Louis; Estados UnidosFil: Gordon, Brian A.. Washington University in St. Louis; Estados UnidosFil: Hari-Raj, Amrita. Ohio State University; Estados UnidosFil: Keefe, Sarah J.. Washington University in St. Louis; Estados UnidosFil: Flores, Shaney. Washington University in St. Louis; Estados UnidosFil: McKay, Nicole S.. Washington University in St. Louis; Estados UnidosFil: Paulick, Angela M.. Washington University in St. Louis; Estados UnidosFil: Shady Lewis, Kristine E.. University of Kentucky; Estados UnidosFil: Feldman, Rebecca L.. Washington University in St. Louis; Estados UnidosFil: Hornbeck, Russ C.. Washington University in St. Louis; Estados UnidosFil: Allegri, Ricardo Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia; ArgentinaFil: Ances, Beau M.. Washington University in St. Louis; Estados UnidosFil: Berman, Sarah B.. University of Pittsburgh; Estados UnidosFil: Brickman, Adam M.. Columbia University; Estados UnidosFil: Brooks, William S.. Neuroscience Research Australia; Australia. University of New South Wales; AustraliaFil: Cash, David M.. UCL Queen Square Institute of Neurology; Reino UnidoFil: Chhatwal, Jasmeer P.. Harvard Medical School; Estados UnidosFil: Farlow, Martin R.. Indiana University; Estados UnidosFil: Fougère, Christian la. German Center for Neurodegenerative Diseases; Alemania. University Hospital of Tübingen; AlemaniaFil: Fox, Nick C.. UCL Queen Square Institute of Neurology; Reino UnidoFil: Fulham, Michael J.. Royal Prince Alfred Hospital; Australia. University of Sydney; AustraliaFil: Jack, Clifford R.. Mayo Clinic; Estados UnidosFil: Joseph-Mathurin, Nelly. Washington University in St. Louis; Estados UnidosFil: Karch, Celeste M.. Washington University in St. Louis; Estados UnidosFil: Lee, Athene. University Brown; Estados UnidosFil: Levin, Johannes. German Center for Neurodegenerative Diseases; Alemania. Ludwig Maximilians Universitat; Alemania. Munich Cluster for Systems Neurology; AlemaniaFil: Masters, Colin L.. University of Melbourne; AustraliaFil: McDade, Eric M.. Washington University in St. Louis; Estados UnidosFil: Oh, Hwamee. University Brown; Estados UnidosFil: Perrin, Richard J.. Washington University in St. Louis; Estados Unido
Comparing cortical signatures of atrophy between late-onset and autosomal dominant Alzheimer disease
Defining a signature of cortical regions of interest preferentially affected by Alzheimer disease (AD) pathology may offer improved sensitivity to early AD compared to hippocampal volume or mesial temporal lobe alone. Since late-onset Alzheimer disease (LOAD) participants tend to have age-related comorbidities, the younger-onset age in autosomal dominant AD (ADAD) may provide a more idealized model of cortical thinning in AD. To test this, the goals of this study were to compare the degree of overlap between the ADAD and LOAD cortical thinning maps and to evaluate the ability of the ADAD cortical signature regions to predict early pathological changes in cognitively normal individuals. We defined and analyzed the LOAD cortical maps of cortical thickness in 588 participants from the Knight Alzheimer Disease Research Center (Knight ADRC) and the ADAD cortical maps in 269 participants from the Dominantly Inherited Alzheimer Network (DIAN) observational study. Both cohorts were divided into three groups: cognitively normal controls (nADRC = 381; nDIAN = 145), preclinical (nADRC = 153; nDIAN = 76), and cognitively impaired (nADRC = 54; nDIAN = 48). Both cohorts underwent clinical assessments, 3T MRI, and amyloid PET imaging with either 11C-Pittsburgh compound B or 18F-florbetapir. To generate cortical signature maps of cortical thickness, we performed a vertex-wise analysis between the cognitively normal controls and impaired groups within each cohort using six increasingly conservative statistical thresholds to determine significance. The optimal cortical map among the six statistical thresholds was determined from a receiver operating characteristic analysis testing the performance of each map in discriminating between the cognitively normal controls and preclinical groups. We then performed within-cohort and cross-cohort (e.g. ADAD maps evaluated in the Knight ADRC cohort) analyses to examine the sensitivity of the optimal cortical signature maps to the amyloid levels using only the cognitively normal individuals (cognitively normal controls and preclinical groups) in comparison to hippocampal volume. We found the optimal cortical signature maps were sensitive to early increases in amyloid for the asymptomatic individuals within their respective cohorts and were significant beyond the inclusion of hippocampus volume, but the cortical signature maps performed poorly when analyzing across cohorts. These results suggest the cortical signature maps are a useful MRI biomarker of early AD-related neurodegeneration in preclinical individuals and the pattern of decline differs between LOAD and ADAD
Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world
Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic.
Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality.
Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States.
Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis.
Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection
Recommended from our members
Comparing cortical signatures of atrophy between late-onset and autosomal dominant Alzheimer disease
Defining a signature of cortical regions of interest preferentially affected by Alzheimer disease (AD) pathology may offer improved sensitivity to early AD compared to hippocampal volume or mesial temporal lobe alone. Since late-onset Alzheimer disease (LOAD) participants tend to have age-related comorbidities, the younger-onset age in autosomal dominant AD (ADAD) may provide a more idealized model of cortical thinning in AD. To test this, the goals of this study were to compare the degree of overlap between the ADAD and LOAD cortical thinning maps and to evaluate the ability of the ADAD cortical signature regions to predict early pathological changes in cognitively normal individuals. We defined and analyzed the LOAD cortical maps of cortical thickness in 588 participants from the Knight Alzheimer Disease Research Center (Knight ADRC) and the ADAD cortical maps in 269 participants from the Dominantly Inherited Alzheimer Network (DIAN) observational study. Both cohorts were divided into three groups: cognitively normal controls (nADRC = 381; nDIAN = 145), preclinical (nADRC = 153; nDIAN = 76), and cognitively impaired (nADRC = 54; nDIAN = 48). Both cohorts underwent clinical assessments, 3T MRI, and amyloid PET imaging with either 11C-Pittsburgh compound B or 18F-florbetapir. To generate cortical signature maps of cortical thickness, we performed a vertex-wise analysis between the cognitively normal controls and impaired groups within each cohort using six increasingly conservative statistical thresholds to determine significance. The optimal cortical map among the six statistical thresholds was determined from a receiver operating characteristic analysis testing the performance of each map in discriminating between the cognitively normal controls and preclinical groups. We then performed within-cohort and cross-cohort (e.g. ADAD maps evaluated in the Knight ADRC cohort) analyses to examine the sensitivity of the optimal cortical signature maps to the amyloid levels using only the cognitively normal individuals (cognitively normal controls and preclinical groups) in comparison to hippocampal volume. We found the optimal cortical signature maps were sensitive to early increases in amyloid for the asymptomatic individuals within their respective cohorts and were significant beyond the inclusion of hippocampus volume, but the cortical signature maps performed poorly when analyzing across cohorts. These results suggest the cortical signature maps are a useful MRI biomarker of early AD-related neurodegeneration in preclinical individuals and the pattern of decline differs between LOAD and ADAD
Brain network decoupling with increased serum neurofilament and reduced cognitive function in Alzheimer’s disease
Neurofilament light chain, a putative measure of neuronal damage, is measurable in blood and cerebrospinal fluid and is predictive of cognitive function in individuals with Alzheimer Disease. There has been limited prior work linking neurofilament light and functional connectivity and no prior work has investigated neurofilament light associations with functional connectivity in autosomal dominant Alzheimer Disease. Here we assessed relationships between blood neurofilament light, cognition, and functional connectivity in a cross-sectional sample of 106 autosomal dominant Alzheimer Disease mutation carriers and 76 non-carriers. We employed an innovative network-level enrichment analysis approach in order to assess connectome-wide associations with neurofilament light. Neurofilament light was positively correlated with deterioration of functional connectivity within the default mode network and negatively correlated with connectivity between default mode network and executive control networks including the cingulo-opercular, salience, and dorsal attention networks. Further, reduced connectivity within the default mode network and between the default mode network and executive control networks was associated with reduced cognitive function. Hierarchical regression analysis revealed that neurofilament levels and functional connectivity within the default mode network and between the default mode network and the dorsal attention network explained significant variance in cognitive composite scores when controlling for age, sex, and education. A mediation analysis demonstrated that functional connectivity within the default mode network and between the default mode network and dorsal attention network partially mediated the relationship between blood neurofilament light levels and cognitive function. Our novel results indicate that blood estimates of neurofilament levels correspond to direct measurements of brain dysfunction, shedding new light on the underlying biological processes of Alzheimer Disease. Further, we demonstrate how variation within key brain systems can partially mediate the negative effects of heighted total serum neurofilament levels, suggesting potential regions for targeted interventions. Finally, our results lend further evidence that low-cost and minimally invasive blood measurements of neurofilament may be a useful marker of brain functional connectivity and cognitive decline in Alzheimer disease
\u3ci\u3eDrosophila\u3c/i\u3e Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution
The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu
Reduction of cardiac imaging tests during the COVID-19 pandemic: The case of Italy. Findings from the IAEA Non-invasive Cardiology Protocol Survey on COVID-19 (INCAPS COVID)
Background: In early 2020, COVID-19 massively hit Italy, earlier and harder than any other European country. This caused a series of strict containment measures, aimed at blocking the spread of the pandemic. Healthcare delivery was also affected when resources were diverted towards care of COVID-19 patients, including intensive care wards. Aim of the study: The aim is assessing the impact of COVID-19 on cardiac imaging in Italy, compare to the Rest of Europe (RoE) and the World (RoW). Methods: A global survey was conducted in May–June 2020 worldwide, through a questionnaire distributed online. The survey covered three periods: March and April 2020, and March 2019. Data from 52 Italian centres, a subset of the 909 participating centres from 108 countries, were analyzed. Results: In Italy, volumes decreased by 67% in March 2020, compared to March 2019, as opposed to a significantly lower decrease (p < 0.001) in RoE and RoW (41% and 40%, respectively). A further decrease from March 2020 to April 2020 summed up to 76% for the North, 77% for the Centre and 86% for the South. When compared to the RoE and RoW, this further decrease from March 2020 to April 2020 in Italy was significantly less (p = 0.005), most likely reflecting the earlier effects of the containment measures in Italy, taken earlier than anywhere else in the West. Conclusions: The COVID-19 pandemic massively hit Italy and caused a disruption of healthcare services, including cardiac imaging studies. This raises concern about the medium- and long-term consequences for the high number of patients who were denied timely diagnoses and the subsequent lifesaving therapies and procedures
Impact of COVID-19 on Diagnostic Cardiac Procedural Volume in Oceania: The IAEA Non-Invasive Cardiology Protocol Survey on COVID-19 (INCAPS COVID)
Objectives: The INCAPS COVID Oceania study aimed to assess the impact caused by the COVID-19 pandemic on cardiac procedure volume provided in the Oceania region. Methods: A retrospective survey was performed comparing procedure volumes within March 2019 (pre-COVID-19) with April 2020 (during first wave of COVID-19 pandemic). Sixty-three (63) health care facilities within Oceania that perform cardiac diagnostic procedures were surveyed, including a mixture of metropolitan and regional, hospital and outpatient, public and private sites, and 846 facilities outside of Oceania. The percentage change in procedure volume was measured between March 2019 and April 2020, compared by test type and by facility. Results: In Oceania, the total cardiac diagnostic procedure volume was reduced by 52.2% from March 2019 to April 2020, compared to a reduction of 75.9% seen in the rest of the world (p<0.001). Within Oceania sites, this reduction varied significantly between procedure types, but not between types of health care facility. All procedure types (other than stress cardiac magnetic resonance [CMR] and positron emission tomography [PET]) saw significant reductions in volume over this time period (p<0.001). In Oceania, transthoracic echocardiography (TTE) decreased by 51.6%, transoesophageal echocardiography (TOE) by 74.0%, and stress tests by 65% overall, which was more pronounced for stress electrocardiograph (ECG) (81.8%) and stress echocardiography (76.7%) compared to stress single-photon emission computerised tomography (SPECT) (44.3%). Invasive coronary angiography decreased by 36.7% in Oceania. Conclusion: A significant reduction in cardiac diagnostic procedure volume was seen across all facility types in Oceania and was likely a function of recommendations from cardiac societies and directives from government to minimise spread of COVID-19 amongst patients and staff. Longer term evaluation is important to assess for negative patient outcomes which may relate to deferral of usual models of care within cardiology