103 research outputs found

    Current challenges in software solutions for mass spectrometry-based quantitative proteomics

    Get PDF
    This work was in part supported by the PRIME-XS project, grant agreement number 262067, funded by the European Union seventh Framework Programme; The Netherlands Proteomics Centre, embedded in The Netherlands Genomics Initiative; The Netherlands Bioinformatics Centre; and the Centre for Biomedical Genetics (to S.C., B.B. and A.J.R.H); by NIH grants NCRR RR001614 and RR019934 (to the UCSF Mass Spectrometry Facility, director: A.L. Burlingame, P.B.); and by grants from the MRC, CR-UK, BBSRC and Barts and the London Charity (to P.C.

    Immunological Molecular Responses of Human Retinal Pigment Epithelial Cells to Infection With Toxoplasma gondii

    Get PDF
    Ocular toxoplasmosis is the commonest clinical manifestation of infection with obligate intracellular parasite, Toxoplasma gondii. Active ocular toxoplasmosis is characterized by replication of T. gondii tachyzoites in the retina, with reactive inflammation. The multifunctional retinal pigment epithelium is a key target cell population for T. gondii. Since the global gene expression profile is germane to understanding molecular involvements of retinal pigment epithelial cells in ocular toxoplasmosis, we performed RNA-Sequencing (RNA-Seq) of human cells following infection with T. gondii tachyzoites. Primary cell isolates from eyes of cadaveric donors (n = 3), and the ARPE-19 human retinal pigment epithelial cell line, were infected for 24 h with GT-1 strain T. gondii tachyzoites (multiplicity of infection = 5) or incubated uninfected as control. Total and small RNA were extracted from cells and sequenced on the Illumina NextSeq 500 platform; results were aligned to the human hg19 reference sequence. Multidimensional scaling showed good separation between transcriptomes of infected and uninfected primary cell isolates, which were compared in edgeR software. This differential expression analysis revealed a sizeable response in the total RNA transcriptome—with significantly differentially expressed genes totaling 7,234 (28.9% of assigned transcripts)—but very limited changes in the small RNA transcriptome—totaling 30 (0.35% of assigned transcripts) and including 8 microRNA. Gene ontology and pathway enrichment analyses of differentially expressed total RNA in CAMERA software, identified a strong immunologic transcriptomic signature. We conducted RT-qPCR for 26 immune response-related protein-coding and long non-coding transcripts in epithelial cell isolates from different cadaveric donors (n = 3), extracted by a different isolation protocol but similarly infected with T. gondii, to confirm immunological activity of infected cells. For microRNA, increases in miR-146b and miR-212 were detected by RT-qPCR in 2 and 3 of these independent cell isolates. Biological network analysis in the InnateDB platform, including 735 annotated differentially expressed genes plus 2,046 first-order interactors, identified 10 contextural hubs and 5 subnetworks in the transcriptomic immune response of cells to T. gondii. Our observations provide a solid base for future studies of molecular and cellular interactions between T. gondii and the human retinal pigment epithelium to illuminate mechanisms of ocular toxoplasmosis

    iQuantitator: A tool for protein expression inference using iTRAQ

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Isobaric Tags for Relative and Absolute Quantitation (iTRAQ™) [Applied Biosystems] have seen increased application in differential protein expression analysis. To facilitate the growing need to analyze iTRAQ data, especially for cases involving multiple iTRAQ experiments, we have developed a modeling approach, statistical methods, and tools for estimating the relative changes in protein expression under various treatments and experimental conditions.</p> <p>Results</p> <p>This modeling approach provides a unified analysis of data from multiple iTRAQ experiments and links the observed quantity (reporter ion peak area) to the experiment design and the calculated quantity of interest (treatment-dependent protein and peptide fold change) through an additive model under log transformation. Others have demonstrated, through a case study, this modeling approach and noted the computational challenges of parameter inference in the unbalanced data set typical of multiple iTRAQ experiments. Here we present the development of an inference approach, based on hierarchical regression with batching of regression coefficients and Markov Chain Monte Carlo (MCMC) methods that overcomes some of these challenges. In addition to our discussion of the underlying method, we also present our implementation of the software, simulation results, experimental results, and sample output from the resulting analysis report.</p> <p>Conclusion</p> <p>iQuantitator's process-based modeling approach overcomes limitations in current methods and allows for application in a variety of experimental designs. Additionally, hypertext-linked documents produced by the tool aid in the interpretation and exploration of results.</p

    Machine Learning for Health: Algorithm Auditing & Quality Control

    Get PDF
    Developers proposing new machine learning for health (ML4H) tools often pledge to match or even surpass the performance of existing tools, yet the reality is usually more complicated. Reliable deployment of ML4H to the real world is challenging as examples from diabetic retinopathy or Covid-19 screening show. We envision an integrated framework of algorithm auditing and quality control that provides a path towards the effective and reliable application of ML systems in healthcare. In this editorial, we give a summary of ongoing work towards that vision and announce a call for participation to the special issue Machine Learning for Health: Algorithm Auditing & Quality Control in this journal to advance the practice of ML4H auditing

    Computational Methods for Protein Identification from Mass Spectrometry Data

    Get PDF
    Protein identification using mass spectrometry is an indispensable computational tool in the life sciences. A dramatic increase in the use of proteomic strategies to understand the biology of living systems generates an ongoing need for more effective, efficient, and accurate computational methods for protein identification. A wide range of computational methods, each with various implementations, are available to complement different proteomic approaches. A solid knowledge of the range of algorithms available and, more critically, the accuracy and effectiveness of these techniques is essential to ensure as many of the proteins as possible, within any particular experiment, are correctly identified. Here, we undertake a systematic review of the currently available methods and algorithms for interpreting, managing, and analyzing biological data associated with protein identification. We summarize the advances in computational solutions as they have responded to corresponding advances in mass spectrometry hardware. The evolution of scoring algorithms and metrics for automated protein identification are also discussed with a focus on the relative performance of different techniques. We also consider the relative advantages and limitations of different techniques in particular biological contexts. Finally, we present our perspective on future developments in the area of computational protein identification by considering the most recent literature on new and promising approaches to the problem as well as identifying areas yet to be explored and the potential application of methods from other areas of computational biology

    Frequency, mutual exclusivity and clinical associations of myositis autoantibodies in a combined European cohort of idiopathic inflammatory myopathy patients

    Get PDF
    Objectives: To determine prevalence and co-existence of myositis specific autoantibodies (MSAs) and myositis associated autoantibodies (MAAs) and associated clinical characteristics in a large cohort of idiopathic inflammatory myopathy (IIM) patients. Methods: Adult patients with confirmed IIM recruited to the EuroMyositis registry (n = 1637) from four centres were investigated for the presence of MSAs/MAAs by radiolabelled-immunoprecipitation, with confirmation of anti-MDA5 and anti-NXP2 by ELISA. Clinical associations for each autoantibody were calculated for 1483 patients with a single or no known autoantibody by global linear regression modelling. Results: MSAs/MAAs were found in 61.5% of patients, with 84.7% of autoantibody positive patients having a sole specificity, and only three cases (0.2%) having more than one MSA. The most frequently detected autoantibody was anti-Jo-1 (18.7%), with a further 21 specificities each found in 0.2–7.9% of patients. Autoantibodies to Mi-2, SAE, TIF1, NXP2, MDA5, PMScl and the non-Jo-1 tRNA-synthetases were strongly associated (p < 0.001) with cutaneous involvement. Anti-TIF1 and anti-Mi-2 positive patients had an increased risk of malignancy (OR 4.67 and 2.50 respectively), and anti-SRP patients had a greater likelihood of cardiac involvement (OR 4.15). Interstitial lung disease was strongly associated with the anti-tRNA synthetases, antiMDA5, and anti-U1RNP/Sm. Overlap disease was strongly associated with anti-PMScl, anti-Ku, anti-U1RNP/Sm and anti-Ro60. Absence of MSA/MAA was negatively associated with extra-muscular manifestations. Conclusions: Myositis autoantibodies are present in the majority of patients with IIM and identify distinct clinical subsets. Furthermore, MSAs are nearly always mutually exclusive endorsing their credentials as valuable disease biomarkers
    corecore