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Abstract
Developers proposing new machine learning for health (ML4H) tools often pledge to match or even surpass the performance 
of existing tools, yet the reality is usually more complicated. Reliable deployment of ML4H to the real world is challeng-
ing as examples from diabetic retinopathy or Covid-19 screening show. We envision an integrated framework of algorithm 
auditing and quality control that provides a path towards the effective and reliable application of ML systems in healthcare. 
In this editorial, we give a summary of ongoing work towards that vision and announce a call for participation to the special 
issue  Machine Learning for Health: Algorithm Auditing & Quality Control in this journal to advance the practice of ML4H 
auditing.
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Introduction

Machine learning (ML) technology promises to automate, 
speed up or improve medical processes. A large number of 
institutions and companies are ambitiously working on ful-
filling this promise spanning tasks such as medical image 
classification [1], segmentation [2] or reconstruction [3], 
protein structure prediction [4] and electrocardiography 
interpretation [5], among others1. However, the deployment 
of machine learning for health (ML4H) tools into real-world 
applications has been slow because existing approval pro-
cesses [6] may not account for the particular failure modes 
and risks that accompany (ML) technology [7–11]. Certain 
changes to image data that may not change the decision of 
a human expert can completely alter the output of an image 
classification [12] or regression [13, 14] model. Model 
performance estimates are often not valid for the types of 
varying input distribution that can occur during real world 

deployment [15–17]. The decision heuristics a model learns 
can differ from the heuristics we may expect a human to 
use [1, 18–20], and model predictions may come with ill-
calibrated statements of confidence [21–23] or no estimate 
of uncertainty altogether [24]. Developers proposing new 
ML4H technologies sometimes promise to match or even 
surpass the performance of existing methods [25] yet the 
reality is often more complicated. Classical ML performance 
evaluation does not automatically translate to clinical utility 
as examples from large diabetic retinopathy projects [26] 
or Covid-19 diagnosis illustrate [27]. The reliable and inte-
grated management of these risks remains an open scientific 
and practical hurdle.

In order to overcome this hurdle, we envision a frame-
work of algorithm auditing and quality control that provides 
a path towards the effective and reliable application of ML 
systems in healthcare. In this editorial we give a brief sum-
mary of ongoing work towards that vision from our open 
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1  The larger machine learning community maintains a good over-
view of tasks, benchmarks and state-of-the-art methods at https://​
paper​swith​code.​com/.
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collective of collaborators. Many of the considerations pre-
sented here originate from a consensus finding effort by the 
International Telecommunication Union (ITU) and World 
Health Organization (WHO) which started in 2018 as the 
Focus Group on Artificial Intelligence for Health (FG-AI4H) 
[28].

We are convinced that success on this path heavily 
depends on practical feedback. Auditing processes that are 
developed on paper have to be put to the test to ensure that 
they translate to utility in the actual auditing practice [29]. 
That is why we are introducing the special issue Machine 
Learning for Health: Algorithm Auditing & Quality Con-
trol in this journal (see the Call for Participation for more 
details2). The special issue will provide a platform for the 
submission, discussion and publication of audit methods and 
reports. The resulting compendium is intended to be a use-
ful resource for users, developers, vendors and auditors of 
ML4H systems to manage and mitigate their particular risks.

ML4H Algorithm Auditing & Quality Control

From a bird’s eye view, many ML tools share a set of core 
components comprising data, an ML-model and its out-
puts, as visualized in Fig. 1A. The typical ML product 
life cycle goes through stages of planning, development, 
validation and, potentially, deployment under appropriate 

monitoring (see Fig. 1B). Feedback loops between stages, 
for example from product validation back to development, 
are commonplace3.

An audit entails a detailed assessment of an ML4H tool 
at one or more of the ML life cycle steps. It can be car-
ried out to anticipate, monitor, or retrospectively review 
operations of the tool [30, 31]. The audit output should 
consist of a comprehensive standardized report that can 
be used by different stakeholders to efficiently communi-
cate the tool’s strengths and limitations [29]. We envision 
a process by which an independent body, for example 
appointed by a government, carries out the audit using the 
methods and tools outlined below. Further, they can also 
be used by manufacturers and researchers themselves to 
carry out internal quality control [32]. In either scenario, 
the assessment is carried out with respect to a dynamic set 
of technical, clinical and regulatory considerations (see 
Fig. 1C) that depend on the concrete ML technology and 
the intended use of the tool. Audit teams should thus com-
prise expertise in all these dimensions and have to be able 
to synthesize related requirements across disciplines. In 
the following, we list a selection of considerations for all 
three of these auditing dimensions, tools that can be used 
to aid the auditing process as well as the role so called 
trial audits can play in advancing ML4H quality control.

Fig. 1   Process overview. A: 
Most ML tools share a set of 
core components compris-
ing data, a ML-model and its 
outputs B: The typical ML 
life cycle goes through stages 
of planning, development, 
validation and, potentially, 
deployment under appropri-
ate monitoring C: An ML4H 
audit is carried out with respect 
to a dynamic set of technical, 
clinical and regulatory con-
siderations that depend on the 
concrete ML technology and the 
intended use of the tool

2  In the supplement and at this address https://​aiaud​it.​org/​joms/

3  Both representations A and B in 1 are high level abstractions. 
A granular taxonomy of ML tools or their life cycles is beyond the 
scope of this editorial. We refer the interested reader to [76] and our 
documentation [45] for an in-depth treatment.
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Auditing Dimensions

The technical validation of an ML4H tool comprises the 
application of data and ML model quality assessment meth-
ods to detect possible failure modes in the model’s behavior. 
These include model-oriented metrics, such as predictive 
performance, robustness [33, 34], interpretability [1, 35], 
disparity [36] or uncertainty [13, 24, 37] but also data-
oriented metrics related to sample size determination [38], 
sparseness [39], bias [40] distribution mismatch [41, 42] and 
label quality [7]. Rigorous statistical analysis of the model 
metrics is a common pitfall in both research and industry, 
and thus plays an important role during technical validation 
[43]. FG-AI4H has formulated a standardized quality assess-
ment framework based on existing good practices [44–46] 
and provides practical guidance and examples for perform-
ing technical validation audits on three ML4H tools [29].

Clinical Evaluation comprises an “ongoing procedure 
to collect, appraise and analyse clinical data pertaining to 
a medical device and to analyse whether there is sufficient 
clinical evidence to confirm compliance with relevant essen-
tial requirements for safety and performance when using the 
device according to the manufacturer’s instructions for use” 
[47]. The EQUATOR-network, including STARD-AI [48], 
CONSORT-AI [49] and SPIRIT-AI [50], as well as differ-
ent scientific journals and associations [51–54], have devel-
oped guidelines for the design, implementation, reporting 
and evaluation of AI interventions in various study designs. 
Key concerns are whether the ML4H tool delivers util-
ity in clinical pathways, how cost-effective the clinician-
tool interaction is [55] and whether it provides the desired 
benefits for the intended users [56]. To demonstrate reli-
able performance, it is important to look beyond common 
machine learning performance statistics such as accuracy 
and to evaluate in addition whether the ML4H tool is suited 
to the clinical setting in which it will be used; for example, 
whether the training and test data represent patient popula-
tions that are similar to the intended use population [7, 57] 
and whether the output translates to medically meaningful 
parameters [58].

Regulatory Assessment comprises the systematic evalu-
ation of ML4H tools with respect to the applicable regula-
tory requirements found in laws (MDR [59], IVDR [60], 21 
CFR [61], among others), to international standards (such 
as IEC 62304 [62], IEC 62366-1 [63] and ISO 14971 [64]), 
to guidelines by regulatory bodies (for example FDA [65], 
IMDRF [66]) or to guidelines and drafts by other organi-
zations (for example AAMI [67] or European Commission 
[68]). Such guidance is of practical concern for stakehold-
ers in the ML4H ecosystem including manufacturers (e.g. 
product managers, developers, developers and data scien-
tists, quality and regulatory affairs managers) and for regula-
tory bodies (authorities, notified bodies). The FG-AI4H has 

identified and critically reviewed general yet fundamental 
regulatory considerations related to ML4H. This overview 
of regulatory considerations assessment have been converted 
into specific and verifiable requirements and subsequently 
published as a comprehensive assessment checklist entitled 
“Good practices for health applications of machine learn-
ing: Considerations for manufacturers and regulators” [45] 
which covers the entire life cycle outlined in 1B at a higher 
resolution. It includes checklist items which should be given 
high priority in the presence of limited time - an important 
practical constraint for real-world audits. Examples and 
comments give further guidance to users. New regulatory 
developments, such as predetermined change control plans 
[69], imply faster software update cycles and potentially 
more frequent audits. Hence, good tooling can become an 
important means to make effective as well as efficient audits 
possible.

Auditing Tools

The auditing process can be supported by appropriate tools 
to make it more targeted and time-efficient. This can include 
process and requirements descriptions, as mentioned above 
[44, 45, 56], which help to manage dynamic workflows that 
may vary by use case and ML technology. It also includes 
reporting templates to present the audit results in a stand-
ardized way for the communication between different stake-
holders. [29, 70]. In addition, the nature of ML4H tools, as 
primarily software that interacts with data, lends itself to 
the application of test automation and simulations for the 
purpose of auditing. This requires software tools which can 
handle custom evaluation scripts, the flexible processing of 
different ML4H model formats and data modalities as well 
as security protocols that protect intellectual property and 
sensitive patient information [71]. We are working with open 
source frameworks such as EvalAI [72] and MLflow [73] to 
develop solutions for automated auditing4, federated auditing 
in remote teams5 and automated report creation. Our first 
demo platform is available via http://​health.​aiaud​it.​org/6 and 
hosted on ITU provisioned infrastructure. While quantita-
tive performance measures can already be provided, it is 
essential to also offer qualitative measures. This is realized 
by requiring the users to fill out a standardized questionnaire 
[74]. Quantitative and qualitative performance results are 
then provided to the users as a comprehensive and standard-
ized report card [70].

4  https://​github.​com/​aiaud​it-​org/​health-​aiaud​it-​public
5  https://​github.​com/​aiaud​it-​org/​amazon-​sagem​aker-​mlflow-​farga​te
6  You are welcome to reach out to any of the contributors https://​
aiaud​it.​org/​contr​ibuto​rs/ for information on how to join the efforts.
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Trial Audits

We are convinced that success on the path towards a frame-
work for algorithm auditing and quality control depends 
heavily on practical feedback. The development and refine-
ment of auditing processes should routinely be accompa-
nied by trial audits. In trial audits, draft processes and stand-
ards are applied to ML4H tools. The purpose of such an 
exercise is to ensure that auditing processes developed on 
paper translate to utility in actual auditing practice [29]. In 
order to facilitate the implementation of trial audits, we are 
introducing the special issue Machine Learning for Health: 
Algorithm Auditing & Quality Control in this journal. We 
welcome contributions pertaining to methods, tools, reports 
or open challenges in ML4H auditing.

Outlook

The materials summarized above bear testimony to the 
initial progress that has been made towards the creation of 
frameworks for ML4H algorithm auditing and quality con-
trol. Nevertheless, new challenges emerge as we collectively 
pull at the complex fabric that ML4H systems are.

From the perspective of technical validation, the iden-
tification of factors which bias or deteriorate algorithmic 
performance is often constrained by the absence of relevant 
metadata. For example, the measurement device types (and 
related acquisition parameters) used to produce the valida-
tion inputs should be available in order to validate if the 
model performance is robust under device type changes. 
This problem can be alleviated by identifying and routinely 
recording this information during data acquisition.

For clinical evaluation, future considerations include 
extending and refining the specific requirements related to 
how the clinical effectiveness of a tool should be monitored 
after implementation of the algorithm and with ongoing 
monitoring [59]. This also requires agreement over the clear 
and clinically useful procedures to obtain ground truth anno-
tations. It might be necessary to refine the ML algorithm to 
the target population, if demographics or clinical character 
are different from training settings or if medical guidelines 
for diagnostics or treatment have changed [75]. Therefore, 
in order for these insights to be effective it is imperative that 
auditors exhibit a solid understanding of the training data, 
ML algorithm, independent test data and evaluation metrics 
specific to the intended use.

A challenge for regulatory assessment is that standardi-
zation organizations, notified bodies and manufacturers 
need to efficiently formulate and parse applicable regula-
tory requirements for each individual ML4H tool. Compre-
hensive assessment checklists [45, 51] can help with that 
task. However, more support is needed in terms of workflow 

management and assisting tools if we consider the limited 
time and budgets which professional auditors have at their 
disposal. Future regulatory checklists should allow for 
interactive selection of use-case specific sub-checklists, an 
automated audit report creation, a issue of standard mini-
mum test cases as well as accompanying glossaries and edu-
cation materials for auditors. We also have to ensure that 
protocols are in place which translate the audit insights to 
actual improvements in the ML4H tool. Managing the risks 
presented by the exciting advances of AI in healthcare is a 
formidable undertaking, but with collaborative pooling of 
expertise and resources we believe we can rise to the task.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10916-​021-​01783-y.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.
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