642 research outputs found

    Bessel beam through a dielectric slab at oblique incidence: the case of total reflection

    Full text link
    The oblique incidence of a Bessel beam on a dielectric slab with refractive index n1 surrounded by a medium of a refractive index n>n1 may be studied simply by expanding the Bessel beam into a set of plane waves forming the same angle with the axis of the beam. In the present paper we examine a Bessel beam that impinges at oblique incidence onto a layer in such a way that each plane-wave component impinges with an angle larger than the critical angle.Comment: 10 pages, 6 figure

    Factors Affecting Students' Performance

    Get PDF
    Determinants of students' performance have been the subject of ongoing debate among educators, academics, and policy makers. There have been many studies that sought to examine this issue and their findings point out to hard work, previous schooling, parents’ education, family income and self motivation as factors that have a significant effect on the students GPA. Most of those studies have focused on students' performance in the U.S. and Europe. However, since cultural differences may play a role in shaping the factors that affect students' performance, it is very important to examine those relevant factors to the UAE society. The aim of this study is to investigate the socio-economic characteristics of students of the College of Business and Economics-UAEU in relation to these students' performance and taking into account variables pertaining to the UAE Society. Using a sample of 864 CBE student and regression analysis, our results show that the most important factor that affects student's performance is the student's competence in English. Besides competence in English, students who participate in class discussion and those on leave outperform other students. The factors that negatively affect student's performance the most are missing too many lectures and living in crowded household. The results also show that non-national students outperform national students and female students outperform their male counterpart.class discussion, competence in English, student performance, socio economic factors

    Propagation of time-truncated Airy-type pulses in media with quadratic and cubic dispersion

    Full text link
    In this paper, we describe analytically the propagation of Airy-type pulses truncated by a finite-time aperture when second and third order dispersion effects are considered. The mathematical method presented here, based on the superposition of exponentially truncated Airy pulses, is very effective, allowing us to avoid the use of time-consuming numerical simulations. We analyze the behavior of the time truncated Ideal-Airy pulse and also the interesting case of a time truncated Airy pulse with a "defect" in its initial profile, which reveals the self-healing property of this kind of pulse solution.Comment: 9 pages. 5 figure

    X-waves Generated at Second Harmonic

    Full text link
    The process of optical frequency doubling can lead, in the undepleted regime, to the generation of a X-wave envelope with group velocity locked to the pump beam. Its parameters and its angular spectrum, are directly related to the zero- and first-order dispersive features of the nonlinear process. This constitutes a novel mechanism for spatio-temporal localization of light.Comment: 11 pages, 1 figure, revised version submitted to Optics Letter

    Superluminal X-shaped beams propagating without distortion along a coaxial guide

    Get PDF
    In a previous paper [Phys. Rev. E64 (2001) 066603; e-print physics/0001039], we showed that localized Superluminal solutions to the Maxwell equations exist, which propagate down (non-evanescence) regions of a metallic cylindrical waveguide. In this paper we construct analogous non-dispersive waves propagating along coaxial cables. Such new solutions, in general, consist in trains of (undistorted) Superluminal "X-shaped" pulses. Particular attention is paid to the construction of finite total energy solutions. Any results of this kind may find application in the other fields in which an essential role is played by a wave-equation (like acoustics, geophysics, etc.). [PACS nos.: 03.50.De; 41.20;Jb; 83.50.Vr; 62.30.+d; 43.60.+d; 91.30.Fn; 04.30.Nk; 42.25.Bs; 46.40.Cd; 52.35.Lv. Keywords: Wave equations; Wave propagation; Localized beams; Superluminal waves; Coaxial cables; Bidirectional decomposition; Bessel beams; X-shaped waves; Maxwell equations; Microwaves; Optics; Special relativity; Coaxial metallic waveguides; Acoustics; Seismology; Mechanical waves; Elastic waves; Guided gravitational waves.]Comment: plain LaTeX file (22 pages), plus 15 figures; in press in Phys. Rev.

    Unified time analysis of photon and (nonrelativistic) particle Tunnelling, and the Superluminal group-velocity problem

    Get PDF
    A unified approach to the time analysis of tunnelling of nonrelativistic particles is presented, in which Time is regarded as a quantum-mechanical observable, canonically conjugated to Energy. The validity of the Hartman effect (independence of the Tunnelling Time of the opaque barrier width, with Superluminal group velocities as a consequence) is verified for ALL the known expressions of the mean tunnelling time. Moreover, the analogy between particle and photon tunnelling is suitably exploited. On the basis of such an analogy, an explanation of some recent microwave and optics experimental results on tunnelling times is proposed. Attention is devoted to some aspects of the causality problem for particle and photon tunnelling.Comment: plain (old) LaTeX; 42 pages; plus figures 1, 2, 3, 4a, 4b, and

    Superluminal Localized Solutions to Maxwell Equations propagating along a waveguide: The finite-energy case

    Get PDF
    In a previous paper of ours [Phys. Rev. E64 (2001) 066603, e-print physics/0001039] we have shown localized (non-evanescent) solutions to Maxwell equations to exist, which propagate without distortion with Superluminal speed along normal-sized waveguides, and consist in trains of "X-shaped" beams. Those solutions possessed therefore infinite energy. In this note we show how to obtain, by contrast, finite-energy solutions, with the same localization and Superluminality properties. [PACS nos.: 41.20.Jb; 03.50.De; 03.30.+p; 84.40.Az; 42.82.Et. Keywords: Wave-guides; Localized solutions to Maxwell equations; Superluminal waves; Bessel beams; Limited-dispersion beams; Finite-energy waves; Electromagnetic wavelets; X-shaped waves; Evanescent waves; Electromagnetism; Microwaves; Optics; Special relativity; Localized acoustic waves; Seismic waves; Mechanical waves; Elastic waves; Guided gravitational waves.]Comment: plain LaTeX file (12 pages), plus 10 figure

    Photon localization barrier can be overcome

    Full text link
    In contradistinction to a widespread belief that the spatial localization of photons is restricted by a power-law falloff of the photon energy density, I.Bialynicki-Birula [Phys. Rev. Lett. 80, 5247 (1998)] has proved that any stronger -- up to an almost exponential -- falloff is allowed. We are showing that for certain specifically designed cylindrical one-photon states the localization is even better in lateral directions. If the photon state is built from the so-called focus wave mode, the falloff in the waist cross-section plane turns out to be quadratically exponential (Gaussian) and such strong localization persists in the course of propagation.Comment: Short communication -- 4 pages, 2 figure

    Concave and Convex photonic Barriers in Gradient Optics

    Get PDF
    Propagation and tunneling of light through photonic barriers formed by thin dielectric films with continuous curvilinear distributions of dielectric susceptibility across the film, are considered. Giant heterogeneity-induced dispersion of these films, both convex and concave, and its influence on their reflectivity and transmittivity are visualized by means of exact analytical solutions of Maxwell equations. Depending on the cut-off frequency of the film, governed by the spatial profile of its refractive index, propagation or tunneling of light through such barriers are examined. Subject to the shape of refractive index profile the group velocities of EM waves in these films are shown to be either increased or deccreased as compared with the homogeneous layers; however, these velocities for both propagation and tunneling regimes remain subluminal. The decisive influence of gradient and curvature of photonic barriers on the efficiency of tunneling is examined by means of generalized Fresnel formulae. Saturation of the phase of the wave tunneling through a stack of such films (Hartman effect), is demonstrated. The evanescent modes in lossy barriers and violation of Hartman effect in this case is discussed

    Aichi Irrigation Project

    Get PDF
    CER58SSK34.September 1959.Includes bibliographical references.Prepared for Erik Floor and Associates, Inc
    corecore