2,581 research outputs found

    Inertial sensor-based knee flexion/extension angle estimation

    Get PDF
    A new method for estimating knee joint flexion/extension angles from segment acceleration and angular velocity data is described. The approach uses a combination of Kalman filters and biomechanical constraints based on anatomical knowledge. In contrast to many recently published methods, the proposed approach does not make use of the earth’s magnetic field and hence is insensitive to the complex field distortions commonly found in modern buildings. The method was validated experimentally by calculating knee angle from measurements taken from two IMUs placed on adjacent body segments. In contrast to many previous studies which have validated their approach during relatively slow activities or over short durations, the performance of the algorithm was evaluated during both walking and running over 5 minute periods. Seven healthy subjects were tested at various speeds from 1 to 5 miles/hour. Errors were estimated by comparing the results against data obtained simultaneously from a 10 camera motion tracking system (Qualysis). The average measurement error ranged from 0.7 degrees for slow walking (1 mph) to 3.4 degrees for running (5mph). The joint constraint used in the IMU analysis was derived from the Qualysis data. Limitations of the method, its clinical application and its possible extension are discussed

    Simulation of the integrated controller of the anti-lock braking system

    Get PDF
    Author name used in this publication: K. W. E. ChengVersion of RecordPublishe

    First-principles thermal equation of state and thermoelasticity of hcp Fe at high pressures

    Full text link
    We investigate the equation of state and elastic properties of hcp iron at high pressures and high temperatures using first principles linear response linear-muffin-tin-orbital method in the generalized-gradient approximation. We calculate the Helmholtz free energy as a function of volume, temperature, and volume-conserving strains, including the electronic excitation contributions from band structures and lattice vibrational contributions from quasi-harmonic lattice dynamics. We perform detailed investigations on the behavior of elastic moduli and equation of state properties as functions of temperature and pressure, including the pressure-volume equation of state, bulk modulus, the thermal expansion coefficient, the Gruneisen ratio, and the shock Hugoniot. Detailed comparison has been made with available experimental measurements and theoretical predictions.Comment: 33 pages, 12 figure

    Viscosity of Hg(0.84)Zn(0.16)Te Pseudobinary Melt

    Get PDF
    An oscillating-cup viscometer was developed to measure viscosity of molten HgZnTe ternary semiconductor alloys. Data were collected for the pseudobinary Hg(0.84)Zn(0.16)Te melt between 770 and 850 C. The kinematic viscosity was found to vary from approximately 1.1 to 1.4 x 10(sup -3)sq cm/s. A slow relaxation phenomena was also observed for temperatures from the melting point of 770 to approx. 800 C. Possible mechanisms for this effect are discussed

    Phase Diagram of HgTe -ZnTe Pseudobinary and Density, Heat Capacity, and Enthalphy of Mixing of Hg(sub 1-x)Zn(sub x)Te Pseudobinary Melts

    Get PDF
    In this article, the solidus temperatures of the Hg(sub 1-x) Zn(sub x)Te pseudobinary phase diagram for several compositions in the low x region were measured by differential thermal analysis and the HgTe-ZnTe pseudobinary phase diagram was constructed. The densities of two HgZnTe melts, x = 0.10 and 0.16, were determined by an in situ pycnometric technique in a transparent furnace over, respectively, 110 and 50 C ranges of temperature. The thermodynamic properties of the melts, such as the heat capacity and enthalpy of mixing, were calculated for temperatures between the liquidus and 1500 C by assuming an associated solution model for the liquid phase

    An architecture for reliable distributed computer-controlled systems

    Get PDF
    In Distributed Computer-Controlled Systems (DCCS), both real-time and reliability requirements are of major concern. Architectures for DCCS must be designed considering the integration of processing nodes and the underlying communication infrastructure. Such integration must be provided by appropriate software support services. In this paper, an architecture for DCCS is presented, its structure is outlined, and the services provided by the support software are presented. These are considered in order to guarantee the real-time and reliability requirements placed by current and future systems

    Bivariate spline interpolation with optimal approximation order

    Get PDF
    Let be a triangulation of some polygonal domain f c R2 and let S9 (A) denote the space of all bivariate polynomial splines of smoothness r and degree q with respect to A. We develop the first Hermite-type interpolation scheme for S9 (A), q >_ 3r + 2, whose approximation error is bounded above by Kh4+i, where h is the maximal diameter of the triangles in A, and the constant K only depends on the smallest angle of the triangulation and is independent of near-degenerate edges and nearsingular vertices. Moreover, the fundamental functions of our scheme are minimally supported and form a locally linearly independent basis for a superspline subspace of Sr, (A). This shows that the optimal approximation order can be achieved by using minimally supported splines. Our method of proof is completely different from the quasi-interpolation techniques for the study of the approximation power of bivariate splines developed in [71 and [181

    Comparative Analyses of Transcriptional Profiles in Mouse Organs Using a Pneumonic Plague Model after Infection with Wild-Type Yersinia pestis CO92 and Its Braun Lipoprotein Mutant

    Get PDF
    We employed Murine GeneChips to delineate the global transcriptional profiles of the livers, lungs, and spleens in a mouse pneumonic plague infection model with wild-type (WT) Y. pestis CO92 and its Braun lipoprotein (Δlpp) mutant with reduced virulence. These organs showed differential transcriptional responses to infection with WT Y. pestis, but the overall host functional processes affected were similar across all three tissues. Gene expression alterations were found in inflammation, cytokine signaling, and apoptotic cell death-associated genes. Comparison of WT and Δlpp mutant-infected mice indicated significant overlap in lipopolysaccharide- (LPS-) associated gene expression, but the absence of Lpp perturbed host cell signaling at critical regulatory junctions resulting in altered immune response and possibly host cell apoptosis. We generated a putative signaling pathway including major inflammatory components that could account for the synergistic action of LPS and Lpp and provided the mechanistic basis of attenuation caused by deletion of the lpp gene from Y. pestis in a mouse model of pneumonic plague

    Labour Market and Social Policy in Italy: Challenges and Changes. Bertelsmann Policy Brief #2016/02

    Get PDF
    vEight years after the outbreak of the financial crisis, Italy has still to cope with and overcome a plethora of economic and social challenges. On top of this, it faces an unfavourable demographic structure and severe disparities between its northern and southern regions. Some promising reforms have recently been enacted, specifically targeting poverty and social exclusion. However, much more remains to be done on the way towards greater economic stability and widely shared prosperity
    corecore