
AN ARCHITECTURE FOR
RELIABLE DISTRIBUTED

COMPUTER-CONTROLLED
SYSTEMS

Lufs Miguel Pinho, Francisco Vasques

In Distributed Computer-Controlled Systems (DCCS), both real­
time and reliability requirements are of major concern.
Architectures for DCCS must be designed considering the
integration of processing nodes and the underlying
communication infrastructure. Such integration must be provided
by appropriate software support services.
In this paper, an architecture for DCCS is presented, its structure
is outlined, and the services provided by the support software are
presented. These are considered in order to guarantee the real­
time and reliability requirements placed by current and fUture
systems.

1. Introduction

Distributed Computer-Controlled Systems (DCCS) are increasingly used in the
industrial environment, where computer systems are expected to perform correctly,
even in the presence of faults. The traditional approach to guarantee the
dependability requirements of DCCS is to replicate some of its components, in order
to tolerate individual faults. However, when replicated components are used, there is
the need for reliable and time-bounded communication services. Messages must be
correctly and orderly delivered according to their timing requirements. Therefore, the
full integration of the communication infrastructure with the processing nodes is
required in order to obtain the desired level of confidence in the system.

Using COTS as the systems' building blocks provides a cost-effective solution,
and at the same time allows for an easy upgrade and maintenance of the system.
However, as COTS hardware and software does not usually provide the confidence
level required by reliable real-time applications, reliability requirements must be
guaranteed by a software-based fault-tolerance approach.

The use of COTS components usually implies the use of fail-uncontrolled
components. It is not possible to guarantee fail-silent properties for off-the-shelf

B. Kleinjohann (ed.), Architecture and Design of Distributed Embedded Systems
© Springer Science+Business Media New York 2001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Científico do Instituto Politécnico do Porto

https://core.ac.uk/display/47138564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

44 Architecture and Design of Distributed Embedded Systems

hardware and/or software, as these components usually do not have the required self­
checking mechanisms for detecting faults. Fail-uncontrolled components require the
use of active replication (Powell, 1994), since masking faults in one component
requires the replication of such component in other nodes. Consequently, a COTS­
based system must be able to manage by its own such component replication.

The proposed architecture is targeted to provide a guaranteed (timely and reliable)
execution environment to hard real-time applications. In addition, it is also targeted
to provide the adequate quality of service to soft real-time applications, which must
not interfere with the behaviour of the hard real-time applications. It is not targeted
to safety-critical systems, as these systems require a greater level of dependability
and a more restricted set of failure assumptions (Laprie, 1992).

2. System Architecture

The system architecture (Figure 1) is based on the use of a set of processing nodes,
where distributed hard real-time applications may execute. To ensure the desired
level of reliability to hard real-time applications, specific components of these
applications may be replicated.

Figure 1. System architecture.

Nodes are interconnected by a real-time network, which provides the
communication infrastructure for the hard real-time applications (interconnecting
controllers, sensors and actuators). This real-time network is also intended to support
the replica management mechanisms. At the above level, as there is the need of
interconnection with the upper levels of the DCCS (e.g. for remote access, remote
supervision and/or remote management), there is a general-purpose network
interconnecting some of the DCCS nodes.

2. 1. Node Architecture

Each node (Figure 2) integrates both a hard real-time subsystem (HRTS) and a soft
real-time subsystem (SRTS). The goal of the HRTS is to provide a framework to
support reliable hard real-time applications, which are at the core of the system. The
SRTS provides the interface for the remote supervision management of the DCCS.

An Architecture for Reliable Distributed Computer-Controlled Systems

Figure 2. Node structure.

Genanl&purpoa• network

Lo-r
Reliability

Level

Hlgh•r
R•llablllty

L•vel

Real-Time Netwoi'IC

45

The communication mechanisms between both subsystems must guarantee that
failures in the SRTS (less reliable) do not interfere with the HRTS (concerning its
timing and reliability requirements). Therefore, mechanisms for memory partitioning
must be provided, and the communication mechanisms must guarantee the integrity
of data transferred from the SRTS to the HRTS, by upgrading its confidence level.

The HRTS is responsible for providing a framework for reliable execution of hard
real-time applications. Hence, applications have guaranteed execution resources,
including processing power, memory and communication support. This claims for a
separated real-time communication network for the HRTS, where messages sent
from one node to another are received and processed in a bounded time interval. The
HRTS Support Services are responsible for the real-time communication
management and also provide a transparent framework for the replication of
application components.

The SRTS provides a set of services to support the supervision and management
level of the DCCS. It may provide CORBAIHTTP servers, which can be accessed
using supervision and management tools. At this system level, flexibility is a major
goal, since new services can be created as the system is upgraded.

2.2. Communication Infrastructure

Current work is being performed in order to assess the suitability of the Controller
Area Network (CAN) (ISO, 1993) to act as the real-time network. Although being
originally designed for use within road vehicles, CAN is also being considered for
the automated manufacturing and distributed process control environments (Zuberi
and Shin, 1997). Several studies on how to guarantee the real-time requirements of
messages in CAN networks are available (e.g. (Tindell et al. , 1995)). Nevertheless,
the continuity of service is not fully guaranteed, since it may be disturbed by
temporary periods of network inaccessibility (periods during which stations cannot
communicate with each other, due to the existence of on-going error detection and
recovery mechanisms). A study of the inaccessibility characteristics of CAN
networks has been presented at (Rufino and Verfssimo, 1995), identifying the
duration of its error detection and recovery periods. The integration of the
inaccessibility studies with the timing analysis (Pinho et al., 2000a) indicate that

46 Architecture and Design of Distributed Embedded Systems

CAN presents some problems, as it is not able to provide different integrity levels to
the supported applications. However, it is also perceived that, under an appropriate
set of fault assumptions, it can be used to support reliable real-time DCCS (Pinho et
al., 2000a).

3. Hard Real-Time Subsystem

The HRTS allows real-time applications to be distributed over the nodes of the
system (Figure 3). It is based on the software integration of COTS components, that
is, "replication handled entirely by software using off-the-shelf hardware"
(Guerraoui and Schiper, 1997), rather than building software on top of specialised
hardware.

(Hard .Real-Time Application)

I lc Hard Real-Time Application }

Hard Real-Tune Application)I II
T -. I I I

Rc.:.I-Timc Nc1work.

Figure 3. HATS structure.

The HRTS provides a framework to support hard real-time applications, where
timing requirements are guaranteed through the use of current off-line schedulability
analysis techniques (Response-Time Analysis (Audsley et al., 1993)). A multitasking
environment is provided to support real-time applications, with services for task
communication and synchronisation (including distribution).

One hard real-time application is constituted by several tasks (processing units),
which combined together perform the desired service. In Figure 4, a hard real-time
application is divided in four tasks, which execute in different nodes of the HRTS.
Each node has its own (non-distributed) COTS kernel and hardware, which provides
the desired real-time multitasking support. An additional advantage of using both a
COTS kernel and hardware is that it provides means for the easy upgradability and
portability of the system.

The goal of the HRTS support software (Figure 4) is to provide the distribution
support (including both the application distribution and the replication management)
to hard real-time applications. This module manages the communication between
different nodes, resulting from the replica management, the application distribution
and the interface with the controlled environment.

The HRTS supports the active replication of software with dissimilar task sets in
each node. The reason for allowing dissimilar task sets is twofold. By providing
different execution environments in each node, the tolerance to design faults is
increased, as the probability of the same fault occurring in more than one node
decreases. At the same time, the architecture flexibility is increased, since nodes are
not just duplicates, allowing for a more flexible design of real-time applications.

An Architecture for Reliable Distributed Computer-Controlled Systems 47

Figure 4. Distributed Hard Real-Time Application.

However, multitasking applications with differentiated execution environments
are likely to result in replicated components with non-deterministic executions.
Hence, the HRTS support software provides mechanisms to guarantee deterministic
execution. As these mechanisms need to be time-efficient, they are not based in
replica co-ordination but in the concept of timed messages (Poledna et al., 2000).

A layered approach is provided to the HRTS, in order to simplify the system
development. The HRTS support software (Figure 5) EINBETTENcomprises two
layers:
1. The Communication Manager layer, which is responsible for the reliable and

timely transfer of real-time data;
2. The Replica Manager layer, which is responsible for the transparent

management of the replicated components, in order to not burden the
programmer with explicitly programming of replicate managing mechanisms.

Applications Layer

Figure 5. Hard Real-Time Subsystem layers.

3. 1. Scheduling model

HRTS
suppon
software

The HRTS is intended to support one or more hard real-time applications. Each
application consists of a set of related tasks (t1 •• • t 0), being each task a single
processing unit. Tasks from the same application can be allocated to different nodes,
(distributed environment). In order to use the well-known Response Time Analysis
(Audsley et al, 1993), each task is released only by one invocation event, but can be
released an unbounded number of times. A periodic task is released by the runtime
(temporal invocation), while a sporadic task can be released either by another task or

48 Architecture and Design of Distributed Embedded Systems

by the environment. After being released, a task cannot suspend itself or be blocked
while accessing remote data (external blocking).

Tasks are allowed to communicate with each other either through shared data or
by release event objects. Shared data objects are used for asynchronous data
communication between tasks, while release event objects are used for the release of
sporadic tasks. Tasks are designed as small processing units, which, in each
invocation, read inputs; carry out the processing; and output the results. The goal is
to minimise task interaction, in order to improve the schedulability analysis and
increase the system's efficiency.

As there is no synchronous interaction between tasks, the release of a task cannot
be directly made by other tasks. Thus, sporadic tasks are suspended waiting in a
release event object, which is triggered by waking tasks, whereas the runtime
executive triggers periodic tasks. Internal blocking due to task communication can be
bounded and off-line analysed using Priority Ceiling Protocols (Sha et al., 1990).

3.2. Replication Model

As there is the target of reliability through replication, it is important to devise which
is the replication unit (that is, the smaller replication entity). Therefore, the notion of
component is introduced. Applications are divided in components, each one being a
set of tasks and resources that interact to perform a common job. The component can
include tasks and resources from several nodes, or it can be located in just one node.
In each node, several components may coexist. As an example, Figure 6 shows a
real-time application with 4 tasks (t~> t 2, t 3 and t 4) divided in two different
components. Component C1 encompasses tasks t 1 (node 1) and t 2 (node 2). Its
replica encompasses tasks t 1' (node 3) and t 2' (node 5). Component C2 encompasses
tasks t 3 (node 2) and t 4 (node 3), while its replica encompasses tasks t 3' (node 4) and
t 4 ' (node 5).

r,-------------· r----------------------~
l/f.J KJ l !lfll ____ ~'~ ______ f!JJ_j
-c:,------~~~~~~---0 ____ , c'

:,_liil_--_fi!l_ :, : liJ.n n l!!J-:
: ----- -~

I I I I I

Figure 6. Replicated Hard real-time application.

A similar concept to the component can be found in the notion of "capsules" of
the Delta-4 architecture (Powell, 1991). As the component, a Delta-4 "capsule" is the
unit of replication, embodying a set of tasks (referred as threads) and objects.
However, a "capsule" has its own thread scheduling and separated memory space,
and is also the unit of distribution. Thus, the Delta-4 concept of "capsule" is more
related to Unix processes, whilst the presented component is a more lightweight
concept, which is used to structure replication units.

An Architecture for Reliable Distributed Computer-Controlled Systems 49

By creating components, it is possible to define the replication degree of specific
parts of the application, according to its desired reliability level and the reliability of
its components. The degree of replication of a component is referred as n-replicated
component. In Figure 6, both components C1 and C2 are 2-replicated components.

By replicating components, efficiency decreases as the number of tasks and
messages increases and there is the need for agreement on the output of
computations. Hence, it is possible to trade reliability for efficiency and vice-versa.
Although efficiency should not be regarded as the goal of a reliable system, it can be
increased by means of decreasing the degree of redundancy of more reliable
components (if this assumption can be guaranteed).

The component is the fault-containment unit. Faults in one task may produce the
failure of the component. However, if a replica of the component fails, the
application will not fail, since the output consolidation will mask the failed replica.
Therefore, in the model of replication, the outputs of internal tasks (within a
component) do not need to be agreed. The output consolidation is only needed when
results are made available to other components or to the controlled system. As can be
seen in Figure 7, several possibilities exist for the configuration of an application.
The first part of the Figure shows the same configuration presented in Figure 6,
while in the second part there is a solution where the application is divided in three
components and only component C2 is replicated. The double arrows indicate
communication between different components, thus communication needing
consolidated data.

('; .

Figure 7. Examples of application configuration.

Note that the second solution is more efficient, as there are only two more tasks
than the strictly needed by the application. However, the reliability assumption of
both the sensor and components C1 and C3 (and the nodes where they execute) must
be higher than in the previous solution, as they are not replicated.

There is the need to guarantee that replicas execute deterministically, that is,
replicated tasks execute with the same data and timing-related decisions are the same
in each replica. This determinism can be achieved restricting the application from
using timing non-deterministic mechanisms. However, the use of multitasking would

50 Architecture and Design of Distributed Embedded Systems

not be possible, since task synchronisation and communication mechanisms
inherently lead to timing non-determinism. The use of timed messages (Poledna et
al., 2000) allows a restricted model of multitasking to be used and at the same time
eliminates the need for agreement between the internal tasks of each component.
With timed messages, agreement is only needed to guarantee that all replicated
components work with the same input values and that they all vote on the final
output. The use of timed messages implies the use of appropriate clock
synchronisation algorithms, since there is the need of clocks with a bounded
difference.

3.3. HRTS Replica Manager

The goal of the Replica Manager layer is to provide hard real-time applications with
the set of resources required for communication between distributed tasks and
between replicated components. In the HRTS, tasks communicate with each other by
using shared data and the release of event objects. However, these mechanisms must
be different when they are used for intra-component communication or for inter­
component communication. In addition, there is also the difference when
communication is due to distribution or it is due to the replication mechanisms.

If precedence relations exist between tasks, the communication mechanisms can
be simplified, since these precedence relations guarantee de:erministic execution
(Wellings et al., 1998). If the receiving task is sporadic and is released by a sending
task, it is guaranteed that, in all replicated components, the replicas of the task will
execute with the same data. The same reasoning can be applied when the receiving
task is periodic with a period related to the period of the sender task.

Although the goal of the replica manager is to transparently manage distribution
and replication, it is considered that a completely transparent use of these
mechanisms may introduce unnecessary overheads, since there are some special
cases that must be considered. Therefore, the application programmer (transparent
approach) does not consider the use of components at the design phase. Later, in a
configuration phase, the system engineer configures the components and its
replication level and allocates the different tasks in the distributed system. In this
phase, the communication streams that need timed messages are identified.
Guidelines for splitting the application in components are to be developed to ease the
job of engineers.

3.4. HRTS Communication Manager

The Communication Manager layer is responsible for providing a reliable and timely
transfer of real-time data. The group communication abstraction is used as the
framework for reliable communication and to support the replica management
(Powell, 1994). In the replication model, a set of replicas from the same component
is referred as a group. The Communication Manager must provide the following set
of mechanisms:

1. I-to-many communication, when a task of a non-replicated component
wishes to disseminate its result to the n input tasks of a n-replicated
component (reliable multicast protocol).

An Architecture for Reliable Distributed Computer-Controlled Systems 51

2. Many-to-1 communication, when an input task of a non-replicated component
receives inputs from an-replicated component (consensus algorithm).

3. Many-to-many communication, when a group of n output tasks of a
n-replicated component disseminates its results to the n input tasks of a n­
replicated component (interactive consistency (Pease et al., 1980) algorithm).

4. 1-to-1 communication, for communication between tasks of the same
component (intra-component communication) or between the output task of a
non-replicated component and the input task of a non-replicated component
(no need for specific algorithms).

The suitability of the CAN protocol for the communication infrastructure is being
studied (Pinho et al., 2000a) (Pinho et al., 2000b). Although current results indicate
that CAN presents some problems as it is not resilient to station errors, it is perceived
that, with the appropriate set of fault assumptions, it can be used as the
communication infrastructure.

3.5. Interconnection with the outside world

The interconnection of the HRTS with the SRTS must provide mechanisms for
transfer of information between both subsystems. Communication from the HRTS to
the SRTS does not present any major problem, since it is assumed that this
information has a higher reliability level. However, if the output to the SRTS comes
from replicated components, appropriate agreement must be performed. Conversely,
the reliability of the data arriving from the SRTS must be increased, in order to
prevent the introduction of erroneous values. Also, if the data is to be provided to
replicated components, reliable communication algorithms must be used to
disseminate this data.

Interconnection with the controlled system is performed through the use of
sensors and actuators. Sensor values can be treated as the output of non-replicated
components and its dissemination must be performed accordingly to the desired
reliability. The time at which the value is valid must be agreed upon. Output to
actuators must also be agreed upon between different replicas. Such agreement may
be made either in the computational system or the actuators may perform themselves
this agreement, by mechanical or electronic voting on the result.

4. Conclusions

In this paper, an architecture for Distributed Computer-Controlled Systems (DCCS)
is presented. It is targeted to provide a guaranteed (timely and reliable) execution
environment to current and future systems.

The structure of the architecture is presented, together with the guidelines used in
its design, and its scheduling and replication models. The support software, which
provides distribution support (including both the application distribution itself and
the replication management) to hard real-time applications, is also discussed.

52 Architecture and Design of Distributed Embedded Systems

Acknowledgements

The authors would like to thank the anonymous referees for their helpful comments.
This work was partially supported by FLAD (project SISTER 471197), FCT (project
DEAR-COTS 14187/98) and IDMEC.

References

Audsley, N., Burns, A., Richardson, M., Tindell, K and Wellings, A. (1993). "Applying New
Scheduling Theory to Static Priority Pre-emptive Scheduling". In Software Engineering
Journal, Vol. 8, No.5, pp. 285-292.

Guerraoui, R. and Schiper, A. (1997). "Software-Based replication for Fault Tolerance". In
IEEE Computer, April1997, pp. 68-74.

ISO 11898 (1993). Road Vehicle - Interchange of Digital Information - Controller Area
Network (CAN) for High-Speed Communication. ISO.

Laprie, J. L. (1992). Dependability: Basic Concepts and Terminology. Dependable Computing
and Fault-Tolerant Systems, Vol. 5, Springer-Verlag.

Pease, M., Shostak, R. and Lamport, L. (1980). "Reaching Agreement in the presence of
Faults". Journal of the ACM, Vol. 27, N. 2, pp 228-234.

Pinho, L. M., Vasques, F. and Tovar, E. (2000a) "Integrating Inaccessibility in Response Time
Analysis of CAN Networks". In Proceedings of the 3rd IEEE International Workshop on
Factory Communication Systems, Porto, Portugal, pp. 77-84.

Pinho, L., Vasques, F. and Ferreira, L. (2000b) "Programming Atomic Multicasts in CAN", In
Proc. of the Idh International Real-Time Ada Workshop, ACM, Ada Letters, To Appear

Poledna, S., Bums, A., Wellings, A. and Barrett, P. (2000). "Replica Determinism and
Flexible Scheduling in Hard Real-Time Dependable Systems". In IEEE Transactions on
Computers, Vol. 49, N. 2, pp 100-111.

Powell, D. (Ed.) (1991). Delta-4: A Generic Architecture for Dependable Distributed
Computing. ESPRIT Research Reports, Springer Verlag.

Powell, D. (1994). "Distributed Fault Tolerance- Lessons Learnt from Delta-4". In Hardware
and Software Architectures for Fault Tolerance. Experiences and Perspectives. Banatre,
M. and Lee P. A. (eds.). Lecture Notes in Computer Science 774, Springer-Verlag, 199-
217.

Rufino, J. and Verissimo, P. (1995). "A Study on the Inaccessibility Characteristics of the
Controller Area Network". In Proc. of the 2nd CAN Conference, London, United
Kingdom.

Sha, L., Rajkumar, R. and Lehoczky, J. (1990). "Priority Inheritance Protocols: An Approach
to Real-Time Synchronization". In IEEE Tr. on Computers, Vol. 39, N. 9, pp. 1175-1185.

Tindell, K., Bums, A. and Wellings, A. (1995). "Calculating Controller Area Network (CAN)
Message Response Time". In Control Engineering Practice, Vol. 3, No.8, pp. 1163-1169.

Wellings, A., Beus-Dukic, Lj. and Powell, D. (1998). "Real-Time Scheduling in a Generic
Fault-Tolerant Architecture". In Proc. of the Real-Time Systems Symposium, Madrid,
Spain.

Zuberi, K. and Shin, K. (1997). "Scheduling messages on Controller Area Network for Real­
Time CIM Applications". In IEEE Transactions on Robotics and Automation, Vol. 13, No.
2, pp 310-314.

