4,737 research outputs found
Deflection of Rotating Symmetric Molecules by Inhomogeneous Fields
We consider deflection of rotating symmetric molecules by inhomogeneous
optical and static electric fields, compare results with the case of linear
molecules, and find new singularities in the distribution of the scattering
angle. Scattering of the prolate/oblate molecules is analyzed in detail, and it
is shown that the process can be efficiently controlled by means of short and
strong femtosecond laser pulses. In particular, the angular dispersion of the
deflected molecules may be dramatically reduced by laser-induced molecular
pre-alignment. We first study the problem by using a simple classical model,
and then find similar results by means of more sophisticated methods, including
the formalism of adiabatic invariants and direct numerical simulation of the
Euler-Lagrange equations of motion. The suggested control scheme opens new ways
for many applications involving molecular focusing, guiding, and trapping by
optical and static fields
Electric Deflection of Rotating Molecules
We provide a theory of the deflection of polar and non-polar rotating
molecules by inhomogeneous static electric field. Rainbow-like features in the
angular distribution of the scattered molecules are analyzed in detail.
Furthermore, we demonstrate that one may efficiently control the deflection
process with the help of short and strong femtosecond laser pulses. In
particular the deflection process may by turned-off by a proper excitation, and
the angular dispersion of the deflected molecules can be substantially reduced.
We study the problem both classically and quantum mechanically, taking into
account the effects of strong deflecting field on the molecular rotations. In
both treatments we arrive at the same conclusions. The suggested control scheme
paves the way for many applications involving molecular focusing, guiding, and
trapping by inhomogeneous fields
Controlling Molecular Scattering by Laser-Induced Field-Free Alignment
We consider deflection of polarizable molecules by inhomogeneous optical
fields, and analyze the role of molecular orientation and rotation in the
scattering process. It is shown that molecular rotation induces spectacular
rainbow-like features in the distribution of the scattering angle. Moreover, by
preshaping molecular angular distribution with the help of short and strong
femtosecond laser pulses, one may efficiently control the scattering process,
manipulate the average deflection angle and its distribution, and reduce
substantially the angular dispersion of the deflected molecules. We provide
quantum and classical treatment of the deflection process. The effects of
strong deflecting field on the scattering of rotating molecules are considered
by the means of the adiabatic invariants formalism. This new control scheme
opens new ways for many applications involving molecular focusing, guiding and
trapping by optical and static fields
Maladaptation and the paradox of robustness in evolution
Background. Organisms use a variety of mechanisms to protect themselves
against perturbations. For example, repair mechanisms fix damage, feedback
loops keep homeostatic systems at their setpoints, and biochemical filters
distinguish signal from noise. Such buffering mechanisms are often discussed in
terms of robustness, which may be measured by reduced sensitivity of
performance to perturbations. Methodology/Principal Findings. I use a
mathematical model to analyze the evolutionary dynamics of robustness in order
to understand aspects of organismal design by natural selection. I focus on two
characters: one character performs an adaptive task; the other character
buffers the performance of the first character against perturbations. Increased
perturbations favor enhanced buffering and robustness, which in turn decreases
sensitivity and reduces the intensity of natural selection on the adaptive
character. Reduced selective pressure on the adaptive character often leads to
a less costly, lower performance trait. Conclusions/Significance. The paradox
of robustness arises from evolutionary dynamics: enhanced robustness causes an
evolutionary reduction in the adaptive performance of the target character,
leading to a degree of maladaptation compared to what could be achieved by
natural selection in the absence of robustness mechanisms. Over evolutionary
time, buffering traits may become layered on top of each other, while the
underlying adaptive traits become replaced by cheaper, lower performance
components. The paradox of robustness has widespread implications for
understanding organismal design
Recommended from our members
On the implications of aerosol liquid water and phase separation for modeled organic aerosol mass
Water is an important component of PM2.5 Many traditional SOA species are highly soluble and thus can be considered extractable Water can influence the partitioning of compounds traditionally considered insoluble in models Organic aerosol takes up water according to RH Organic aerosol interacts with inorganic water Deviations in ideality (solubility) must be considered
Geometric phase effects for wavepacket revivals
The study of wavepacket revivals is extended to the case of Hamiltonians
which are made time-dependent through the adiabatic cycling of some parameters.
It is shown that the quantal geometric phase (Berry's phase) causes the revived
packet to be displaced along the classical trajectory, by an amount equal to
the classical geometric phase (Hannay's angle), in one degree of freedom. A
physical example illustrating this effect in three degrees of freedom is
mentioned.Comment: Revtex, 11 pages, no figures
Low-grade pelvic masses with spindle cell and fibroblastic proliferation: a case report
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licens
Randomized clinical trial to evaluate the effect of fecal microbiota transplant for initial Clostridium difficile infection in intestinal microbiome
Objective The aim of this study was to evaluate the impact of fecal donor-unrelated donor mix (FMT-FURM) transplantation as first-line therapy for C. difficile infection (CDI) in intestinal microbiome. Methods We designed an open, two-arm pilot study with oral vancomycin (250mg every 6 h for 10–14 days) or FMT-FURM as treatments for the first CDI episode in hospitalized adult patients in Hospital Universitario “Dr. Jose Eleuterio Gonzalez”. Patients were randomized by a closed envelope method in a 1: 1 ratio to either oral vancomycin or FMT-FURM. CDI resolution was considered when there was a reduction on the Bristol scale of at least 2 points, a reduction of at least 50% in the number of bowel movements, absence of fever, and resolution of abdominal pain (at least two criteria). From each patient, a fecal sample was obtained at days 0, 3, and 7 after treatment. Specimens were cultured to isolate C. difficile, and isolates were characterized by PCR. Susceptibility testing of isolates was performed using the agar dilution method. Fecal samples and FMT-FURM were analyzed by 16S rRNA sequencing. Results We included 19 patients; 10 in the vancomycin arm and 9 in the FMT-FURM arm. However, one of the patients in the vancomycin arm and two patients in the FMT-FURM arm were eliminated. Symptoms resolved in 8/9 patients (88.9%) in the vancomycin group, while symptoms resolved in 4/7 patients (57.1%) after the first FMT-FURM dose (P = 0.26) and in 5/7 patients (71.4%) after the second dose (P = 0.55). During the study, no adverse effects attributable to FMT-FURM were observed in patients. Twelve isolates were recovered, most isolates carried tcdB, tcdA, cdtA, and cdtB, with an 18-bp deletion in tcdC. All isolates were resistant to ciprofloxacin and moxifloxacin but susceptible to metronidazole, linezolid, fidaxomicin, and tetracycline. In the FMT-FURM group, the bacterial composition was dominated by Firmicutes, Bacteroidetes, and Proteobacteria at all-time points and the microbiota were remarkably stable over time. The vancomycin group showed a very different pattern of the microbial composition when comparing to the FMT-FURM group over time. Conclusion The results of this preliminary study showed that FMT-FURM for initial CDI is associated with specific bacterial communities that do not resemble the donors’ sample.Peer reviewedFinal Published versio
Emergence of scale-free leadership structure in social recommender systems
The study of the organization of social networks is important for
understanding of opinion formation, rumor spreading, and the emergence of
trends and fashion. This paper reports empirical analysis of networks extracted
from four leading sites with social functionality (Delicious, Flickr, Twitter
and YouTube) and shows that they all display a scale-free leadership structure.
To reproduce this feature, we propose an adaptive network model driven by
social recommending. Artificial agent-based simulations of this model highlight
a "good get richer" mechanism where users with broad interests and good
judgments are likely to become popular leaders for the others. Simulations also
indicate that the studied social recommendation mechanism can gradually improve
the user experience by adapting to tastes of its users. Finally we outline
implications for real online resource-sharing systems
Genetic Association Analysis Using Sibship Data: A Multilevel Model Approach
Family based association study (FBAS) has the advantages of controlling for population stratification and testing for linkage and association simultaneously. We propose a retrospective multilevel model (rMLM) approach to analyze sibship data by using genotypic information as the dependent variable. Simulated data sets were generated using the simulation of linkage and association (SIMLA) program. We compared rMLM to sib transmission/disequilibrium test (S-TDT), sibling disequilibrium test (SDT), conditional logistic regression (CLR) and generalized estimation equations (GEE) on the measures of power, type I error, estimation bias and standard error. The results indicated that rMLM was a valid test of association in the presence of linkage using sibship data. The advantages of rMLM became more evident when the data contained concordant sibships. Compared to GEE, rMLM had less underestimated odds ratio (OR). Our results support the application of rMLM to detect gene-disease associations using sibship data. However, the risk of increasing type I error rate should be cautioned when there is association without linkage between the disease locus and the genotyped marker
- …