The study of wavepacket revivals is extended to the case of Hamiltonians
which are made time-dependent through the adiabatic cycling of some parameters.
It is shown that the quantal geometric phase (Berry's phase) causes the revived
packet to be displaced along the classical trajectory, by an amount equal to
the classical geometric phase (Hannay's angle), in one degree of freedom. A
physical example illustrating this effect in three degrees of freedom is
mentioned.Comment: Revtex, 11 pages, no figures