140 research outputs found
Environmental product declarations as a data source for the assessment of environmental impacts during the use phase of photovoltaic modules: critical issues and potential
In the context of policies promoting renewable energies for decarbonization, energy transition and the development of energy communities, photovoltaic systems require special attention. Even for these systems, it is legitimate to inquire about the correlation, currently carried out through life cycle analysis, between benefits and environmental impacts. To maintain long-term productivity levels and ensure the proper functioning of the system, maintenance interventions are necessary. While these interventions guarantee performance, they also have repercussions for the environment. This study aims to assess the environmental impacts caused by ordinary and extraordinary maintenance interventions, taking into account specific factors, during the 30-year operational phase. To evaluate these impacts, this study verifies the feasibility of using data from Environmental Product Declaration (EPD) and the Product Category Rules (PCR) as reference. The initial results highlight, on the one hand, among the main issues, the importance that all EPDs attribute to the impacts caused by water consumption during the use phase of the PV modules, and on the other hand, some critical issues mainly due to the lack of data relating to the installation site necessary for the correct planning of maintenance activities. Finally, the study presents some reflections for a potential recalibration of the PCR and their associated EPDs
A SYSTEMS BIOLOGY APPROACH TO STUDY THE DYNAMICS OF MEMBRANE MICRODOMAINS IN MALARIA PARASITES.
In recent years, several computational methods have been developed to predict protein-protein interactions at a genome-wide level. Among them, a Bayesian approach has been proposed to integrate \u201c-omics\u201d data from diverse sources, and reconstruct probabilistic global interactomes.
In order to apply this method to Plasmodium falciparum, the most virulent agent of the human malaria, we generated novel genomic data sets and gene expression profiles. In particular, we performed a re-assessment of the phylogenetic profile method proposing a new strategy to select reference genomes and adopting a novel measure of similarity. We also produced a new set of rosetta stone data on the basis of a large number of non-redundant genomes used as a reference set. Furthermore, diverse transcriptomic data have been organized to obtain gene expression profiles covering the entire intra-erythrocytic Plasmodium life-cycle. All data were then integrated to predict a global P. falciparum protein-protein interaction network. To gain insights on function and dynamics of specialized membrane compartments (lipid rafts), during P. falciparum development, we filtered our global interactome with stage-specific lipid raft proteomic data.
Functional and topological studies of the obtained stage-specific interactomes were undertaken. Our results revealed a conserved subnetwork, the lipid raft \u201cfunctional core\u201d, involved in fundamental parasite processes and dynamic clusters populated of stage-specific proteins, responsible for remodeling of lipid raft organization
Can Nrf2 modulate the development of intestinal fibrosis and cancer in inflammatory bowel disease?
One of the main mechanisms carried out by the cells to counteract several forms of stress is the activation of the nuclear factor erythroid 2-related factor (Nrf2) signaling. Nrf2 signaling controls the expression of many genes through the binding of a specific cis-acting element known as the antioxidant response element (ARE). Activation of Nrf2/ARE signaling can mitigate several pathologic mechanisms associated with an autoimmune response, digestive and metabolic disorders, as well as respiratory, cardiovascular, and neurodegenerative diseases. Indeed, several studies have demonstrated that Nrf2 pathway plays a key role in inflammation and in cancer development in many organs, including the intestine. Nrf2 appears to be involved in inflammatory bowel disease (IBD), an immune-mediated chronic and disabling disease, with a high risk of developing intestinal fibrotic strictures and cancer. Currently, drugs able to increase cytoprotective Nrf2 function are in clinical trials or already being used in clinical practice to reduce the progression of some degenerative conditions. The role of Nrf2 in cancer development and progression is controversial, and drugs able to inhibit abnormal levels of Nrf2 are also under investigation. The goal of this review is to analyze and discuss Nrf2-dependent signals in the initiation and progression of intestinal fibrosis and cancers occurring in IBD
H3 histamine receptor-mediated activation of protein kinase calpha inhibits the growth of cholangiocarcinoma in vitro and in vivo
Histamine regulates functions via four receptors (HRH1, HRH2, HRH3, and HRH4). The D-myo-inositol 1,4,5-trisphosphate (IP(3))/Ca(2+)/protein kinase C (PKC)/mitogen-activated protein kinase pathway regulates cholangiocarcinoma growth. We evaluated the role of HRH3 in the regulation of cholangiocarcinoma growth. Expression of HRH3 in intrahepatic and extrahepatic cell lines, normal cholangiocytes, and human tissue arrays was measured. In Mz-ChA-1 cells stimulated with (R)-(alpha)-(-)-methylhistamine dihydrobromide (RAMH), we measured (a) cell growth, (b) IP(3) and cyclic AMP levels, and (c) phosphorylation of PKC and mitogen-activated protein kinase isoforms. Localization of PKC alpha was visualized by immunofluorescence in cell smears and immunoblotting for PKC alpha in cytosol and membrane fractions. Following knockdown of PKC alpha, Mz-ChA-1 cells were stimulated with RAMH before evaluating cell growth and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation. In vivo experiments were done in BALB/c nude mice. Mice were treated with saline or RAMH for 44 days and tumor volume was measured. Tumors were excised and evaluated for proliferation, apoptosis, and expression of PKC alpha, vascular endothelial growth factor (VEGF)-A, VEGF-C, VEGF receptor 2, and VEGF receptor 3. HRH3 expression was found in all cells. RAMH inhibited the growth of cholangiocarcinoma cells. RAMH increased IP(3) levels and PKC alpha phosphorylation and decreased ERK1/2 phosphorylation. RAMH induced a shift in the localization of PKC alpha expression from the cytosolic domain into the membrane region of Mz-ChA-1 cells. Silencing of PKC alpha prevented RAMH inhibition of Mz-ChA-1 cell growth and ablated RAMH effects on ERK1/2 phosphorylation. In vivo, RAMH decreased tumor growth and expression of VEGF and its receptors; PKC alpha expression was increased. RAMH inhibits cholangiocarcinoma growth by PKC alpha-dependent ERK1/2 dephosphorylation. Modulation of PKC alpha by histamine receptors may be important in regulating cholangiocarcinoma growth. (Mol Cancer Res 2009;7(10):1704-13
PANEV: an R package for a pathway-based network visualization
BACKGROUND: During the last decade, with the aim to solve the challenge of post-genomic and transcriptomic data mining, a plethora of tools have been developed to create, edit and analyze metabolic pathways. In particular, when a complex phenomenon is considered, the creation of a network of multiple interconnected pathways of interest could be useful to investigate the underlying biology and ultimately identify functional candidate genes affecting the trait under investigation. RESULTS: PANEV (PAthway NEtwork Visualizer) is an R package set for gene/pathway-based network visualization. Based on information available on KEGG, it visualizes genes within a network of multiple levels (from 1 to n) of interconnected upstream and downstream pathways. The network graph visualization helps to interpret functional profiles of a cluster of genes. CONCLUSIONS: The suite has no species constraints and it is ready to analyze genomic or transcriptomic outcomes. Users need to supply the list of candidate genes, specify the target pathway(s) and the number of interconnected downstream and upstream pathways (levels) required for the investigation. The package is available at https://github.com/vpalombo/PANEV
plasmodium phylogenetic profile an assessment of a predictive tool for protein protein interactions
Motivations. Prediction of protein-protein interactions (PPIs) is a crucial goal for bioinformatics and the increasing availability of sequenced genomes support this challenge. One of the computational tools mostly used for this aim is the phylogenetic profiling, based on the co-conserved proteins identification by local alignments. The master idea is that co-evolving proteins share the same phylogenetic profile and can be grouped functionally. The field of parasite biology received a powerful improvement from post-genomics data. Several approaches have been utilized to predict PPIs for Plasmodium falciparum, including phylogenetic profiling. In contrast, no information about this is available in the case of Plasmodium berghei, even though for this parasite a huge amount of data is now available especially for mutant phenotypes. Methods. A new strategy has been developed to derive phylogenetic profiling. The critical steps of this strategy are: 1) genomes selection; 2) global vs local alignments comparison; 3) mutual information vs correlation coefficients calculation. Agreeing with specific criteria, 774 reference organisms, on 1133 available on Eggnog database (January 2012), were included in the study, a global alignment algorithm, over the mostly used local one, was used to perform proteins identification across the genomes, the Mutual Information and the Correlation Coefficient were calculated and the results were compared. Escherichia coli K12 before, suitable for the assessment of the method, and P. berghei later, were used as target organisms. Results. This analysis offers a new bioinformatical strategy to derive phylogenetic profile of an organism, highlighting on guidelines for the genomes selection, on the performance of different alignment algorithms and mathematical procedures. Moreover, strongly improve the knowledge about P. berghei and offers a new tool for evolution understanding and functional grouping of the proteins of this important biological model
A systematic review of studies on fine and coarse root traits measurement: towards the enhancement of urban forests monitoring and management
The analysis of fine and coarse roots' functional traits has the potential to reveal the performance of the root system, which is pivotal in tree growth, development, and failure in both natural and urban forest ecosystems. Furthermore, root traits may be a powerful indicator of tree resilience mechanisms. However, due to the inherent difficulties in measuring 'the hidden half,' and despite the recent advancements, the relationships among root functional traits and biotic and abiotic drivers still suffer from a lack of information. Thus, our study aimed to evidence knowledge milestones and gaps and to categorize, discuss, and suggest future directions for effective experimental designs in fine and coarse root studies. To this end, we conducted a systematic literature review supported by backward manual referencing based on 55 root functional traits and 136 plant species potentially suitable for afforestation and reforestation of natural and urban forest ecosystems. The majority of the 168 papers on fine and coarse root studies selected in our review focused predominantly on European natural contexts for a few plant species, such as Fagus sylvatica, Picea abies, Pinus sylvestris, and Pinus cembra, and root functional traits such as standing biomass, phenology production, turnover rate, and non-structural carbohydrates (NSC). Additionally, the analyzed studies frequently lack information and uniformity in experimental designs, measurements, and statistical analysis, highlighting the difficult integration and comparison of outcomes derived from different experiments and sites. Moreover, no information has been detected in selected literature about urban forest ecosystems, while most of the studies focus on natural forests. These biases observed during our literature analysis led us to give key indications for future experiment designs with fine and coarse roots involved, which may contribute to the building up of common protocols to boost the monitoring, managing, and planning of afforestation and reforestation projects
Meristematic connectome: A cellular coordinator of plant responses to environmental signals?
Mechanical stress in tree roots induces the production of reaction wood (RW) and the formation of new branch roots, both functioning to avoid anchorage failure and limb damage. The vascular cambium (VC) is the factor responsible for the onset of these responses as shown by their occurrence when all primary tissues and the root tips are removed. The data presented confirm that the VC is able to evaluate both the direction and magnitude of the mechanical forces experienced before coordinating the most fitting responses along the root axis whenever and wherever these are necessary. The coordination of these responses requires intense crosstalk between meristematic cells of the VC which may be very distant from the place where the mechanical stress is first detected. Signaling could be facilitated through plasmodesmata between meristematic cells. The mechanism of RW production also seems to be well conserved in the stem and this fact suggests that the VC could behave as a single structure spread along the plant body axis as a means to control the relationship between the plant and its environment. The observation that there are numerous morphological and functional similarities between different meristems and that some important regulatory mechanisms of meristem activity, such as homeostasis, are common to several meristems, supports the hypothesis that not only the VC but all apical, primary and secondary meristems present in the plant body behave as a single interconnected structure. We propose to name this structure \u201cmeristematic connectome\u201d given the possibility that the sequence of meristems from root apex to shoot apex could represent a pluricellular network that facilitates long-distance signaling in the plant body. The possibility that the \u201cmeristematic connectome\u201d could act as a single structure active in adjusting the plant body to its surrounding environment throughout the life of a plant is now proposed
The antiinflammatory and antifibrotic effect of olive phenols and Lactiplantibacillus plantarum IMC513 in dextran sodium sulfate–induced chronic colitis
After a chronic intestinal injury, several intestinal cells switch their phenotype to activated myofi- broblasts, which in turn release an abnormal amount of extracellular matrix proteins, leading to the onset of the fibrotic process. To date, no resolutive pharmacological treatments are available, and the identification of new therapeutic approaches represents a crucial goal to achieve. The onset, maintenance, and progression of inflammatory bowel disease are related to abnormal intestinal immune responses to environmental factors, including diet and intestinal microflora components. This study aimed to evaluate the potential antiinflam- matory and antifibrotic effect of a biologically debittered olive cream and its probiotic oral administration in an experimental model of dextran sodium sulfate (DSS)induced chronic colitis.
Methods: Chronic colitis was induced in mice by three cycles of oral administration of 2.5% DSS (5 d of DSS followed by 7 d of tap water). Mice were randomly divided into five groups: 10 control mice fed with stan- dard diet (SD), 20 mice receiving SD and DSS (SD+DSS), 20 mice receiving an enriched diet (ED) with olive cream and DSS (ED+DSS), 20 mice receiving SD plus probiotics (PB; Lactiplantibacillus plantarum IMC513) and DSS (SD+PB+DSS), and 20 mice receiving ED plus PB and DSS (ED+ PB+DSS). Clinical features and large bowel macroscopic, histologic, and immunohistochemical findings were evaluated.
Results: The simultaneous administration of ED and PB induced a significant reduction in macroscopic and microscopic colitis scores compared with the other DSS-treated groups. In addition, ED and PB led to a signif- icant decrease in the expression of inflammatory cytokines and profibrotic molecules.
Conclusions: The concomitant oral administration of a diet enriched with biologically debittered olive cream and a specific probiotic strain (Lactiplantibacillus plantarum IMC513) can exert synergistic antiinflammatory and antifibrotic action in DSS-induced chronic colitis. Further studies are needed to define the cellular and molecular mechanisms modulated by olive cream compounds and by Lactiplantibacillus plantarum IMC513
Cyclin D1 silencing suppresses tumorigenicity, impairs DNA double strand break repair and thus radiosensitizes androgenindependent prostate cancer cells to DNA damage.
Patients with hormone-resistant prostate cancer (PCa) have higher biochemical failure rates following radiation therapy (RT). Cyclin D1 deregulated expression in PCa is associated with a more aggressive disease: however its role in radioresistance has not been determined. Cyclin D1 levels in the androgen-independent PC3 and 22Rv1 PCa cells were stably inhibited by infecting with cyclin D1-shRNA. Tumorigenicity and radiosensitivity were investigated using in vitro and in vivo experimental assays. Cyclin D1 silencing interfered with PCa oncogenic phenotype by inducing growth arrest in the G1 phase of cell cycle and reducing soft agar colony formation, migration, invasion in vitro and tumor formation and neo-angiogenesis in vivo. Depletion of cyclin D1 significantly radiosensitizes PCa cells by increasing the RT-induced DNA damages by affecting the NHEJ and HR pathways responsible of the DNA double-strand break repair. Following treatment of cells with RT the abundance of a biomarker of DNA damage, γ-H2AX, was dramatically increased in sh-cyclin D1 treated cells compared to shRNA control. Concordant with these observations DNA-PKcs-activation and RAD51-accumulation, part of the DNA double-strand break repair machinery, were reduced in shRNA-cyclin D1 treated cells compared to shRNA control. We further demonstrate the physical interaction between CCND1 with activated-ATM, -DNA-PKcs and RAD51 is enhanced by RT. Finally, siRNA-mediated silencing experiments indicated DNA-PKcs and RAD51 are downstream targets of CCND1-mediated PCa cells radioresistance. In summary, these observations suggest that CCND1 is a key mediator of PCa radioresistance and could represent a potential target for radioresistent hormone-resistant PCa
- …