47 research outputs found

    ChemInform Abstract: BiOI Solar Cells.

    No full text

    Photoactivated Fuel Cells (PhotoFuelCells). An alternative source of renewable energy with environmental benefits

    No full text
    This work is a short review of Photoactivated Fuel Cells, that is, photoelectrochemical cells which consume an organic or inorganic fuel to produce renewable electricity or hydrogen. The work presents the basic features of photoactivated fuel cells, their modes of operation, the materials, which are frequently used for their construction and some ideas of cell design both for electricity and solar hydrogen production. Water splitting is treated as a special case of photoactivated fuel cell operation

    Study of photo-fuel cells for solar energy production consuming organic or inorganic wastes

    No full text
    The aim of this study was the photoelectrochemical production of electricity and hydrogen using Photo-fuel cells. Photo-fuel cells are basically photoelectrochemical cells which can be used as an alternative way to convert solar energy into useful forms of energy photo-degrading simultaneously organic or inorganic wastes which are used as sacrificial agents. The basic configuration of such a cell comprises of a photoanode which is a light-absorbing semiconductor electrode and of a counter electrode in which an electrocatalyst is deposited. The two electrodes are immersed in an aqueous electrolyte solution which contains the sacrificial agent and are connected through an external circuit. When the photoanode is irradiated with photons that have energy equal to or higher than the band gap of the semiconductor, electron-hole pairs are created. The photo-generated holes in the valence band diffuse to the semiconductor-electrolyte interface where they oxidize the sacrificial agent, while the electrons are transferred through the external electrical circuit to the counter electrode and they take part in reduction reactions. In the case of Photo-fuel cells using organic sacrificial agents, ethanol was studied as a representative example of alcohols that can be found in different kind of wastes and biomass by-products. TiO2 was used as photo-anode both sensitized and non-sensitized in the visible spectrum with different kind of quantum dots. Also, alternative electrocatalysts were studied in order to subsistute platinum.Apart from the different kind of organic sacrificial agents, there are also inorganic coumpounds that can be used as very efficient hole acceptors, enabling the effective separation of the charge carriers. In the present study, two different sulfur mixtures were used (S/Na2S and Na2S/Na2SO3), high amounts of which are released from fossil fuel processing. In the first case, only electricity production was studied due to the fact that the photoelectrocatalytic efficiency of H2 production is very low in solutions containing only sulfide ions. This is attributed to the formation of disulfide ions, S2- which exhibit a less negative reduction potential than protons. In the case of Na2S/Na2SO3 mixture, both photoelectrochemical electricity and hydrogen production were studied. TiO2 was again used as photo-anode combined with different quantum dots whereas in that case metal sulfides (CuS, CoS, Cu2S) were studied as electrocatalysts because platinum is unstable and increases the charge carrier transfer resistance in the presence of sulfur mixtures.Finally, for the photoelectrochemical production of hydrogen, in addition to TiO2, WO3 and BiVO4 were synthesized and studied as well. These materials are medium band gap semiconductors which exhibit better photocatalytic activity than titania due to their visible light absorption.Το αντικείμενο της παρούσας διατριβής είναι η φωτοηλεκτροχημική παραγωγή ηλεκτρικού ρεύματος και υδρογόνου με χρήση φωτοστοιχείων καυσίμου. Τα φωτοστοιχεία καυσίμου είναι φωτοηλεκτροχημικά κελιά τα οποία αποτελούν έναν εναλλακτικό τρόπο μετατροπής της ηλιακής ενέργειας σε χρήσιμες μορφές ενέργειας, με παράλληλη κατανάλωση και αποδόμηση διαφόρων ειδών οργανικών ή ανόργανων ρύπων που χρησιμοποιούνται ως θυσιαζόμενες ενώσεις. Ένα φωτοστοιχείο καυσίμου αποτελείται από το ηλεκτρόδιο της ανόδου στο οποίο εναποτίθεται ένας νανοδομημένος ημιαγωγός που δρα ως φωτοκαταλύτης και το αντιηλεκτρόδιο στο οποίο εναποτίθεται ο ηλεκτροκαταλύτης. Τα δύο αυτά ηλεκτρόδια είναι βυθισμένα σε ένα διάλυμα ηλεκτρολύτη στο οποίο προστίθεται η θυσιαζόμενη ένωση και συνδέονται μεταξύ τους μέσω εξωτερικού ηλεκτρικού κυκλώματος. Φωτόνια με ενέργεια υψηλότερη από το ενεργειακό χάσμα του ημιαγωγού της φωτοανόδου, απορροφώνται από τον ημιαγωγό και μετατρέπονται σε ζεύγη ηλεκτρονίων-οπών. Στη συνέχεια, οι φωτοπαραγόμενες οπές στη ζώνη σθένους, κινούνται προς τη διεπιφάνεια ημιαγωγού/ηλεκτρολύτη όπου συμμετέχουν σε αντιδράσεις οξείδωσης των θυσιαζόμενων ενώσεων, ενώ τα ηλεκτρόνια μεταφέρονται μέσω του εξωτερικού κυκλώματος στο αντιηλεκτρόδιο όπου και συμμετέχουν σε αναγωγικές αντιδράσεις. Στα φωτοστοιχεία καυσίμου τα οποία περιείχαν οργανική θυσιαζόμενη ένωση χρησιμοποιήθηκε η αιθανόλη, ως αντιπροσωπευτικό δείγμα αλκοολών που μπορούν να βρεθούν σε διάφορα είδη αποβλήτων και παραπροϊόντων βιομάζας. Ως φωτοκαταλύτης χρησιμοποιήθηκε το TiO2¬ φωτοευαισθητοποιημένο ή μη με διαφορετικά είδη κβαντικών τελειών ενώ έγινε επίσης μελέτη διαφορετικών ηλεκτροκαταλυτών με στόχο την αντικατάσταση του λευκόχρυσου. Εκτός από τις διάφορες κατηγορίες οργανικών ενώσεων που μπορούν να δράσουν ως θυσιαζόμενες ενώσεις σε ένα φωτοστοιχείο καυσίμου, υπάρχουν και ανόργανες ενώσεις που μπορούν να λειτουργήσουν ως αποτελεσματικοί δέκτες οπών και να ευνοήσουν το διαχωρισμό των φορέων φορτίου. Σε αυτή την περίπτωση, χρησιμοποιήθηκαν δύο διαφορετικά μίγματα θείου (S/Na2S και Na2S/Na2SO3) τα οποία είναι παραπροϊόντα της επεξεργασίας ορυκτών καυσίμων. Στην πρώτη περίπτωση, η μελέτη βασίστηκε μόνο στην παραγωγή ηλεκτρικού ρεύματος καθώς η χρήση μίγματος S/Na2S οδηγεί στη δημιουργία ιόντων S22- η αναγωγή των οποίων ανταγωνίζεται την αναγωγή των υδρογονοκατιόντων με αποτέλεσμα να μην ευνοείται ο σχηματισμός αερίου υδρογόνου. Αντίθετα, στην περίπτωση της χρήσης ηλεκτρολύτη που περιείχε Na2S/Na2SO3 μελετήθηκε τόσο η παραγωγή ηλεκτρικού ρεύματος όσο και η παραγωγή υδρογόνου. Ως φωτοάνοδος χρησιμοποιήθηκε το TiO2 συνδυασμένο με διαφορετικά είδη κβαντικών τελειών ενώ οι ηλεκτροκαταλύτες που μελετήθηκαν ήταν κυρίως θειούχα μέταλλα (CuS, CoS, Cu2S) καθώς ο λευκόχρυσος δεν είναι σταθερός σε θειούχους ηλεκτρολύτες και αυξάνει την αντίσταση μεταφοράς φορτίου.Επίσης, στα πλαίσια μελέτης της φωτοηλεκτροχημικής παραγωγής υδρογόνου, εκτός από το TiO2 έγινε σύνθεση και μελέτη των WO¬3 και BiVO4. Τα δύο αυτά υλικά είναι ημιαγωγοί μεσαίου ενεργειακού χάσματος και πλεονεκτούν έναντι της τιτάνιας καθώς εμφανίζουν απορρόφηση στην ορατή περιοχή του φάσματος

    Studying the Formation of Biofilms on Supports with Different Polarity and Their Efficiency to Treat Wastewater

    Get PDF
    The main objective of this study was the evaluation of biofilm formation onto different supports and of biofilm efficiency to treat wastewater. Two different reactors were used, one with porous polyvinyl alcohol gel (PVA) biocarrier and another with a high-density polyethylene (PE) biocarrier. The reactor performance was evaluated and the biofilm formed was analyzed with potentiometric mass titrations. The biofilm formation was monitored with diffuse reflectance spectroscopy. The presence of the support did not alter the nature of the biofilm. However, the quantity of the biofilm formed was higher when polar surface groups were present on the support

    Photocatalysis for Renewable Energy Production Using PhotoFuelCells

    No full text
    The present work is a short review of our recent studies on PhotoFuelCells, that is, photoelectrochemical cells which consume a fuel to produce electricity or hydrogen, and presents some unpublished data concerning both electricity and hydrogen production. PhotoFuelCells have been constructed using nanoparticulate titania photoanodes and various cathode electrodes bearing a few different types of electrocatalyst. In the case where the cell functioned with an aerated cathode, the cathode electrode was made of carbon cloth carrying a carbon paste made of carbon black and dispersed Pt nanoparticles. When the cell was operated in the absence of oxygen, the electrocatalyst was deposited on an FTO slide using a special commercial carbon paste, which was again enriched with Pt nanoparticles. Mixing of Pt with carbon paste decreased the quantity of Pt necessary to act as electrocatalyst. PhotoFuelCells can produce electricity without bias and with relatively high open-circuit voltage when they function in the presence of fuel and with an aerated cathode. In that case, titania can be sensitized in the visible region by CdS quantum dots. In the present work, CdS was deposited by the SILAR method. Other metal chalcogenides are not functional as sensitizers because the combined photoanode in their presence does not have enough oxidative power to oxidize the fuel. Concerning hydrogen production, it was found that it is difficult to produce hydrogen in an alkaline environment even under bias, however, this is still possible if losses are minimized. One way to limit losses is to short-circuit anode and cathode electrode and put them close together. This is achieved in the “photoelectrocatalytic leaf”, which was presently demonstrated capable of producing hydrogen even in a strongly alkaline environment

    Toward Activity Origin of Electrocatalytic Hydrogen Evolution Reaction on Carbon-Rich Crystalline Coordination Polymers

    No full text
    The fundamental understanding of electrocatalytic active sites for hydrogen evolution reaction (HER) is significantly important for the development of metal complex involved carbon electrocatalysts with low kinetic barrier. Here, the MSxNy (M = Fe, Co, and Ni, x/y are 2/2, 0/4, and 4/0, respectively) active centers are immobilized into ladder-type, highly crystalline coordination polymers as model carbon-rich electrocatalysts for H-2 generation in acid solution. The electrocatalytic HER tests reveal that the coordination of metal, sulfur, and nitrogen synergistically facilitates the hydrogen ad-/desorption on MSxNy catalysts, leading to enhanced HER kinetics. Toward the activity origin of MS2N2, the experimental and theoretical results disclose that the metal atoms are preferentially protonated and then the production of H-2 is favored on the MN active sites after a heterocoupling step involving a N-bound proton and a metal-bound hydride. Moreover, the tuning of the metal centers in MS2N2 leads to the HER performance in the order of FeS2N2 > CoS2N2 > NiS2N2. Thus, the understanding of the catalytic active sites provides strategies for the enhancement of the electrocatalytic activity by tailoring the ligands and metal centers to the desired function
    corecore