505 research outputs found

    Performance of Kramers–Kronig Receivers in the Presence of Local Oscillator Relative Intensity Noise

    Get PDF
    There is increasing interest in low-complexity coherent optical transceivers for the use in short-reach fiber links. Amongst the simplest configurations is the heterodyne coherent receiver, using a 3-dB coupler to combine the signal with the local oscillator (LO) laser output, and a single photodiode for detection of each polarization. In this paper, through numerical simulations, we investigate the impact of signal–signal beating interference (SSBI) and LO relative intensity noise (RIN) on the performance of such coherent transceivers. We assess the performance of two methods to mitigate the SSBI: first, the use of high LO laser power, and second, the application of digital signal processing-based receiver linearization, specifically, the Kramers–Kronig (KK) scheme. The results indicate that, in the case of a RIN-free LO laser, a strong LO is effective in mitigating SSBI and achieves a similar performance to that of the KK algorithm. However, the required increase in LO-to-signal power ratio (LOSPR) is significant. For example, a 20 dB higher optimum LOSPR was observed in the 28 Gbaud dual polarization 16 QAM system at an optical signal-to-noise power ratio of 22 dB. The drawback of using such a high LOSPR is the increased penalty due to RIN-LO beating terms, which we next investigated. The lower optimum LOSPR and, consequently, the lower impact of LO RIN on the performance of the KK receiver lead to a reduction in the pre-FEC BER by over an order of magnitude for LO RIN levels above −140 dBc/Hz

    The Relation Between the Surface Brightness and the Diameter for Galactic Supernova Remnants

    Full text link
    In this work, we have constructed a relation between the surface brightness (Σ\Sigma) and diameter (D) of Galactic C- and S-type supernova remnants (SNRs). In order to calibrate the Σ\Sigma-D dependence, we have carefully examined some intrinsic (e.g. explosion energy) and extrinsic (e.g. density of the ambient medium) properties of the remnants and, taking into account also the distance values given in the literature, we have adopted distances for some of the SNRs which have relatively more reliable distance values. These calibrator SNRs are all C- and S-type SNRs, i.e. F-type SNRs (and S-type SNR Cas A which has an exceptionally high surface brightness) are excluded. The Sigma-D relation has 2 slopes with a turning point at D=36.5 pc: Σ\Sigma(at 1 GHz)=8.46.3+19.5^{+19.5}_{-6.3}×1012\times10^{-12} D5.990.33+0.38^{{-5.99}^{+0.38}_{-0.33}} Wm2^{-2}Hz1^{-1}ster1^{-1} (for Σ\Sigma3.7×1021\le3.7\times10^{-21} Wm2^{-2}Hz1^{-1}ster1^{-1} and D\ge36.5 pc) and Σ\Sigma(at 1 GHz)=2.71.4+2.1^{+2.1}_{-1.4}×\times 1017^{-17} D2.470.16+0.20^{{-2.47}^{+0.20}_{-0.16}} Wm2^{-2}Hz1^{-1}ster1^{-1} (for Σ\Sigma>3.7×1021>3.7\times10^{-21} Wm2^{-2}Hz1^{-1}ster1^{-1} and D<<36.5 pc). We discussed the theoretical basis for the Σ\Sigma-D dependence and particularly the reasons for the change in slope of the relation were stated. Added to this, we have shown the dependence between the radio luminosity and the diameter which seems to have a slope close to zero up to about D=36.5 pc. We have also adopted distance and diameter values for all of the observed Galactic SNRs by examining all the available distance values presented in the literature together with the distances found from our Σ\Sigma-D relation.Comment: 45 pages, 2 figures, accepted for publication in Astronomical and Astrophysical Transaction

    Reduced functional measure of cardiovascular reserve predicts admission to critical care unit following kidney transplantation

    Get PDF
    Background: There is currently no effective preoperative assessment for patients undergoing kidney transplantation that is able to identify those at high perioperative risk requiring admission to critical care unit (CCU). We sought to determine if functional measures of cardiovascular reserve, in particular the anaerobic threshold (VO2AT) could identify these patients. Methods: Adult patients were assessed within 4 weeks prior to kidney transplantation in a University hospital with a 37-bed CCU, between April 2010 and June 2012. Cardiopulmonary exercise testing (CPET), echocardiography and arterial applanation tonometry were performed. Results: There were 70 participants (age 41.7614.5 years, 60% male, 91.4% living donor kidney recipients, 23.4% were desensitized). 14 patients (20%) required escalation of care from the ward to CCU following transplantation. Reduced anaerobic threshold (VO2AT) was the most significant predictor, independently (OR = 0.43; 95% CI 0.27–0.68; p,0.001) and in the multivariate logistic regression analysis (adjusted OR = 0.26; 95% CI 0.12–0.59; p = 0.001). The area under the receiveroperating- characteristic curve was 0.93, based on a risk prediction model that incorporated VO2AT, body mass index and desensitization status. Neither echocardiographic nor measures of aortic compliance were significantly associated with CCU admission. Conclusions: To our knowledge, this is the first prospective observational study to demonstrate the usefulness of CPET as a preoperative risk stratification tool for patients undergoing kidney transplantation. The study suggests that VO2AT has the potential to predict perioperative morbidity in kidney transplant recipients

    Expression of basic fibroblast growth factor is associated with poor outcome in non-Hodgkin's lymphoma

    Get PDF
    It is now clear that angiogenesis and angiogenesis factors are important in the pathogenesis of haematological malignancies. High pretreatment levels of serum basic fibroblast growth factor have been shown to be associated with poor prognosis in patients with non-Hodgkin's lymphoma. The aim of this study was to evaluate whether non-Hodgkin's lymphoma cells express basic fibroblast growth factor and/or its receptor (fibroblast growth factor receptor-1) and whether basic fibroblast growth factor expression correlates with basic fibroblast growth factor serum levels, intratumoral microvessel density, and patient outcome. We measured basic fibroblast growth factor by enzyme-linked immunosorbent assay in sera taken from 58 patients with non-Hodgkin's lymphoma before treatment and in 19 of them also after treatment. Pathological specimens at diagnosis were evaluated by immunohistochemistry staining using polyoclonal antibody against factor-VIII-related antigen, basic fibroblast growth factor and fibroblast growth factor receptor-1 to determine the expression of the microvessel count and basic fibroblast growth factor and fibroblast growth factor receptor-1. The lymphoma specimens demonstrated positive staining for basic fibroblast growth factor (in 23%) and fibroblast growth factor receptor-1 (in 58.5%). The patients who expressed basic fibroblast growth factor had a significantly worse progression-free and overall survival than those who did not (P=0.003 and P=0.03 respectively), while patients expressing fibroblast growth factor receptor-1 were less likely to achieve complete remission than those lacking the receptor (33% vs 65% , P=0.047). There was no correlation of basic fibroblast growth factor staining with either serum basic fibroblast growth factor levels or microvessel count. Basic fibroblast growth factor serum levels did not change significantly after treatment These results suggest that non-Hodgkin's lymphoma specimens express basic fibroblast growth factor and its receptor (fibroblast growth factor receptor-1) and this expression is associated with poor patient outcome

    Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019 A Systematic Analysis for the Global Burden of Disease Study 2019

    Get PDF
    Importance The Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019) provided systematic estimates of incidence, morbidity, and mortality to inform local and international efforts toward reducing cancer burden. Objective To estimate cancer burden and trends globally for 204 countries and territories and by Sociodemographic Index (SDI) quintiles from 2010 to 2019. Evidence Review The GBD 2019 estimation methods were used to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life years (DALYs) in 2019 and over the past decade. Estimates are also provided by quintiles of the SDI, a composite measure of educational attainment, income per capita, and total fertility rate for those younger than 25 years. Estimates include 95% uncertainty intervals (UIs). Findings In 2019, there were an estimated 23.6 million (95% UI, 22.2-24.9 million) new cancer cases (17.2 million when excluding nonmelanoma skin cancer) and 10.0 million (95% UI, 9.36-10.6 million) cancer deaths globally, with an estimated 250 million (235-264 million) DALYs due to cancer. Since 2010, these represented a 26.3% (95% UI, 20.3%-32.3%) increase in new cases, a 20.9% (95% UI, 14.2%-27.6%) increase in deaths, and a 16.0% (95% UI, 9.3%-22.8%) increase in DALYs. Among 22 groups of diseases and injuries in the GBD 2019 study, cancer was second only to cardiovascular diseases for the number of deaths, years of life lost, and DALYs globally in 2019. Cancer burden differed across SDI quintiles. The proportion of years lived with disability that contributed to DALYs increased with SDI, ranging from 1.4% (1.1%-1.8%) in the low SDI quintile to 5.7% (4.2%-7.1%) in the high SDI quintile. While the high SDI quintile had the highest number of new cases in 2019, the middle SDI quintile had the highest number of cancer deaths and DALYs. From 2010 to 2019, the largest percentage increase in the numbers of cases and deaths occurred in the low and low-middle SDI quintiles. Conclusions and Relevance The results of this systematic analysis suggest that the global burden of cancer is substantial and growing, with burden differing by SDI. These results provide comprehensive and comparable estimates that can potentially inform efforts toward equitable cancer control around the world.Funding/Support: The Institute for Health Metrics and Evaluation received funding from the Bill & Melinda Gates Foundation and the American Lebanese Syrian Associated Charities. Dr Aljunid acknowledges the Department of Health Policy and Management of Kuwait University and the International Centre for Casemix and Clinical Coding, National University of Malaysia for the approval and support to participate in this research project. Dr Bhaskar acknowledges institutional support from the NSW Ministry of Health and NSW Health Pathology. Dr Bärnighausen was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, which is funded by the German Federal Ministry of Education and Research. Dr Braithwaite acknowledges funding from the National Institutes of Health/ National Cancer Institute. Dr Conde acknowledges financial support from the European Research Council ERC Starting Grant agreement No 848325. Dr Costa acknowledges her grant (SFRH/BHD/110001/2015), received by Portuguese national funds through Fundação para a Ciência e Tecnologia, IP under the Norma Transitória grant DL57/2016/CP1334/CT0006. Dr Ghith acknowledges support from a grant from Novo Nordisk Foundation (NNF16OC0021856). Dr Glasbey is supported by a National Institute of Health Research Doctoral Research Fellowship. Dr Vivek Kumar Gupta acknowledges funding support from National Health and Medical Research Council Australia. Dr Haque thanks Jazan University, Saudi Arabia for providing access to the Saudi Digital Library for this research study. Drs Herteliu, Pana, and Ausloos are partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084. Dr Hugo received support from the Higher Education Improvement Coordination of the Brazilian Ministry of Education for a sabbatical period at the Institute for Health Metrics and Evaluation, between September 2019 and August 2020. Dr Sheikh Mohammed Shariful Islam acknowledges funding by a National Heart Foundation of Australia Fellowship and National Health and Medical Research Council Emerging Leadership Fellowship. Dr Jakovljevic acknowledges support through grant OI 175014 of the Ministry of Education Science and Technological Development of the Republic of Serbia. Dr Katikireddi acknowledges funding from a NHS Research Scotland Senior Clinical Fellowship (SCAF/15/02), the Medical Research Council (MC_UU_00022/2), and the Scottish Government Chief Scientist Office (SPHSU17). Dr Md Nuruzzaman Khan acknowledges the support of Jatiya Kabi Kazi Nazrul Islam University, Bangladesh. Dr Yun Jin Kim was supported by the Research Management Centre, Xiamen University Malaysia (XMUMRF/2020-C6/ITCM/0004). Dr Koulmane Laxminarayana acknowledges institutional support from Manipal Academy of Higher Education. Dr Landires is a member of the Sistema Nacional de Investigación, which is supported by Panama’s Secretaría Nacional de Ciencia, Tecnología e Innovación. Dr Loureiro was supported by national funds through Fundação para a Ciência e Tecnologia under the Scientific Employment Stimulus–Institutional Call (CEECINST/00049/2018). Dr Molokhia is supported by the National Institute for Health Research Biomedical Research Center at Guy’s and St Thomas’ National Health Service Foundation Trust and King’s College London. Dr Moosavi appreciates NIGEB's support. Dr Pati acknowledges support from the SIAN Institute, Association for Biodiversity Conservation & Research. Dr Rakovac acknowledges a grant from the government of the Russian Federation in the context of World Health Organization Noncommunicable Diseases Office. Dr Samy was supported by a fellowship from the Egyptian Fulbright Mission Program. Dr Sheikh acknowledges support from Health Data Research UK. Drs Adithi Shetty and Unnikrishnan acknowledge support given by Kasturba Medical College, Mangalore, Manipal Academy of Higher Education. Dr Pavanchand H. Shetty acknowledges Manipal Academy of Higher Education for their research support. Dr Diego Augusto Santos Silva was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil Finance Code 001 and is supported in part by CNPq (302028/2018-8). Dr Zhu acknowledges the Cancer Prevention and Research Institute of Texas grant RP210042.publishedVersio

    Myeloma cells suppress osteoblasts through sclerostin secretion

    Get PDF
    Wingless-type (Wnt) signaling through the secretion of Wnt inhibitors Dickkopf1, soluble frizzled-related protein-2 and -3 has a key role in the decreased osteoblast (OB) activity associated with multiple myeloma (MM) bone disease. We provide evidence that another Wnt antagonist, sclerostin, an osteocyte-expressed negative regulator of bone formation, is expressed by myeloma cells, that is, human myeloma cell lines (HMCLs) and plasma cells (CD138+ cells) obtained from the bone marrow (BM) of a large number of MM patients with bone disease. We demonstrated that BM stromal cells (BMSCs), differentiated into OBs and co-cultured with HMCLs showed, compared with BMSCs alone, reduced expression of major osteoblastic-specific proteins, decreased mineralized nodule formation and attenuated the expression of members of the activator protein 1 transcription factor family (Fra-1, Fra-2 and Jun-D). Moreover, in the same co-culture system, the addition of neutralizing anti-sclerostin antibodies restored OB functions by inducing nuclear accumulation of β-catenin. We further demonstrated that the upregulation of receptor activator of nuclear factor κ-B ligand and the downregulation of osteoprotegerin in OBs were also sclerostin mediated. Our data indicated that sclerostin secretion by myeloma cells contribute to the suppression of bone formation in the osteolytic bone disease associated to MM

    Immunophenotypic studies of monoclonal gammopathy of undetermined significance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Monoclonal gammopathy of undetermined significance (MGUS) is a common plasma cell dyscrasia, comprising the most indolent form of monoclonal gammopathy. However, approximately 25% of MGUS cases ultimately progress to plasma cell myeloma (PCM) or related diseases. It is difficult to predict which subset of patients will transform. In this study, we examined the immunophenotypic differences of plasma cells in MGUS and PCM.</p> <p>Methods</p> <p>Bone marrow specimens from 32 MGUS patients and 32 PCM patients were analyzed by 4-color flow cytometry, using cluster analysis of ungated data, for the expression of several markers, including CD10, CD19, CD20, CD38, CD45, CD56 and surface and intracellular immunoglobulin light chains.</p> <p>Results</p> <p>All MGUS patients had two subpopulations of plasma cells, one with a "normal" phenotype [CD19(+), CD56(-), CD38(bright +)] and one with an aberrant phenotype [either CD19(-)/CD56(+) or CD19(-)/CD56(-)]. The normal subpopulation ranged from 4.4 to 86% (mean 27%) of total plasma cells. Only 20 of 32 PCM cases showed an identifiable normal subpopulation at significantly lower frequency [range 0–32%, mean 3.3%, p << 0.001]. The plasma cells in PCM were significantly less likely to express CD19 [1/32 (3.1%) vs. 13/29 (45%), p << 0.001] and more likely to express surface immunoglobulin [21/32 (66%) vs. 3/28 (11%), p << 0.001], compared to MGUS. Those expressing CD19 did so at a significantly lower level than in MGUS, with no overlap in mean fluorescence intensities [174 ± 25 vs. 430 ± 34, p << 0.001]. There were no significant differences in CD56 expression [23/32 (72%) vs. 18/29 (62%), p = 0.29], CD45 expression [15/32 (47%) vs. 20/30 (67%), p = 0.10] or CD38 mean fluorescence intensities [6552 ± 451 vs. 6365 ± 420, p = 0.38]. Two of the six MGUS cases (33%) with >90% CD19(-) plasma cells showed progression of disease, whereas none of the cases with >10% CD19(+) plasma cells evolved to PCM.</p> <p>Conclusion</p> <p>MGUS cases with potential for disease progression appeared to lack CD19 expression on >90% of their plasma cells, displaying an immunophenotypic profile similar to PCM plasma cells. A higher relative proportion of CD19(+) plasma cells in MGUS may be associated with a lower potential for disease progression.</p

    LICSTER -- A Low-cost ICS Security Testbed for Education and Research

    Full text link
    Unnoticed by most people, Industrial Control Systems (ICSs) control entire productions and critical infrastructures such as water distribution, smart grid and automotive manufacturing. Due to the ongoing digitalization, these systems are becoming more and more connected in order to enable remote control and monitoring. However, this shift bears significant risks, namely a larger attack surface, which can be exploited by attackers. In order to make these systems more secure, it takes research, which is, however, difficult to conduct on productive systems, since these often have to operate twenty-four-seven. Testbeds are mostly very expensive or based on simulation with no real-world physical process. In this paper, we introduce LICSTER, an open-source low-cost ICS testbed, which enables researchers and students to get hands-on experience with industrial security for about 500 Euro. We provide all necessary material to quickly start ICS hacking, with the focus on low-cost and open-source for education and research
    corecore