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Abstract.
Nowadays collocated grid based CFD methods are one of the most efficient tools for

computations of the flows past wind turbines. To ensure the robustness of the methods
they require special attention to the well-known problem of pressure-velocity coupling. Many
commercial codes to ensure the pressure-velocity coupling on collocated grids use the so-called
momentum interpolation method of Rhie and Chow [1]. As known, the method and some of its
widely spread modifications result in solutions, which are dependent of time step at convergence.
In this paper the magnitude of the dependence is shown to contribute about 0.5% into the
total error in a typical turbulent flow computation. Nevertheless if coarse grids are used, the
standard interpolation methods result in much higher non-consistent behavior. To overcome
the problem, a recently developed interpolation method, which is independent of time step, is
used. It is shown that in comparison to other time step independent method, the method may
enhance the convergence rate of the SIMPLEC algorithm up to 25 %. The method is verified
using turbulent flow computations around a NACA 64618 airfoil and the roll-up of a shear layer,
which may appear in wind turbine wake.

1. Introduction
During the last decade a large effort has gone into developing CFD tools for prediction of
wind turbine aerodynamics. In 1999, the flow over the NREL Phase II was computed using
overset grid method by Duque [2]. Later, accurate predictions of the NREL Phase IV rotor
were performed by Sørensen [3] and Johansen [4] and the stalled rotor prediction was also
presented by Duque in [5]. To decrease the computational costs Xu and Sankar proposed in
[6] an approach where small zones surrounding each blade were solved, whereas the rest of
the domain was treated using a significantly less expensive full potential solver. Rather than
modeling the entire rotor Pape in [7] modeled a single blade omitting the tower and nacelle. To
predict the rotor-tower interactions, computations of the fully resolved rotors were performed
by Zahle using incompressible overset grid method in [8]. Compressible sliding grid method was
used by Gomez-Iradi in [9] for computations of the NREL Phase IV rotor. CFD modeling of
laminar-turbulent transition for the wind turbine rotors was presented by Sørensen in [10]. In
addition to the computations on structured grids computations using unstructured grid solvers
were presented by Sezer-Udol in [11] and Potsdam in [12]. Wake simulations behind the wind
turbines using CFD methods have been also an intensive field of study. Recent comparison of
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CFD wake simulations with the MEXICO experimental data can be found e.g. in Bechmann [13].
To decrease the computational costs, actuator disk and actuator line models have been applied
for the wake modeling as can be seen in [14–16].

Nowadays, most of the incompressible CFD tools for wind turbine computations are based
on the Semi-Implicit Method for Pressure Linked Equations (SIMPLE) to link the velocity and
pressure. To achieve a high robustness of the SIMPLE algorithm there is a common practice to
employ it on collocated grids. One of the complexities of the collocated grid-based algorithms
is the well known problem of the pressure-velocity decoupling. To overcome the problem, vast
majority of the methods used today in commercial codes are based on the so-called momentum
interpolation methods, initially proposed by Rhie and Chow [1].

Since the last two decades various modifications of the momentum interpolations have been
presented in order to ensure an accurate solution on collocated grids. Originally the Rhie-Chow
interpolation was developed for steady flow computations and is known to possess a dependence
of velocity underrelaxation parameter at convergence. The problem with the dependence was
solved in [17, 18], nevertheless it was later shown in [19, 20] that if the Rhie-Chow interpolation
is used for unsteady flow computations, pressure wiggles appear for small time steps. An
interpolation method for unsteady flow computations free from the pressure wiggles was later
proposed independently by Choi [21] and Shen et al. [19]. Note that the method of Shen et al
possesses the same properties as the method of Choi, but contrary to the Choi’s method, it is
based on second order scheme in time. As shown in [22] both methods of Shen et al and Choi
possess a weak dependence of time step and relaxation parameter at convergence. To overcome
the difficulty, several methods, which are independent of time step and relaxation parameter,
were proposed in [20, 23–25]. Nowadays in spite of the existence of the time step independent
methods, the standard methods of Choi and Shen et al are widely used as can be seen in example
in [26–29].

On collocated grids both the solution accuracy and the convergence rate of the SIMPLE-like
algorithms strictly depend on the choice of the interpolation method. Originally the SIMPLE-
like algorithms, such as SIMPLE [30], SIMPLEC [31] and PISO[32], were developed for the
staggered grids, where mass flux interpolation is not necessary. In most of the computational
codes used in engineering application the choice of the SIMPLE-like algorithm and the choice of
the mass flux interpolation method have been done independently [33, 34]. In the current paper,
it is shown that using such the approach convergence rate is not always optimal and in order to
achieve a high efficiency of the SIMPLE-like algorithms, the mass flux interpolation should be
used consistently with the algorithms.

By taking an example of the SIMPLEC algorithm we will demonstrate that the usage of
interpolation methods, which are fully compatible with the SIMPLEC algorithm, results in
a convergence rate up to 25 % higher than the rate of the standard SIMPLEC algorithm.
Theoretical justification of this fact is given in [35], whereas here by using a typical turbulent
flow computations we will show that the proper choice of interpolation method may also increase
the accuracy of the SIMPLEC algorithm.

Standard interpolation methods on collocated grids, such as the methods of Choi [21] and
Shen et al [19], are known to result in solution, dependent of time step at convergence. In this
work the magnitude of the dependence is estimated and is shown to be negligible for a typical
turbulent flow computation. Nevertheless, when coarse grids are used the inconsistency of the
solution becomes non-negligible. To overcome the problem the recently developed Modified
Momentum Interpolation method (MMI) of Kolmogorov et al [35], will be used. The efficiency
of the standard and the MMI interpolation methods will be tested in the roll-up case of a shear
layer vortex, which appears in wind turbine wake. For the standard interpolation methods
of Shen [19, 36], the magnitude of the solution dependence of time step will be measured in
application to the turbulent flow field around a NACA 64618 airfoil. For the test case the MMI
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method is proved to result in the solutions, which are independent of time step at convergence.

2. Discretization of the Navier-Stokes equations
The discretization of the incompressible Navier-Stokes equations for unsteady flow computations
on collocated grids is presented below. First, the momentum equations are discretized. Second,
the discrete continuity equation is presented with one of the recently developed interpolation
methods of Kolmogorov et al in [35].

2.1. Momentum equations
Using the second order backward difference scheme in time and grouping two momentum
equations in the x- and the y- directions together, the system of the underrelaxed momentum
equations on collocated grids can be expressed for a control volume p in the following form:

Ãp~υ
m+1
p +

∑
E,W,N,S

Anb~υ
m+1
nb + ~∇pm+1

p dVp = ~Smp +AVp (2~υnp − 0.5~υn−1
p ) (1)

where vector ~υp denotes the vector of the velocity flow field (up, vp)
T , whereas vector ~Sp indicates

the explicitly treated source terms (Sxp , S
y
p )T . Terms Ap, Anb are the diagonal and non-diagonal

matrix terms accounting for the discrete convective and diffusion terms, the term AVp is the

coefficient of the time derivative and equal to
ρdVp
τ , where τ is the time step and ρdVp is the

control volume mass. The term Ãp accounts for the diagonal term of the matrix of the momentum
equations, which are underrelaxed using the spatial term Ap similarly to [19, 24, 36] as below:

Ãp = Ap/α+ 1.5AVp (2)

where α is the velocity underrelaxation parameter.
The superscripts m and n are the subiteration- and time step- counters respectively, such

that the solution at time step n + 1 is obtained at convergence. In order to compute the flow

field at the subiteration step m+ 1, the coefficients Ap, Anb and Ãp are taken from the former
subiteration step m. In the notations of the coefficients the superscript counter m is dropped in
the following section.

2.2. Mass flux interpolation methods
To ensure flow field continuity the momentum equations in Eq. (1) have to be solved together
with the continuity equation: ∑

e,w,n,s

fm+1
k = 0 (3)

which essentially represents the fact that the sum of mass fluxes fm+1
k through the control

volume faces k equals to zero.
On collocated grids the cell face fluxes are not available. To identify the fluxes one of the

widely spread methods is the momentum interpolation method originally proposed by Rhie and
Chow [1]. Nowadays, for unsteady flow computations there is a common practice [26–29] to
employ the modified Rhie-Chow interpolations, proposed by Choi or Shen et al in [19, 21]. It is
known that, the methods are weakly dependent of time step at convergence, but the magnitude
of the dependence in real life applications is not known yet.

Nowadays, there exist several interpolation methods on collocated grids, resulting in solutions,
independent of time step at convergence [20, 22–25]. Most of the methods are aimed for
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applications in the SIMPLE-like algorithms. To enhance the convergence rate of the SIMPLE-
like algorithms on collocated grids we consider the Modified Momentum Interpolation method
(MMI), recently proposed in [35]. From one hand the MMI method results in the solution, which
is independent of time step at convergence. From the other hand, as will be later seen in the
paper, it may increase the convergence rate of the SIMPLEC algorithm up to 25% in comparison
to other interpolation method existing in literature.

According to the MMI method the mass flux at some cell face k is defined as below:

fm+1
k = χk(f̃

n
k −

τ

ρ
~∇pm+1

k · d~Sk +

[
~hm+1

AV

]
k

· d~Sk + (1/α− 1− β)

[
A

AV

]
k

fmk ) (4)

where [ ]k denotes linear interpolation from cell centers to cell face k, the term χk and the

vector ~hp
m+1

are defined respectively as:

χk = 1/

(
1.5 + (1/α− γ)

[
A

AV

]
k

)
(5)

~hp
m+1

= −
∑

E,W,N,S

Anb~υ
m+1
nb − γAp~υm+1

p + βAp~υ
m
p + ~Smp (6)

where the new parameters γ and β are the constant parameters described below.
In Eq. (4) the term f̃nk indicates 2fnk − 0.5fn−1

k , where fnk , fn−1
k , fmk are the fluxes available

from the former time steps n, n−1 and subiteration m. To ensure the pressure-velocity coupling
on collocated grids the pressure force term ~∇pm+1

k · d~Sk in Eq. (4) has to be calculated directly
from the pressure at the cell centers as in the original Rhie-Chow method [1].

Figure 1. Vorticity field of a shear layer
roll-up at Re = 100 and t = 8.

The MMI method above results in solution
independent of time step and relaxation parameter,
as will be seen in the result section. The method
has two forms, namely the first form with γ = 0,
β = 0 and the second form with γ = 1, β > 0.
The two forms of the method possess different
properties as described below:

1) The MMI method with γ = 0 and β = 0
is similar to an existing method of Pascau in [25],
but contrary to Pascau’s method, it is based on
momentum equations, which are discretized using
second order backward difference scheme in time.
As shown in [35], the MMI method in this form is
fully compatible with SIMPLE algorithm.

2) The MMI method with γ = 1 and β > 0
is another interpolation method, independent of
time step and relaxation parameter at convergence.
According to [35], for the robust performance of
the method, the parameter β has to be equal 0.04.
Contrary to other time step independent methods, the MMI method in this form is fully
compatible with SIMPLEC algorithm. As will be later seen in the result section, if the MMI
method is applied with SIMPLEC algorithm, it becomes advantageous in the convergence speed
over other time step independent interpolation method.

The Science of Making Torque from Wind 2014 (TORQUE 2014) IOP Publishing
Journal of Physics: Conference Series 524 (2014) 012128 doi:10.1088/1742-6596/524/1/012128

4



3. Results
Two test cases are computed, namely an idealized case of a shear layer [37], which appears in
wind turbine wake, and the turbulent flow around a NACA 64618 arifoil.

The steady and unsteady state solutions are achieved when the residuals, computed in
L1 norm, are reduced by a factor of 108 and 106, respectively. For the tests the velocity
underrelaxation parameter α = 0.8 is used.

3.1. Roll-up of a shear layer vortex
An idealized case of a shear layer, which appears in wind turbine wake, is computed at Re = 100
using SIMPLEC algorithm and the MMI interpolation method in Eq. (4). To achieve the high
efficiency of the SIMPLEC algorithm, the MMI method is used with γ = 1 and β = 0.04
(see Section 2.2). To verify the efficiency of the MMI method, the method is compared with the
interpolation method of Pascau [25].

The flow is initialized in the domain of a square of [0 π] with periodic boundary conditions
as following:

u =

{
tanh(y−π/2δ ), y ≤ π v = εsin(x)

tanh(3π/2−yδ ), y > π δ = π/15, ε = 0.05
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Figure 3. Work load dependence on grid
resolution.

An example of the flow field at a dimensionless time t = 8 is shown in Fig. 1. The solutions
of the two methods are compared at the dimensionless time t = 4 and the errors are measured
in comparison to the reference solution of the MMI method obtained on the fine grid of 5122

cells and with a small time step of 0.005. The computations are performed on a sequence of
the successively coarsened grids. For each coarse grid, the error is computed by interpolating
the reference solution on the coarse grid and subtracting the solution from that grid. As seen
from Fig. 2, the second order of the spatial accuracy is obtained and the error tolerances of both
methods are nearly identical.
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Figure 4. Dependence of work load on
accuracy in a shear layer roll-up test case.

The corresponding work load of the methods,
measured in CPU seconds, is plotted in Fig. 3.
The efficiencies of the methods can be compared
if the work loads are compared for same accuracy
levels. Therefore, the work load for each of the
method is found first as a function of tolerance
error. Then the ratio of the work loads of the MMI
method, WorkM , and Pascau’s method, WorkP , is
computed and plotted in Fig. 4.

As seen in Fig. 4, the work load of the MMI
method is lower then the work load of Pascau’s
method for nearly all accuracy levels. For the
highest accuracy level, the efficiency of the MMI
method is 25% higher in comparison to Pascau’s
method. As seen in Fig. 4 there is a narrow
accuracy region where the MMI method is less
efficient. This is explained by the fact that the
optimal β parameter of the MMI method depends
on grid resolution. In spite of the fact that the
optimal β is not known in advance, the results
of the test case and the deliberate analysis of the

optimal β presented in [35] show that for general use β = 0.04 can be employed to ensure higher
efficiency of the MMI method.

3.2. Turbulent flow around a NACA 64618 airfoil
The turbulent flow around NACA 64618 airfoil at zero angle of attack is computed at Re =
1.6 · 106 using SIMPLEC algorithm. The grid of O-type is used with boundaries placed in a
distance of 20 chords from the airfoil.
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Figure 5. Dependence of relative errors of the methods of Shen et al [19, 36] in the turbulent
flow computations around a NACA 64618 airfoil on grids with 64 x 32 and 128 x 64 cells.
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Two standard interpolation methods of Shen et al in [19] and [36] are used as the
representatives of interpolation methods, resulting to the solutions, dependent of time step
at convergence. To compare with the standard methods, the MMI method in Eq. (4) is used.

The k− ω SST turbulence model is used on two relatively coarse grids with 64 x 32 and 128
x 64 cells. For the two grids the maximum y+ at points one cell away from the airfoil equals to
2.6 and 0.4, respectively. To measure the time step dependence of the standard methods, the
lift coefficient is compared against an experimental value in [38], which is equal to 0.44.
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As seen from Figs. 5(a) and 5(b), contrary to
the MMI method, the solutions of the standard
methods of Shen, are dependent of time step
at convergence. For the standard methods, the
change of the error due to the time step dependence
is about 1-2% on the grid with y+ = 0.4, whereas
for the grid with y+ = 2.6 the error variations may
achieve up to 5.5%, as seen from Fig. 5(b).

It should be noted, that a typical grid set-up for
the turbulent flow computations is based on a grid
with 128 cells in the normal direction. Results of
computations on a grid with 256 x 128 cells using
the standard and the MMI methods are shown
in Fig. 6. It is seen from the figure that on such
fine grid, the time step dependence of the error
contributes about 0.5% into the total error.

The solution, obtained using the MMI method
with γ = 0, β = 0 on the grid with 256 x 128
cells is seen to be about 4% different from the
experimental value. The solution is less accurate
than the solution obtained on the coarser grid using
the MMI method with γ = 1, β = 0.04. This
is explained by the fact that for the steady state
problems, the MMI method with γ = 1 and β = 0.04 may result in superconvergence, as was
reported in [35].

4. Conclusions
It is concluded, that for a typical turbulent flow computation the standard momentum
interpolation methods still can be used. For the methods the solution dependence of the time
step is negligible. However, in optimization tasks, where coarse grids are used, the standard
methods may result in non consistent solution behavior. The inconsistency may become crucial
in 3D computations, where employing the fine grids becomes computationally demanding. For
the turbulent flow computations, the MMI method of Kolmogorov et al [35] was proved to
result in solutions, independent of time step at convergence. The results of the unsteady flow
computations have also shown, that when SIMPLEC algorithm is used, the MMI method, results
in up to 25% higher convergence rate, than an existing method. In general, the MMI method can
be used on both coarse and fine grids to ensure both high convergence rate and high accuracy
of the SIMPLE-like algorithms.
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