145 research outputs found

    Performance optimization of uncertain and dynamic high-dimensional wind-excited systems

    Get PDF
    This paper focuses on the development of an efficient design optimization framework for wind-excited systems that is capable of handling not only high-dimensional and complex probability spaces, but also high-dimensional spaces of design parameters. Data-driven simulation models are utilized in assessing the system-level probabilistic measures. To efficiently solve the performance-based design optimization problem, a framework is proposed that is based on approximately decoupling the stochastic simulation from the optimization process. Local approximation models, constructed from results of a single stochastic simulation, are used to define a deterministic composite function that relates the design parameters to the system-level performance metrics. The explicit nature of this relationship is then exploited to define a sequence of deterministic optimization sub-problems that yield solutions to the original stochastic optimization problem. To illustrate the applicability of the proposed approach, a large-scale building system is optimized under stochastic wind tunnel-informed excitations and subject to system-level loss constraints.This research effort was supported in part by the National Science Foundation (NSF) through grants CMMI-1462084 and CMMI-1562388. This support is gratefully acknowledged

    Robust design and optimization of stochastic wind-excited systems: an adaptive kriging-based approach

    Get PDF
    This research proposes a robust design framework for wind-excited systems in which performance is estimated at a system level in terms of state-of-the-art performance-based design metrics. In particular, the robust design problem is formulated as a stochastic optimization with objective the minimization of the variance of the performance metric. Constraints are also imposed on the initial cost of the system and expected value of the performance metric. To effectively treat the performance metrics within the optimization problem, adaptive kriging models of the deagreggated loss metrics are defined in terms of the second order statistics of the demands. By then relating the demand statistics to the design variables through the concept of the Auxiliary Variable Vector, a deterministic optimization sub-problem is defined that can handle high-dimensional design variable vectors and general stochastic excitation. By solving a sequence of sub-problems, each formulated in the solution of the previous, solutions to the original robust design problem are found. A case study consisting in a large-scale system subject to stochastic wind excitation is used to illustrate the applicability of the proposed framework.This research effort was supported in part by the National Science Foundation (NSF) through grants CMMI-1462084 and CMMI-1562388. This support is gratefully acknowledged

    Efficient Uncertainty Propagation through Inelastic Wind-Excited Structures Subject to Stochastic Excitation

    Get PDF
    The growing interest in applying probabilistic performance-based design to wind excited structural systems has increased the need for models capable of efficiently estimating the inelastic responses of these systems. This paper outlines the development of such a model that combines the theory of dynamic shakedown with distributed plasticity and simulation methods, providing a framework for estimating any system-level probabilistic performance metric of interest. The potential of the proposed framework is illustrated on a full scale three dimensional building.This research effort was supported in part by the National Science Foundation (NSF) under Grant No. CMMI-1462084 and the Magnusson Klemencic Associates (MKA) Foundation under Research Grant Agreement #A101. This support is gratefully acknowledged

    Probabilistic Quantification of Hurricane Resilience of Communities through a Distributed Simulation Platform

    Get PDF
    Resilience is an essential requirement in mitigating the effects of natural hazards such as hurricanes. This paper presents a framework to probabilistically quantify the damage of residential communities subject to hurricane hazards which is an essential step in quantifying community resilience. An engineering-based vulnerability model is developed for typical residential buildings. In particular, damage due to the two mechanisms of net pressure and wind-borne debris impact on the envelope components is considered. By integrating full hurricane wind field models into the framework, damage can be estimated for any given hurricane category and storm track. A distributed simulation platform, using Lightweight Communications and Marshalling (LCM) libraries, is proposed for modeling the debris-induced interdependencies between the damages sustained by the buildings defining the community.This work was supported by the National Science Foundation (NSF) through grants ACI-1638186 and CMMI-1562388. Any opinions, findings, conclusions, and recommendations expressed in this work are those of the authors and do not necessarily reflect the views of the sponsors

    The Herschel view of the environment of the radio galaxy 4C+41.17 at z = 3.8

    Get PDF
    We present Herschel observations at 70, 160, 250, 350 and 500 μm of the environment of the radio galaxy 4C+41.17 at z = 3.792. About 65 per cent of the extracted sources are securely identified with mid-infrared sources observed with the Spitzer Space Telescope at 3.6, 4.5, 5.8, 8 and 24 μm. We derive simple photometric redshifts, also including existing 850 and 1200 μm data, using templates of active galactic nuclei, starburst-dominated systems and evolved stellar populations. We find that most of the Herschel sources are foreground to the radio galaxy and therefore do not belong to a structure associated with 4C+41.17. We do, however, find that the spectral energy distribution (SED) of the closest (∼25 arcsec offset) source to the radio galaxy is fully consistent with being at the same redshift as 4C+41.17. We show that finding such a bright source that close to the radio galaxy at the same redshift is a very unlikely event, making the environment of 4C+41.17 a special case. We demonstrate that multiwavelength data, in particular on the Rayleigh–Jeans side of the SED, allow us to confirm or rule out the presence of protocluster candidates that were previously selected by single wavelength data setsPeer reviewe

    All-Optical Broadband Excitation of the Motional State of Trapped Ions

    Full text link
    We have developed a novel all-optical broadband scheme for exciting, amplifying and measuring the secular motion of ions in a radio frequency trap. Oscillation induced by optical excitation has been coherently amplified to precisely control and measure the ion's secular motion. Requiring only laser line-of-sight, we have shown that the ion's oscillation amplitude can be precisely controlled. Our excitation scheme can generate coherent motion which is robust against variations in the secular frequency. Therefore, our scheme is ideal to excite the desired level of oscillatory motion under conditions where the secular frequency is evolving in time. Measuring the oscillation amplitude through Doppler velocimetry, we have characterized the experimental parameters and compared them with a molecular dynamics simulation which provides a complete description of the system.Comment: 8 pages, 10 figure

    Female Sex but Not Oestrogen Receptor Expression Predicts Survival in Advanced Gastroesophageal Adenocarcinoma—A Post-hoc Analysis of the GO2 Trial

    Get PDF
    Gastroesophageal adenocarcinoma is a disease of older adults that is associated with a very poor prognosis. It is less common and has better outcomes in females. The reason for this is unknown but may relate to signalling via the main oestrogen receptors (ER) α and β. In this study, we sought to investigate this using the GO2 clinical trial patient cohort. GO2 recruited older and/or frail patients with advanced gastroesophageal cancer. Immunohistochemistry was performed on tumour samples from 194 patients. The median age of the population was 76 years (range 52–90), and 25.3% were female. Only one (0.5%) tumour sample was positive for ERα, compared to 70.6% for ERβ expression. There was no survival impact according to ERβ expression level. Female sex and younger age were associated with lower ERβ expression. Female sex was also associated with improved overall survival. To our knowledge, this is the largest study worldwide of ER expression in a cohort of patients with advanced gastroesophageal adenocarcinoma. It is also unique, given the age of the population. We have demonstrated that female sex is associated with better survival outcomes with palliative chemotherapy but that this does not appear to be related to ER IHC expression. The differing ER expression according to age supports the concept of a different disease biology with age

    An investigation of the clinical impact and therapeutic relevance of a DNA damage immune response (DDIR) signature in patients with advanced gastroesophageal adenocarcinoma

    Get PDF
    Background: An improved understanding of which gastroesophageal adenocarcinoma (GOA) patients respond to both chemotherapy and immune checkpoint inhibitors (ICI) is needed. We investigated the predictive role and underlying biology of a 44-gene DNA damage immune response (DDIR) signature in patients with advanced GOA. Materials and methods: Transcriptional profiling was carried out on pretreatment tissue from 252 GOA patients treated with platinum-based chemotherapy (three dose levels) within the randomized phase III GO2 trial. Cross-validation was carried out in two independent GOA cohorts with transcriptional profiling, immune cell immunohistochemistry and epidermal growth factor receptor (EGFR) fluorescent in situ hybridization (FISH) (n = 430). Results: In the GO2 trial, DDIR-positive tumours had a greater radiological response (51.7% versus 28.5%, P = 0.022) and improved overall survival in a dose-dependent manner (P = 0.028). DDIR positivity was associated with a pretreatment inflamed tumour microenvironment (TME) and increased expression of biomarkers associated with ICI response such as CD274 (programmed death-ligand 1, PD-L1) and a microsatellite instability RNA signature. Consensus pathway analysis identified EGFR as a potential key determinant of the DDIR signature. EGFR amplification was associated with DDIR negativity and an immune cold TME. Conclusions: Our results indicate the importance of the GOA TME in chemotherapy response, its relationship to DNA damage repair and EGFR as a targetable driver of an immune cold TME. Chemotherapy-sensitive inflamed GOAs could benefit from ICI delivered in combination with standard chemotherapy. Combining EGFR inhibitors and ICIs warrants further investigation in patients with EGFR-amplified tumours
    corecore