36 research outputs found

    Direct Evidence for P2Y2 Receptor Involvement in Vascular Response to Injury

    Get PDF
    Objectives Extracellular nucleotide release at the site of arterial injury mediates proliferation and migration of vascular smooth muscle cells (SMC). Our aim was to investigate the role of the P2Y2 nucleotide receptor (P2Y2R) in neointimal hyperplasia. Approach and Results Vascular injury was induced by implantation of a polyethylene cuff around the femoral artery in wild-type and P2Y2 receptor-deficient mice (P2Y2R−/−). Electron microscopy was used to analyze monocyte and lymphocyte influx to the intima 36 hours post-injury. Compared to wild-type (WT) littermates, P2Y2R−/− mice exhibited a 3-fold decreased number of mononuclear leukocytes invading the intima (p<0.05). Concomitantly, migration of smooth muscle cells was decreased by more than 60% (p<0.05) a resulting in a sharp inhibition of intimal thickening formation in P2Y2R−/− mice (n=15) 14 days after cuff placement. In vitro, loss of P2Y2 receptor significantly impaired monocyte migration in response to nucleotide agonists. Furthermore, transgenic rats over-expressing the P2Y2R developed accelerated intimal lesions resulting in more than 95% luminal stenosis (P<0.05, n=10). Conclusions Loss-and gain-of-function approaches established a direct evidence for P2Y2 receptor involvement in neointimal hyperplasia. Specific anti-P2Y2 receptor therapies may be used against restenosis and bypass graft failure

    Up-regulation of the P2Y2 receptor by cytokines in neuronal cells

    Get PDF
    Abstract only availableAlzheimer's Disease (AD) is characterized by inflammation and neurodegeneration in the brain due to the presence of extracellular amyloid beta (A β) plaques and neurofibrillary tangles. Microglial and astrocyte cells associated with these plaques and tangles have been shown to release cytokines in AD patients, which have a proinflammatory effect on the brain. The P2Y2 receptor (P2Y2R) is a receptor protein that is up-regulated in response to damage or stress in a variety of tissues, including blood vessels and salivary gland epithelium. Recently our laboratory has shown that activation of the P2Y2R enhances α -secretase-dependent amyloid precursor protein (APP) processing. APP is proteolytically processed by β - and γ -secretases to release neurodegenerative A β. Alternatively, APP can be cleaved within the A β domain by α -secretase releasing the non-amyloidogenic product, sAPP α, which has been shown to have neuroprotective properties. Primary neurons have low P2Y2R expression, however, it has been demonstrated that cytokines up-regulate P2Y2R in smooth muscle cells. Therefore, this study will explore if cytokines up-regulate P2Y2R expression in primary rat neurons and in SH-SY5Y human neuroblastoma cells. Primary rat neurons and SH-SY5Y human neuroblastoma cells were plated on glass cover slips 24 or 48 hours with individual treatment, or a combination of, human interleukin-1 β (IL1- β), tumor necrosis factor α (TNF α), and interferon γ (IF γ). P2Y2R activity was measured by increases in intracellular calcium concentration ([Ca2+]i ) in response to the P2Y2R agonist UTP. Results support the hypothesis that P2Y2R is up-regulated by cytokines in neuronal cells. Furthermore, real-time PCR results indicate a two-fold increase in P2Y2R mRNA after cytokine treatment. Therefore, activation of the up-regulated P2Y2R in stressed neurons generates a neuroprotective (sAPP α) rather than neurodegenerative (A β) peptide. These results could have a substantial impact on the understanding and treatment of neurological disorders such as AD.Life Sciences Undergraduate Research Opportunity Progra

    TLR3 deficiency exacerbates the loss of epithelial barrier function during genital tract Chlamydia muridarum infection

    Get PDF
    PROBLEM: Chlamydia trachomatis infections are often associated with acute syndromes including cervicitis, urethritis, and endometritis, which can lead to chronic sequelae such as pelvic inflammatory disease (PID), chronic pelvic pain, ectopic pregnancy, and tubal infertility. As epithelial cells are the primary cell type productively infected during genital tract Chlamydia infections, we investigated whether Chlamydia has any impact on the integrity of the host epithelial barrier as a possible mechanism to facilitate the dissemination of infection, and examined whether TLR3 function modulates its impact. METHOD OF STUDY: We used wild-type and TLR3-deficient murine oviduct epithelial (OE) cells to ascertain whether C. muridarum infection had any effect on the epithelial barrier integrity of these cells as measured by transepithelial resistance (TER) and cell permeability assays. We next assessed whether infection impacted the transcription and protein function of the cellular tight-junction (TJ) genes for claudins1-4, ZO-1, JAM1 and occludin via quantitative real-time PCR (qPCR) and western blot. RESULTS: qPCR, immunoblotting, transwell permeability assays, and TER studies show that Chlamydia compromises cellular TJ function throughout infection in murine OE cells and that TLR3 deficiency significantly exacerbates this effect. CONCLUSION: Our data show that TLR3 plays a role in modulating epithelial barrier function during Chlamydia infection of epithelial cells lining the genital tract. These findings propose a role for TLR3 signaling in maintaining the integrity of epithelial barrier function during genital tract Chlamydia infection, a function that we hypothesize is important in helping limit the chlamydial spread and subsequent genital tract pathology

    Deletion of P2Y2 receptor reveals a role for lymphotoxin-α in fatty streak formation

    Get PDF
    Background Lymphotoxin alpha (LTα) is expressed in human atherosclerotic lesions and genetic variations in the LTα pathway have been linked to myocardial infarction. Activation of the P2Y2 nucleotide receptor (P2Y2R) regulates the production of LTα. in vitro. We aimed to uncover a potential pathway linking purinergic receptor to LTα-mediated inflammatory processes pivotal to the early stages of atherosclerosis in apolipoprotein E (ApoE−/−) deficient mice. Methods and results En face immunostaining revealed that P2Y2R and VCAM-1 are preferentially expressed in the atherosclerosis prone site of the mouse aortic sinus. Deletion of the P2Y2R gene suppresses VCAM-1 expression. Compared with ApoE−/− mice, ApoE−/− mice lacking the P2Y2R gene (ApoE−/−/P2Y2R−/−) did not develop fatty streak lesions when fed a standard chow diet for 15 weeks. Systemic and CD4+ T cell production of the pro-inflammatory cytokine lymphotoxin-alpha (LTα) were specifically inhibited in ApoE−/−/P2Y2R−/−mice. Anti-LTα preventive treatment was initiated in ApoE−/− mice with intraperitoneal administration of recombinant human tumor necrosis factor receptor 1 fusion protein (TNFR1-Fc) on 5 consecutive days before the disease onset. Remarkably, none of the TNFR1:Fc-treated ApoE−/− mice exhibited atherosclerotic lesions at any developmental stage. Significance ApoE−/− mice deficient in P2Y2R exhibit low endothelial cell VCAM-1 levels, decreased production of LTα and delayed onset of atherosclerosis. These data suggest that targeting this nucleotide receptor could be an effective therapeutic approach in atherosclerosis

    Impact of annual praziquantel treatment on urogenital schistosomiasis in a seasonal transmission focus in central Senegal

    Get PDF
    In Sub-Saharan Africa, urogenital schistosomiasis remains a significant public health problem, causing 150.000 deaths/year with approximately 112 million cases diagnosed. The Niakhar district is a disease hotspot in central Senegal where transmission occurs seasonally with high prevalences. The aim of this study was to determine the effect of annual treatment over 3 years on the seasonal transmission dynamics of S. haematobium in 9 villages in the Niakhar district. Adults and children aged between 5 and 60 years were surveyed from 2011 to 2014. Urine samples were collected door-to-door and examined for S. haematobium eggs at baseline in June 2011, and all participants were treated in August 2011 with PZQ (40 mg/kg). After this initial examination, evaluations were conducted at 3 successive time points from September 2011 to March 2014, to measure the efficacy of the annual treatments and the rates of reinfection. Each year, during the transmission period, from July to November-December, malacological surveys were also carried out in the fresh water bodies of each village to evaluate the infestation of the snail intermediate hosts. At baseline, the overall prevalence of S. haematobium infection was 57.7%, and the proportion of heavy infection was 45.3%, but one month after the first treatment high cure rates (92.9%) were obtained. The overall infection prevalence and proportion of heavy infection intensities were drastically reduced to 4.2% and 2.3%, respectively. The level of the first reinfection in February-March 2012 was 9.5%. At follow-up time points, prevalence levels varied slightly between reinfection and treatment from 9.5% in June 2012 to 0.3% in March 2013, 11.2 in June 2013, and 10.1% April 2014. At the end of the study, overall prevalence was significantly reduced from 57.7% to 10.1%. The overall rate of infested Bulinid snails was reduced after repeated treatment from 0.8% in 2012 to 0.5% in 2013. Repeated annual treatments are suggested to have a considerable impact on the transmission dynamics of S. haematobium in Niakhar, due to the nature of the epidemiological system with seasonal transmission. Thus, to maintain this benefit and continue to reduce the morbidity of urogenital schistosomiasis, other approaches should be integrated into the strategy plans of the National program to achieve the goal of urogenital schistosomiasis elimination in seasonal foci in Senegal

    The P2Y2 nucleotide receptor is an inhibitor of vascular calcification

    Get PDF
    BACKGROUND AND AIMS: Mutations in the 5'-nucleotidase ecto (NT5E) gene that encodes CD73, a nucleotidase that converts AMP to adenosine, are linked to arterial calcification. However, the role of purinergic receptor signaling in the pathology of intimal calcification is not well understood. In this study, we examined whether extracellular nucleotides acting via P2Y2 receptor (P2Y2R) modulate arterial intimal calcification, a condition highly correlated with cardiovascular morbidity. METHODS: Apolipoprotein E, P2Y2R double knockout mice (ApoE-/-P2Y2R-/-) were used to determine the effect of P2Y2R deficiency on vascular calcification in vivo. Vascular smooth muscle cells (VSMC) isolated from P2Y2R-/- mice grown in high phosphate medium were used to assess the role of P2Y2R in the conversion of VSMC into osteoblasts. Luciferase-reporter assays were used to assess the effect of P2Y2R on the transcriptional activity of Runx2. RESULTS: P2Y2R deficiency in ApoE-/- mice caused extensive intimal calcification despite a significant reduction in atherosclerosis and macrophage plaque content. The ectoenzyme apyrase that degrades nucleoside di- and triphosphates accelerated high phosphate-induced calcium deposition in cultured VSMC. Expression of P2Y2R inhibits calcification in vitro inhibited the osteoblastic trans-differentiation of VSMC. Mechanistically, expression of P2Y2R inhibited Runx2 transcriptional activation of an osteocalcin promoter driven luciferase reporter gene. CONCLUSIONS: This study reveals a role for vascular P2Y2R as an inhibitor of arterial intimal calcification and provides a new mechanistic insight into the regulation of the osteoblastic trans-differentiation of SMC through P2Y2R-mediated Runx2 antagonism. Given that calcification of atherosclerotic lesions is a significant clinical problem, activating P2Y2R may be an effective therapeutic approach for treatment or prevention of vascular calcification

    Endothelial Cell-Specific Deletion of P2Y2 Receptor Promotes Plaque Stability in Atherosclerosis-Susceptible ApoE-Null Mice

    Get PDF
    OBJECTIVE: Nucleotide P2Y2 receptor (P2Y2R) contributes to vascular inflammation by increasing vascular cell adhesion molecule-1 expression in endothelial cells (EC), and global P2Y2R deficiency prevents fatty streak formation in apolipoprotein E null (ApoE-/-) mice. Because P2Y2R is ubiquitously expressed in vascular cells, we investigated the contribution of endothelial P2Y2R in the pathogenesis of atherosclerosis. APPROACH AND RESULTS: EC-specific P2Y2R-deficient mice were generated by breeding VEcadherin5-Cre mice with the P2Y2R floxed mice. Endothelial P2Y2R deficiency reduced endothelial nitric oxide synthase activity and significantly altered ATP- and UTP (uridine 5'-triphosphate)-induced vasorelaxation without affecting vasodilatory responses to acetylcholine. Telemetric blood pressure and echocardiography measurements indicated that EC-specific P2Y2R-deficient mice did not develop hypertension. We investigated the role of endothelial P2Y2R in the development of atherosclerotic lesions by crossing the EC-specific P2Y2R knockout mice onto an ApoE-/- background and evaluated lesion development after feeding a standard chow diet for 25 weeks. Histopathologic examination demonstrated reduced atherosclerotic lesions in the aortic sinus and entire aorta, decreased macrophage infiltration, and increased smooth muscle cell and collagen content, leading to the formation of a subendothelial fibrous cap in EC-specific P2Y2R-deficient ApoE-/- mice. Expression and proteolytic activity of matrix metalloproteinase-2 was significantly reduced in atherosclerotic lesions from EC-specific P2Y2R-deficient ApoE-/- mice. Furthermore, EC-specific P2Y2R deficiency inhibited nitric oxide production, leading to significant increase in smooth muscle cell migration out of aortic explants. CONCLUSIONS: EC-specific P2Y2R deficiency reduces atherosclerotic burden and promotes plaque stability in ApoE-/- mice through impaired macrophage infiltration acting together with reduced matrix metalloproteinase-2 activity and increased smooth muscle cell migration

    P2 receptors in atherosclerosis and postangioplasty restenosis

    Get PDF
    Atherosclerosis is an immunoinflammatory process that involves complex interactions between the vessel wall and blood components and is thought to be initiated by endothelial dysfunction [Ross (Nature 362:801–09, 1993); Fuster et al. (N Engl J Med 326:242–50, 1992); Davies and Woolf (Br Heart J 69:S3–S11, 1993)]. Extracellular nucleotides that are released from a variety of arterial and blood cells [Di Virgilio and Solini (Br J Pharmacol 135:831–42, 2002)] can bind to P2 receptors and modulate proliferation and migration of smooth muscle cells (SMC), which are known to be involved in intimal hyperplasia that accompanies atherosclerosis and postangioplasty restenosis [Lafont et al. (Circ Res 76:996–002, 1995)]. In addition, P2 receptors mediate many other functions including platelet aggregation, leukocyte adherence, and arterial vasomotricity. A direct pathological role of P2 receptors is reinforced by recent evidence showing that upregulation and activation of P2Y2 receptors in rabbit arteries mediates intimal hyperplasia [Seye et al. (Circulation 106:2720–726, 2002)]. In addition, upregulation of functional P2Y receptors also has been demonstrated in the basilar artery of the rat double-hemorrhage model [Carpenter et al. (Stroke 32:516–22, 2001)] and in coronary artery of diabetic dyslipidemic pigs [Hill et al. (J Vasc Res 38:432–43, 2001)]. It has been proposed that upregulation of P2Y receptors may be a potential diagnostic indicator for the early stages of atherosclerosis [Elmaleh et al. (Proc Natl Acad Sci U S A 95:691–95, 1998)]. Therefore, particular effort must be made to understand the consequences of nucleotide release from cells in the cardiovascular system and the subsequent effects of P2 nucleotide receptor activation in blood vessels, which may reveal novel therapeutic strategies for atherosclerosis and restenosis after angioplasty

    P2X7 nucleotide receptors mediate caspase-8/9/3-dependent apoptosis in rat primary cortical neurons

    Get PDF
    Apoptosis is a major cause of cell death in the nervous system. It plays a role in embryonic and early postnatal brain development and contributes to the pathology of neurodegenerative diseases. Here, we report that activation of the P2X7 nucleotide receptor (P2X7R) in rat primary cortical neurons (rPCNs) causes biochemical (i.e., caspase activation) and morphological (i.e., nuclear condensation and DNA fragmentation) changes characteristic of apoptotic cell death. Caspase-3 activation and DNA fragmentation in rPCNs induced by the P2X7R agonist BzATP were inhibited by the P2X7R antagonist oxidized ATP (oATP) or by pre-treatment of cells with P2X7R antisense oligonucleotide indicating a direct involvement of the P2X7R in nucleotide-induced neuronal cell death. Moreover, Z-DEVD-FMK, a specific and irreversible cell permeable inhibitor of caspase-3, prevented BzATP-induced apoptosis in rPCNs. In addition, a specific caspase-8 inhibitor, Ac-IETD-CHO, significantly attenuated BzATP-induced caspase-9 and caspase-3 activation, suggesting that P2X7R-mediated apoptosis in rPCNs occurs primarily through an intrinsic caspase-8/9/3 activation pathway. BzATP also induced the activation of C-jun N-terminal kinase 1 (JNK1) and extracellular signal-regulated kinases (ERK1/2) in rPCNs, and pharmacological inhibition of either JNK1 or ERK1/2 significantly reduced caspase activation by BzATP. Taken together, these data indicate that extracellular nucleotides mediate neuronal apoptosis through activation of P2X7Rs and their downstream signaling pathways involving JNK1, ERK and caspases 8/9/3
    corecore