29 research outputs found

    Direct Evidence for P2Y2 Receptor Involvement in Vascular Response to Injury

    Get PDF
    Objectives Extracellular nucleotide release at the site of arterial injury mediates proliferation and migration of vascular smooth muscle cells (SMC). Our aim was to investigate the role of the P2Y2 nucleotide receptor (P2Y2R) in neointimal hyperplasia. Approach and Results Vascular injury was induced by implantation of a polyethylene cuff around the femoral artery in wild-type and P2Y2 receptor-deficient mice (P2Y2R−/−). Electron microscopy was used to analyze monocyte and lymphocyte influx to the intima 36 hours post-injury. Compared to wild-type (WT) littermates, P2Y2R−/− mice exhibited a 3-fold decreased number of mononuclear leukocytes invading the intima (p<0.05). Concomitantly, migration of smooth muscle cells was decreased by more than 60% (p<0.05) a resulting in a sharp inhibition of intimal thickening formation in P2Y2R−/− mice (n=15) 14 days after cuff placement. In vitro, loss of P2Y2 receptor significantly impaired monocyte migration in response to nucleotide agonists. Furthermore, transgenic rats over-expressing the P2Y2R developed accelerated intimal lesions resulting in more than 95% luminal stenosis (P<0.05, n=10). Conclusions Loss-and gain-of-function approaches established a direct evidence for P2Y2 receptor involvement in neointimal hyperplasia. Specific anti-P2Y2 receptor therapies may be used against restenosis and bypass graft failure

    Up-regulation of the P2Y2 receptor by cytokines in neuronal cells

    Get PDF
    Abstract only availableAlzheimer's Disease (AD) is characterized by inflammation and neurodegeneration in the brain due to the presence of extracellular amyloid beta (A β) plaques and neurofibrillary tangles. Microglial and astrocyte cells associated with these plaques and tangles have been shown to release cytokines in AD patients, which have a proinflammatory effect on the brain. The P2Y2 receptor (P2Y2R) is a receptor protein that is up-regulated in response to damage or stress in a variety of tissues, including blood vessels and salivary gland epithelium. Recently our laboratory has shown that activation of the P2Y2R enhances α -secretase-dependent amyloid precursor protein (APP) processing. APP is proteolytically processed by β - and γ -secretases to release neurodegenerative A β. Alternatively, APP can be cleaved within the A β domain by α -secretase releasing the non-amyloidogenic product, sAPP α, which has been shown to have neuroprotective properties. Primary neurons have low P2Y2R expression, however, it has been demonstrated that cytokines up-regulate P2Y2R in smooth muscle cells. Therefore, this study will explore if cytokines up-regulate P2Y2R expression in primary rat neurons and in SH-SY5Y human neuroblastoma cells. Primary rat neurons and SH-SY5Y human neuroblastoma cells were plated on glass cover slips 24 or 48 hours with individual treatment, or a combination of, human interleukin-1 β (IL1- β), tumor necrosis factor α (TNF α), and interferon γ (IF γ). P2Y2R activity was measured by increases in intracellular calcium concentration ([Ca2+]i ) in response to the P2Y2R agonist UTP. Results support the hypothesis that P2Y2R is up-regulated by cytokines in neuronal cells. Furthermore, real-time PCR results indicate a two-fold increase in P2Y2R mRNA after cytokine treatment. Therefore, activation of the up-regulated P2Y2R in stressed neurons generates a neuroprotective (sAPP α) rather than neurodegenerative (A β) peptide. These results could have a substantial impact on the understanding and treatment of neurological disorders such as AD.Life Sciences Undergraduate Research Opportunity Progra

    TLR3 deficiency exacerbates the loss of epithelial barrier function during genital tract Chlamydia muridarum infection

    Get PDF
    PROBLEM: Chlamydia trachomatis infections are often associated with acute syndromes including cervicitis, urethritis, and endometritis, which can lead to chronic sequelae such as pelvic inflammatory disease (PID), chronic pelvic pain, ectopic pregnancy, and tubal infertility. As epithelial cells are the primary cell type productively infected during genital tract Chlamydia infections, we investigated whether Chlamydia has any impact on the integrity of the host epithelial barrier as a possible mechanism to facilitate the dissemination of infection, and examined whether TLR3 function modulates its impact. METHOD OF STUDY: We used wild-type and TLR3-deficient murine oviduct epithelial (OE) cells to ascertain whether C. muridarum infection had any effect on the epithelial barrier integrity of these cells as measured by transepithelial resistance (TER) and cell permeability assays. We next assessed whether infection impacted the transcription and protein function of the cellular tight-junction (TJ) genes for claudins1-4, ZO-1, JAM1 and occludin via quantitative real-time PCR (qPCR) and western blot. RESULTS: qPCR, immunoblotting, transwell permeability assays, and TER studies show that Chlamydia compromises cellular TJ function throughout infection in murine OE cells and that TLR3 deficiency significantly exacerbates this effect. CONCLUSION: Our data show that TLR3 plays a role in modulating epithelial barrier function during Chlamydia infection of epithelial cells lining the genital tract. These findings propose a role for TLR3 signaling in maintaining the integrity of epithelial barrier function during genital tract Chlamydia infection, a function that we hypothesize is important in helping limit the chlamydial spread and subsequent genital tract pathology

    Impact of annual praziquantel treatment on urogenital schistosomiasis in a seasonal transmission focus in central Senegal

    Get PDF
    In Sub-Saharan Africa, urogenital schistosomiasis remains a significant public health problem, causing 150.000 deaths/year with approximately 112 million cases diagnosed. The Niakhar district is a disease hotspot in central Senegal where transmission occurs seasonally with high prevalences. The aim of this study was to determine the effect of annual treatment over 3 years on the seasonal transmission dynamics of S. haematobium in 9 villages in the Niakhar district. Adults and children aged between 5 and 60 years were surveyed from 2011 to 2014. Urine samples were collected door-to-door and examined for S. haematobium eggs at baseline in June 2011, and all participants were treated in August 2011 with PZQ (40 mg/kg). After this initial examination, evaluations were conducted at 3 successive time points from September 2011 to March 2014, to measure the efficacy of the annual treatments and the rates of reinfection. Each year, during the transmission period, from July to November-December, malacological surveys were also carried out in the fresh water bodies of each village to evaluate the infestation of the snail intermediate hosts. At baseline, the overall prevalence of S. haematobium infection was 57.7%, and the proportion of heavy infection was 45.3%, but one month after the first treatment high cure rates (92.9%) were obtained. The overall infection prevalence and proportion of heavy infection intensities were drastically reduced to 4.2% and 2.3%, respectively. The level of the first reinfection in February-March 2012 was 9.5%. At follow-up time points, prevalence levels varied slightly between reinfection and treatment from 9.5% in June 2012 to 0.3% in March 2013, 11.2 in June 2013, and 10.1% April 2014. At the end of the study, overall prevalence was significantly reduced from 57.7% to 10.1%. The overall rate of infested Bulinid snails was reduced after repeated treatment from 0.8% in 2012 to 0.5% in 2013. Repeated annual treatments are suggested to have a considerable impact on the transmission dynamics of S. haematobium in Niakhar, due to the nature of the epidemiological system with seasonal transmission. Thus, to maintain this benefit and continue to reduce the morbidity of urogenital schistosomiasis, other approaches should be integrated into the strategy plans of the National program to achieve the goal of urogenital schistosomiasis elimination in seasonal foci in Senegal

    Endothelial Cell-Specific Deletion of P2Y2 Receptor Promotes Plaque Stability in Atherosclerosis-Susceptible ApoE-Null Mice

    Get PDF
    OBJECTIVE: Nucleotide P2Y2 receptor (P2Y2R) contributes to vascular inflammation by increasing vascular cell adhesion molecule-1 expression in endothelial cells (EC), and global P2Y2R deficiency prevents fatty streak formation in apolipoprotein E null (ApoE-/-) mice. Because P2Y2R is ubiquitously expressed in vascular cells, we investigated the contribution of endothelial P2Y2R in the pathogenesis of atherosclerosis. APPROACH AND RESULTS: EC-specific P2Y2R-deficient mice were generated by breeding VEcadherin5-Cre mice with the P2Y2R floxed mice. Endothelial P2Y2R deficiency reduced endothelial nitric oxide synthase activity and significantly altered ATP- and UTP (uridine 5'-triphosphate)-induced vasorelaxation without affecting vasodilatory responses to acetylcholine. Telemetric blood pressure and echocardiography measurements indicated that EC-specific P2Y2R-deficient mice did not develop hypertension. We investigated the role of endothelial P2Y2R in the development of atherosclerotic lesions by crossing the EC-specific P2Y2R knockout mice onto an ApoE-/- background and evaluated lesion development after feeding a standard chow diet for 25 weeks. Histopathologic examination demonstrated reduced atherosclerotic lesions in the aortic sinus and entire aorta, decreased macrophage infiltration, and increased smooth muscle cell and collagen content, leading to the formation of a subendothelial fibrous cap in EC-specific P2Y2R-deficient ApoE-/- mice. Expression and proteolytic activity of matrix metalloproteinase-2 was significantly reduced in atherosclerotic lesions from EC-specific P2Y2R-deficient ApoE-/- mice. Furthermore, EC-specific P2Y2R deficiency inhibited nitric oxide production, leading to significant increase in smooth muscle cell migration out of aortic explants. CONCLUSIONS: EC-specific P2Y2R deficiency reduces atherosclerotic burden and promotes plaque stability in ApoE-/- mice through impaired macrophage infiltration acting together with reduced matrix metalloproteinase-2 activity and increased smooth muscle cell migration

    P2 receptors in atherosclerosis and postangioplasty restenosis

    Get PDF
    Atherosclerosis is an immunoinflammatory process that involves complex interactions between the vessel wall and blood components and is thought to be initiated by endothelial dysfunction [Ross (Nature 362:801–09, 1993); Fuster et al. (N Engl J Med 326:242–50, 1992); Davies and Woolf (Br Heart J 69:S3–S11, 1993)]. Extracellular nucleotides that are released from a variety of arterial and blood cells [Di Virgilio and Solini (Br J Pharmacol 135:831–42, 2002)] can bind to P2 receptors and modulate proliferation and migration of smooth muscle cells (SMC), which are known to be involved in intimal hyperplasia that accompanies atherosclerosis and postangioplasty restenosis [Lafont et al. (Circ Res 76:996–002, 1995)]. In addition, P2 receptors mediate many other functions including platelet aggregation, leukocyte adherence, and arterial vasomotricity. A direct pathological role of P2 receptors is reinforced by recent evidence showing that upregulation and activation of P2Y2 receptors in rabbit arteries mediates intimal hyperplasia [Seye et al. (Circulation 106:2720–726, 2002)]. In addition, upregulation of functional P2Y receptors also has been demonstrated in the basilar artery of the rat double-hemorrhage model [Carpenter et al. (Stroke 32:516–22, 2001)] and in coronary artery of diabetic dyslipidemic pigs [Hill et al. (J Vasc Res 38:432–43, 2001)]. It has been proposed that upregulation of P2Y receptors may be a potential diagnostic indicator for the early stages of atherosclerosis [Elmaleh et al. (Proc Natl Acad Sci U S A 95:691–95, 1998)]. Therefore, particular effort must be made to understand the consequences of nucleotide release from cells in the cardiovascular system and the subsequent effects of P2 nucleotide receptor activation in blood vessels, which may reveal novel therapeutic strategies for atherosclerosis and restenosis after angioplasty

    Characterization of a P2Y2 nucleotide receptor antibody by Western blot analysis [abstract]

    No full text
    Abstract only availableFaculty Mentor: Dr. Gary Weisman, BiochemistryP2 nucleotide receptors modulate a wide range of physiological responses following their activation by extracellular nucleotides (Ralevic V et al., Pharmacol. Rev. 1998; 50: 413-492). The G protein-coupled P2Y2 nucleotide receptor (P2Y2R) subtype is fully activated by equivalent concentrations of ATP or UTP and is up-regulated in salivary gland models of stress and disease (Turner JT et al., Am. J. Physiol. 1997; 273: C1100-C1107; Ahn JS et al., Am. J. Physiol. 2000; 279: C286-C294; Schrader AM et al., Arch. Oral. Biol. 2005; 50: 533-540), in blood vessels after balloon angioplasty, and in collared carotid arteries where they promote intimal hyperplasia and inflammation by increasing smooth muscle cell proliferation and leukocyte infiltration (Seye CI et al., Arterioscler. Thromb. Vasc. Biol. 1997; 17: 3602-3610; Seye CI et al., 2002; Circulation 106: 2720-2726). Since a reliable anti-P2Y2R antibody is not currently available, determination of the presence of the P2Y2R in cells and tissues has been limited to P2Y2R mRNA quantification by reverse transcription-polymerase chain reaction (RT-PCR) or in situ hybridization of cells or tissues using P2Y2R-specific riboprobes. Alternatively, the functional activity of the P2Y2R in freshly isolated cells or established cell cultures can be determined by measuring changes in the intracellular free calcium concentration in response to ATP or UTP. Recently, a commercially-available anti-rat P2Y2R antibody has been produced by Alamone Laboratories (Jerusalem, Israel). The purpose of this study is to characterize the specificity of the Alamone antibody for the P2Y2R in human, rat and mouse tissues. Preliminary results from Western blot analysis of cell lysates from the rat ParC10 salivary gland cell line that expresses endogenous P2Y2Rs indicate a single band with an approximate size of 45 kD. Furthermore, a primary preparation of rat submandibular gland acinar cells cultured for 48 h also yielded a 45 kD band in Western analysis, whereas freshly prepared (0 time) acini did not show any bands, consistent with the observation that the P2Y2R is upregulated in submandibular gland acini as a function of time of culture. Additional experiments are underway to evaluate the specificity of the antibody with cells from P2Y2R knock-out mice and human 1321N1 astrocytoma cells expressing the recombinant human P2Y2R
    corecore