293 research outputs found
A role for suppressed thermogenesis favoring catch-up fat in the pathophysiology of catch-up growth
Catch-up growth is a risk factor for later obesity, type 2
diabetes, and cardiovascular diseases. We show here
that after growth arrest by semistarvation, rats refed
the same amount of a low-fat diet as controls show 1)
lower energy expenditure due to diminished thermogenesis
that favors accelerated fat deposition or catch-up
fat and 2) normal glucose tolerance but higher plasma
insulin after a glucose load at a time point when their
body fat and plasma free fatty acids (FFAs) have not
exceeded those of controls. Isocaloric refeeding on a
high-fat diet resulted in even lower energy expenditure
and thermogenesis and increased fat deposition and
led to even higher plasma insulin and elevated plasma
glucose after a glucose load. Stepwise regression analysis
showed that plasma insulin and insulin-to-glucose
ratio after the glucose load are predicted by variations
in efficiency of energy use (i.e., in thermogenesis)
rather than by the absolute amount of body fat or
plasma FFAs. These studies suggest that suppression of
thermogenesis per se may have a primary role in the
development of hyperinsulinemia and insulin resistance
during catch-up growth and underscore a role for suppressed
thermogenesis directed specifically at catch-up
fat in the link between catch-up growth and chronic
metabolic diseases
Pulmonary delivery of cationic gold nanoparticles boost antigen-specific CD4+ T Cell Proliferation
To address how surface charge affects the fate of potential nanocarriers in the lung, gold nanoparticles (AuNPs) coated with polyvinyl alcohol containing either positively (NH2) or negatively (COOH) charged functional groups were intra-nasally instilled in mice, and their uptake by antigen presenting cell populations (APC) in broncho-alveolar lavage (BAL) fluid, trachea, and lung parenchyma, as well as trafficking to the lung draining lymph nodes (LDLNs) was assessed by flow cytometry. Furthermore, CD4+ T cell proliferation in LDLNs was investigated following instillation. All APC subpopulations preferentially captured positively-charged AuNPs compared to their negatively-charged counterparts. Uptake of AuNPs up-regulated expression of co-stimulatory molecules on all APC populations. Furthermore, positively-charged AuNPs induced enhanced OVA-specific CD4+ T cell stimulation in LDLNs compared to negatively-charged AuNPs, or polymer alone. Our findings demonstrate surface charge as a key parameter determining particle uptake by APC, and down-stream immune responses depend on the presence of particle core-bound polymer
The contribution of Swiss scientists to the assessment of energy metabolism
Although Switzerland is considered a small country, it has its share in discoveries, inventions and developments for the assessment of energy metabolism. This includes seminal contributions to respiratory and metabolic physiology and to devices for measuring energy expenditure by direct and indirect calorimetry in vivo in humans and small animals (as well as in vitro in organs/tissues), for the purpose of evaluating the basic nutritional requirements. A strong momentum came during World War II when it was necessary to evaluate the energy requirements of soldiers protecting the country by assessing their energy expenditure, as well as to determine the nutritional needs of the Swiss civil population in time of war when food rationing was necessary to ensure national neutrality and independence. A further impetus came in the 1970s at the start of the obesity epidemics, toward a better understanding of the metabolic basis of obesity, ranging from the development of whole-body concepts to molecular mechanisms. In a trip down memory lane, this review focuses on some of the earlier leading Swiss scientists who have contributed to a better understanding of the field
"Case files from the University of Florida: When an Earache is more than an Earache": A case report
Brain abscess is not a common diagnosis as there are only approximately 2000 cases reported each year in the United States. There are three main routes of access to the brain including contiguous infection from the oropharynx, direct implantation and hematogenously. We present a case of brain abscess in a child who had multiple visits for ear pain to various physicians including pediatricians and to emergency departments. Additionally, the microbiology of brain abscesses is briefly discussed, as is treatment
Impaired photoprotection in Phaeodactylum tricornutum KEA3 mutants reveals the proton regulatory circuit of diatoms light acclimation
International audienceDiatoms are successful phytoplankton clades able to acclimate to changing environmental conditions, including e.g. variable light intensity. Diatoms are outstanding at dissipating light energy exceeding the maximum photosynthetic electron transfer (PET) capacity via the nonphotochemical quenching (NPQ) process. While the molecular effectors of NPQ as well as the involvement of the proton motive force (PMF) in its regulation are known, the regulators of the PET/PMF relationship remain unidentified in diatoms. We generated mutants of the H /K antiporter KEA3 in the model diatom . Loss of KEA3 activity affects the PET/PMF coupling and NPQ responses at the onset of illumination, during transients and in steady-state conditions. Thus, this antiporter is a main regulator of the PET/PMF coupling. Consistent with this conclusion, a parsimonious model including only two free components, KEA3 and the diadinoxanthin de-epoxidase, describes most of the feedback loops between PET and NPQ. This simple regulatory system allows for efficient responses to fast (minutes) or slow (e.g. diel) changes in light environment, thanks to the presence of a regulatory calcium ion (Ca )-binding domain in KEA3 modulating its activity. This circuit is likely tuned by the NPQ-effector proteins, LHCXs, providing diatoms with the required flexibility to thrive in different ocean provinces
Internet of things
Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Digital Earth was born with the aim of replicating the real world within the digital world. Many efforts have been made to observe and sense the Earth, both from space (remote sensing) and by using in situ sensors. Focusing on the latter, advances in Digital Earth have established vital bridges to exploit these sensors and their networks by taking location as a key element. The current era of connectivity envisions that everything is connected to everything. The concept of the Internet of Things(IoT)emergedasaholisticproposaltoenableanecosystemofvaried,heterogeneous networked objects and devices to speak to and interact with each other. To make the IoT ecosystem a reality, it is necessary to understand the electronic components, communication protocols, real-time analysis techniques, and the location of the objects and devices. The IoT ecosystem and the Digital Earth (DE) jointly form interrelated infrastructures for addressing today’s pressing issues and complex challenges. In this chapter, we explore the synergies and frictions in establishing an efficient and permanent collaboration between the two infrastructures, in order to adequately address multidisciplinary and increasingly complex real-world problems. Although there are still some pending issues, the identified synergies generate optimism for a true collaboration between the Internet of Things and the Digital Earth
Morphological bases of phytoplankton energy management and physiological responses unveiled by 3D subcellular imaging
Eukaryotic phytoplankton have a small global biomass but play major roles in primary production and climate. Despite improved understanding of phytoplankton diversity and evolution, we largely ignore the cellular bases of their environmental plasticity. By comparative 3D morphometric analysis across seven distant phytoplankton taxa, we observe constant volume occupancy by the main organelles and preserved volumetric ratios between plastids and mitochondria. We hypothesise that phytoplankton subcellular topology is modulated by energy-management constraints. Consistent with this, shifting the diatom Phaeodactylum
from low to high light enhances photosynthesis and respiration, increases cell-volume occupancy by mitochondria and the plastid CO2-fixing pyrenoid, and boosts plastid mitochondria contacts. Changes in organelle architectures and interactions also accompany Nannochloropsis acclimation to different trophic lifestyles, along with respiratory and photosynthetic responses. By revealing evolutionarily-conserved topologies of energy-managing organelles, and their role in phytoplankton acclimation, this work deciphers phytoplankton responses at subcellular scales
Adipose Tissue Plasticity During Catch-Up Fat Driven by Thrifty Metabolism: Relevance for Muscle-Adipose Glucose Redistribution During Catch-Up Growth
OBJECTIVE: Catch-up growth, a risk factor for later type 2 diabetes, is characterized by hyperinsulinemia, accelerated body-fat recovery (catch-up fat), and enhanced glucose utilization in adipose tissue. Our objective was to characterize the determinants of enhanced glucose utilization in adipose tissue during catch-up fat. RESEARCH DESIGN AND METHODS: White adipose tissue morphometry, lipogenic capacity, fatty acid composition, insulin signaling, in vivo glucose homeostasis, and insulinemic response to glucose were assessed in a rat model of semistarvation-refeeding. This model is characterized by glucose redistribution from skeletal muscle to adipose tissue during catch-up fat that results solely from suppressed thermogenesis (i.e., without hyperphagia). RESULTS: Adipose tissue recovery during the dynamic phase of catch-up fat is accompanied by increased adipocyte number with smaller diameter, increased expression of genes for adipogenesis and de novo lipogenesis, increased fatty acid synthase activity, increased proportion of saturated fatty acids in triglyceride (storage) fraction but not in phospholipid (membrane) fraction, and no impairment in insulin signaling. Furthermore, it is shown that hyperinsulinemia and enhanced adipose tissue de novo lipogenesis occur concomitantly and are very early events in catch-up fat. CONCLUSIONS: These findings suggest that increased adipose tissue insulin stimulation and consequential increase in intracellular glucose flux play an important role in initiating catch-up fat. Once activated, the machinery for lipogenesis and adipogenesis contribute to sustain an increased insulin-stimulated glucose flux toward fat storage. Such adipose tissue plasticity could play an active role in the thrifty metabolism that underlies glucose redistribution from skeletal muscle to adipose tissue
Zircon ages in granulite facies rocks: decoupling from geochemistry above 850 °C?
Granulite facies rocks frequently show a large spread in their zircon ages, the interpretation of which raises questions: Has the isotopic system been disturbed? By what process(es) and conditions did the alteration occur? Can the dates be regarded as real ages, reflecting several growth episodes? Furthermore, under some circumstances of (ultra-)high-temperature metamorphism, decoupling of zircon U–Pb dates from their trace element geochemistry has been reported. Understanding these processes is crucial to help interpret such dates in the context of the P–T history. Our study presents evidence for decoupling in zircon from the highest grade metapelites (> 850 °C) taken along a continuous high-temperature metamorphic field gradient in the Ivrea Zone (NW Italy). These rocks represent a well-characterised segment of Permian lower continental crust with a protracted high-temperature history. Cathodoluminescence images reveal that zircons in the mid-amphibolite facies preserve mainly detrital cores with narrow overgrowths. In the upper amphibolite and granulite facies, preserved detrital cores decrease and metamorphic zircon increases in quantity. Across all samples we document a sequence of four rim generations based on textures. U–Pb dates, Th/U ratios and Ti-in-zircon concentrations show an essentially continuous evolution with increasing metamorphic grade, except in the samples from the granulite facies, which display significant scatter in age and chemistry. We associate the observed decoupling of zircon systematics in high-grade non-metamict zircon with disturbance processes related to differences in behaviour of non-formula elements (i.e. Pb, Th, U, Ti) at high-temperature conditions, notably differences in compatibility within the crystal structure
cDNA Cloning and Expression Analysis of Gustavus Gene in the Oriental River Prawn Macrobrachium nipponense
The gustavus gene is required for localizing pole plasm and specifying germ cells. Research on gustavus gene expression will advance our understanding of the biological function of gustavus in animals. A cDNA encoding gustavus protein was identified and termed MnGus in the oriental river prawn Macrobrachium nipponense. Bioinformatic analyses showed that this gene encoded a protein of 262 amino acids and the protein belongs to the Spsb1 family. Real-time quantitative PCR analyses revealed that the expression level of MnGus in prawn embryos was slightly higher at the cleavage stage than at the blastula stage, and reached the maximum level during the zoea stage of embryos. The minimum level of MnGus expression occurred during the perinucleolus stage in the ovary, while the maximum was at the oil globule stage, and then the level of MnGus expression gradually decreased with the advancement of ovarian development. The expression level of MnGus in muscle was much higher than that in other tissues in mature prawn. The gustavus cDNA sequence was firstly cloned from the oriental river prawn and the pattern of gene expression was described during oocyte maturation, embryonic development, and in other tissues. The differential expression patterns of MnGus in the embryo, ovary and other somatic tissues suggest that the gustavus gene performs multiple physiological functions in the oriental river prawn
- …