35 research outputs found

    Proportion and associated factors of respectful maternity care during childbirth in North Showa zone public health institutions, North Showa, Ethiopia: An institutional-based cross-sectional study

    Get PDF
    BackgroundRespectful maternity care is one of the key strategies to increase access to use skilled maternity care services. However, limited studies are done about the extent of respectful maternity care during labor and delivery in Ethiopia, particularly in the study area.ObjectiveThis study aimed to determine the proportion and identify the associated factors of respectful maternity care during childbirth among women who gave birth in North Showa zone public health institutions, North Showa zone, Ethiopia, 2020.MethodsAn institutional-based cross-sectional study was conducted among women who got birth in North Showa public health institution from October 20 to November 20, 2020. A systematic random sampling technique was used to select study participants. Logistic regression with adjusted odds ratio and 95% uncertainty interval was used to declare statistically significant variables based on p < 0.05 in the multivariable logistic regression model.ResultThe overall proportion of respectful maternity care during childbirth was 48.6 % (95% CI: 44.6–52.3%). Urban residence AOR = 2.6 (95% CI: 1.8, 3.6), being multiparous AOR = 1.6 (95% CI: 1.1, 2.3), having planned pregnancy AOR = 2.4 (95% CI: 1.3, 4.3) and giving birth in health center AOR = 1.6 (95% CI: 1.2, 2.8) were statistically significant factors with respectful maternity care during labor and delivery.ConclusionsThe proportion of respectful maternity care during childbirth is low. Being from an urban community, being multiparous, having planned pregnancy, and giving birth in a health center were factors that could increase the likely hood of women getting respectful maternity care during childbirth. Based on the identified factors strategies need to be designed and implemented to enhance the level of respectful maternity care

    Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019: A Systematic Analysis for the Global Burden of Disease Study 2019.

    Get PDF
    The Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019) provided systematic estimates of incidence, morbidity, and mortality to inform local and international efforts toward reducing cancer burden. To estimate cancer burden and trends globally for 204 countries and territories and by Sociodemographic Index (SDI) quintiles from 2010 to 2019. The GBD 2019 estimation methods were used to describe cancer incidence, mortality, years lived with disability, years of life lost, and disability-adjusted life years (DALYs) in 2019 and over the past decade. Estimates are also provided by quintiles of the SDI, a composite measure of educational attainment, income per capita, and total fertility rate for those younger than 25 years. Estimates include 95% uncertainty intervals (UIs). In 2019, there were an estimated 23.6 million (95% UI, 22.2-24.9 million) new cancer cases (17.2 million when excluding nonmelanoma skin cancer) and 10.0 million (95% UI, 9.36-10.6 million) cancer deaths globally, with an estimated 250 million (235-264 million) DALYs due to cancer. Since 2010, these represented a 26.3% (95% UI, 20.3%-32.3%) increase in new cases, a 20.9% (95% UI, 14.2%-27.6%) increase in deaths, and a 16.0% (95% UI, 9.3%-22.8%) increase in DALYs. Among 22 groups of diseases and injuries in the GBD 2019 study, cancer was second only to cardiovascular diseases for the number of deaths, years of life lost, and DALYs globally in 2019. Cancer burden differed across SDI quintiles. The proportion of years lived with disability that contributed to DALYs increased with SDI, ranging from 1.4% (1.1%-1.8%) in the low SDI quintile to 5.7% (4.2%-7.1%) in the high SDI quintile. While the high SDI quintile had the highest number of new cases in 2019, the middle SDI quintile had the highest number of cancer deaths and DALYs. From 2010 to 2019, the largest percentage increase in the numbers of cases and deaths occurred in the low and low-middle SDI quintiles. The results of this systematic analysis suggest that the global burden of cancer is substantial and growing, with burden differing by SDI. These results provide comprehensive and comparable estimates that can potentially inform efforts toward equitable cancer control around the world.Funding/Support: The Institute for Health Metrics and Evaluation received funding from the Bill & Melinda Gates Foundation and the American Lebanese Syrian Associated Charities. Dr Aljunid acknowledges the Department of Health Policy and Management of Kuwait University and the International Centre for Casemix and Clinical Coding, National University of Malaysia for the approval and support to participate in this research project. Dr Bhaskar acknowledges institutional support from the NSW Ministry of Health and NSW Health Pathology. Dr Bärnighausen was supported by the Alexander von Humboldt Foundation through the Alexander von Humboldt Professor award, which is funded by the German Federal Ministry of Education and Research. Dr Braithwaite acknowledges funding from the National Institutes of Health/ National Cancer Institute. Dr Conde acknowledges financial support from the European Research Council ERC Starting Grant agreement No 848325. Dr Costa acknowledges her grant (SFRH/BHD/110001/2015), received by Portuguese national funds through Fundação para a Ciência e Tecnologia, IP under the Norma Transitória grant DL57/2016/CP1334/CT0006. Dr Ghith acknowledges support from a grant from Novo Nordisk Foundation (NNF16OC0021856). Dr Glasbey is supported by a National Institute of Health Research Doctoral Research Fellowship. Dr Vivek Kumar Gupta acknowledges funding support from National Health and Medical Research Council Australia. Dr Haque thanks Jazan University, Saudi Arabia for providing access to the Saudi Digital Library for this research study. Drs Herteliu, Pana, and Ausloos are partially supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084. Dr Hugo received support from the Higher Education Improvement Coordination of the Brazilian Ministry of Education for a sabbatical period at the Institute for Health Metrics and Evaluation, between September 2019 and August 2020. Dr Sheikh Mohammed Shariful Islam acknowledges funding by a National Heart Foundation of Australia Fellowship and National Health and Medical Research Council Emerging Leadership Fellowship. Dr Jakovljevic acknowledges support through grant OI 175014 of the Ministry of Education Science and Technological Development of the Republic of Serbia. Dr Katikireddi acknowledges funding from a NHS Research Scotland Senior Clinical Fellowship (SCAF/15/02), the Medical Research Council (MC_UU_00022/2), and the Scottish Government Chief Scientist Office (SPHSU17). Dr Md Nuruzzaman Khan acknowledges the support of Jatiya Kabi Kazi Nazrul Islam University, Bangladesh. Dr Yun Jin Kim was supported by the Research Management Centre, Xiamen University Malaysia (XMUMRF/2020-C6/ITCM/0004). Dr Koulmane Laxminarayana acknowledges institutional support from Manipal Academy of Higher Education. Dr Landires is a member of the Sistema Nacional de Investigación, which is supported by Panama’s Secretaría Nacional de Ciencia, Tecnología e Innovación. Dr Loureiro was supported by national funds through Fundação para a Ciência e Tecnologia under the Scientific Employment Stimulus–Institutional Call (CEECINST/00049/2018). Dr Molokhia is supported by the National Institute for Health Research Biomedical Research Center at Guy’s and St Thomas’ National Health Service Foundation Trust and King’s College London. Dr Moosavi appreciates NIGEB's support. Dr Pati acknowledges support from the SIAN Institute, Association for Biodiversity Conservation & Research. Dr Rakovac acknowledges a grant from the government of the Russian Federation in the context of World Health Organization Noncommunicable Diseases Office. Dr Samy was supported by a fellowship from the Egyptian Fulbright Mission Program. Dr Sheikh acknowledges support from Health Data Research UK. Drs Adithi Shetty and Unnikrishnan acknowledge support given by Kasturba Medical College, Mangalore, Manipal Academy of Higher Education. Dr Pavanchand H. Shetty acknowledges Manipal Academy of Higher Education for their research support. Dr Diego Augusto Santos Silva was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil Finance Code 001 and is supported in part by CNPq (302028/2018-8). Dr Zhu acknowledges the Cancer Prevention and Research Institute of Texas grant RP210042

    Land Use/Cover Change at Infraz Watershed, Northwestren Ethiopia

    No full text
    Land cover is the physical and biological cover of the surface whereas land use covers the results of human activities for the exploitation of it. The land cover and landuse change is caused by both, natural and anthropogenic factors. The objective of this study was to detect land cover/use changes in Infraz Watershed. The study has used ArcGIS10 and ERDAS IMAGINE10, landsat images of 1973, 1986, 1995 and 2011 and socio-economic data to analyze land cover and landuse changes of Infraz watershed. The study has found that due to the population increase and improper agricultural activity bush and wetlands have declined where as farm and settlement lands expanded between the study years. About 1044 wetlands and 6338.7 ha of bush lands were lost and converted to cultivated and farm lands, grass lands and forest covers which were increased by 6685.3, 357.7 and 338.3 ha between the study periods respectively. There is an urgent need to limit the population growth rate and implementing land use policy in the Infraz watershed

    Soil loss estimation using GIS and Remote sensing techniques: A case of Koga watershed, Northwestern Ethiopia

    Get PDF
    AbstractSoil loss by runoff is a severe and continuous ecological problem in Koga watershed. Deforestation, improper cultivation and uncontrolled grazing have resulted in accelerated soil erosion. Information on soil loss is essential to support agricultural productivity and natural resource management. Thus, this study was aimed to estimate and map the mean annual soil loss by using GIS and Remote sensing techniques. The soil loss was estimated by using Revised Universal Soil Equation (RUSLE) model. Topographic map of 1:50,000 scale, Aster Digital Elevation Model (DEM) of 20m spatial resolution, digital soil map of 1:250,000 scale, thirteen years rainfall records of four stations, and land sat imagery (TM) with spatial resolution of 30m was used to derive RUSLE's soil loss variables. The RUSLE parameters were analyzed and integrated using raster calculator in the geo-processing tools in ArcGIS 10.1 environment to estimate and map the annual soil loss of the study area. The result revealed that the annual soil loss of the watershed extends from none in the lower and middle part of the watershed to 265tha−1year−1 in the steeper slope part of the watershed with a mean annual soil loss of 47t ha−1year−1. The total annual soil loss in the watershed was 255283t, of these, 181801 (71%) tones cover about 6691 (24%) hectare of land. Most of these soil erosion affected areas are spatially situated in the upper steepest slope part (inlet) of the watershed. These are areas where Nitosols and Alisols with higher soil erodibility character (0.25) values are dominant. Hence, Slope gradient and length followed by soil erodibility factors were found to be the main factors of soil erosion. Thus, sustainable soil and water conservation practices should be adopted in steepest upper part of the study area by respecting and recognizing watershed logic, people and watershed potentials
    corecore