6 research outputs found

    Characterisation de l’ubiquitine Ligase PDZRN3 en tant que nouvel acteur des voies Wnt dans la morphogenese et l’integrite vasculaire

    No full text
    Parmi les récepteurs Frizzled, Frizzled 4 est le seul à avoir un phénotype vasculaire fort. Parcriblage, nous avons identifié l’ubiquitine ligase PDZRN3 en tant que nouveau partenaire de la protéineadaptatrice Dvl3 qui agit en aval de Fzd4. En utilisant des modèles murins inductibles, nous montronsque la délétion de PDZRN3 induit une létalité embryonnaire suite à des défauts de vascularisation dusac amniotique ; et que PDZRN3 est requis pour une vascularisation normale de la rétine. De par sonactivité d’ubiquitine ligase, PDZRN3 induit la prise en charge du complexe Fzd4/ Dvl3 par les vésiculesd’endocytose ce qui permet la transduction du signal après fixation du ligand Wnt5a sur le récepteurFzd4. PDZRN3 régule également le maintien des jonctions des cellules endothéliales et l’intégrité de labarrière hémato-encéphalique. La délétion de PDZRN3 stabilise les microvaisseaux après ischémiecérébrale. PDZRN3 induit la disruption des jonctions serrées et la rupture de la barrièrehématoencéphalique en ubiquitinant la protéine d’échafaudage MUPP1.Fzd4 is the only Frizzled receptor that is essential for angiogenesis. By using a yeast twohybrid screening, we have identified the ubiquitin ligase PDZRN3 as a potential partner of the adaptorprotein Dvl3 that acts downstream of Fzd4. By using inducible mouse models, we have shown that lossof PDZRN3 leads to early embryo lethality due to vascular defects in the yolk sac when deleted inutero, and is then required during post natal retinal vascularization. PDZRN3 would target the Fzd4/Dvl3 complex to endosome, leading to signal transduction upon binding of Wnt5a to Fzd4. PDZRN3also regulates integrity of the blood brain barrier by acting on tight junctions stability. Loss of PDZRN3stabilizes microvessels after cerebral ischemia. PDZRN3 would induce tight junction disruption andblood brain barrier leakage by ubiquitinylating the scaffolding protein MUPP1

    Characterization Of The Ubiquitin Ligase PDZRN3 As A Novel Actor Of Wnt Pathways In Vascular Morphogenesis And Integrity

    No full text
    Fzd4 is the only Frizzled receptor that is essential for angiogenesis. By using a yeast twohybrid screening, we have identified the ubiquitin ligase PDZRN3 as a potential partner of the adaptorprotein Dvl3 that acts downstream of Fzd4. By using inducible mouse models, we have shown that lossof PDZRN3 leads to early embryo lethality due to vascular defects in the yolk sac when deleted inutero, and is then required during post natal retinal vascularization. PDZRN3 would target the Fzd4/Dvl3 complex to endosome, leading to signal transduction upon binding of Wnt5a to Fzd4. PDZRN3also regulates integrity of the blood brain barrier by acting on tight junctions stability. Loss of PDZRN3stabilizes microvessels after cerebral ischemia. PDZRN3 would induce tight junction disruption andblood brain barrier leakage by ubiquitinylating the scaffolding protein MUPP1.Parmi les récepteurs Frizzled, Frizzled 4 est le seul à avoir un phénotype vasculaire fort. Parcriblage, nous avons identifié l’ubiquitine ligase PDZRN3 en tant que nouveau partenaire de la protéineadaptatrice Dvl3 qui agit en aval de Fzd4. En utilisant des modèles murins inductibles, nous montronsque la délétion de PDZRN3 induit une létalité embryonnaire suite à des défauts de vascularisation dusac amniotique ; et que PDZRN3 est requis pour une vascularisation normale de la rétine. De par sonactivité d’ubiquitine ligase, PDZRN3 induit la prise en charge du complexe Fzd4/ Dvl3 par les vésiculesd’endocytose ce qui permet la transduction du signal après fixation du ligand Wnt5a sur le récepteurFzd4. PDZRN3 régule également le maintien des jonctions des cellules endothéliales et l’intégrité de labarrière hémato-encéphalique. La délétion de PDZRN3 stabilise les microvaisseaux après ischémiecérébrale. PDZRN3 induit la disruption des jonctions serrées et la rupture de la barrièrehématoencéphalique en ubiquitinant la protéine d’échafaudage MUPP1

    Novel Therapeutic Approaches Targeting Post-Translational Modifications in Lung Cancer

    No full text
    Lung cancer is one of the most common cancers worldwide. It consists of two different subtypes: non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). Despite novel therapeutic options such as immunotherapy, only 20% of lung cancer patients survive the disease after five years. This low survival rate is due to acquired drug resistance and severe off-target effects caused by currently used therapies. Identification and development of novel and targeted therapeutic approaches are urgently required to improve the standard of care for lung cancer patients. Here, we describe the recent development of novel drug-delivery approaches, such as adenovirus, lipid nanoparticles, and PROTACs, that have been tested in clinical trials and experimentally in the context of fundamental research. These different options show that it is now possible to target protein kinases, phosphatases, ubiquitin ligases, or protein modifications directly in lung cancer to block disease progression. Furthermore, the recent acceptance of RNA vaccines using lipid nanoparticles has further revealed therapeutic options that could be combined with chemo-/immunotherapies to improve current lung cancer therapies. This review aims to compare recent advances in the pharmaceutical research field for the development of technologies targeting post-translational modifications or protein modifiers involved in the tumorigenesis of lung cancer

    Cracking the Monoubiquitin Code of Genetic Diseases

    No full text
    Ubiquitination is a versatile and dynamic post-translational modification in which single ubiquitin molecules or polyubiquitin chains are attached to target proteins, giving rise to mono- or poly-ubiquitination, respectively. The majority of research in the ubiquitin field focused on degradative polyubiquitination, whereas more recent studies uncovered the role of single ubiquitin modification in important physiological processes. Monoubiquitination can modulate the stability, subcellular localization, binding properties, and activity of the target proteins. Understanding the function of monoubiquitination in normal physiology and pathology has important therapeutic implications, as alterations in the monoubiquitin pathway are found in a broad range of genetic diseases. This review highlights a link between monoubiquitin signaling and the pathogenesis of genetic disorders

    The Noonan Syndrome Gene Lztr1 Controls Cardiovascular Function by Regulating Vesicular Trafficking

    No full text
    RATIONALE: Noonan syndrome (NS) is one of the most frequent genetic disorders. Bleeding problems are among the most common, yet poorly defined complications associated with NS. A lack of consensus on the management of bleeding complications in patients with NS indicates an urgent need for new therapeutic approaches. OBJECTIVE: Bleeding disorders have recently been described in patients with NS harboring mutations of LZTR1 (leucine zipper-like transcription regulator 1), an adaptor for CUL3 (CULLIN3) ubiquitin ligase complex. Here, we assessed the pathobiology of LZTR1-mediated bleeding disorders. METHODS AND RESULTS: Whole-body and vascular specific knockout of Lztr1 results in perinatal lethality due to cardiovascular dysfunction. Lztr1 deletion in blood vessels of adult mice leads to abnormal vascular leakage. We found that defective adherent and tight junctions in Lztr1-depleted endothelial cells are caused by dysregulation of vesicular trafficking. LZTR1 affects the dynamics of fusion and fission of recycling endosomes by controlling ubiquitination of the ESCRT-III (endosomal sorting complex required for transport III) component CHMP1B (charged multivesicular protein 1B), whereas NS-associated LZTR1 mutations diminish CHMP1B ubiquitination. LZTR1-mediated dysregulation of CHMP1B ubiquitination triggers endosomal accumulation and subsequent activation of VEGFR2 (vascular endothelial growth factor receptor 2) and decreases blood levels of soluble VEGFR2 in Lztr1 haploinsufficient mice. Inhibition of VEGFR2 activity by cediranib rescues vascular abnormalities observed in Lztr1 knockout mice Conclusions: Lztr1 deletion phenotypically overlaps with bleeding diathesis observed in patients with NS. ELISA screening of soluble VEGFR2 in the blood of LZTR1-mutated patients with NS may predict both the severity of NS phenotypes and potential responders to anti-VEGF therapy. VEGFR inhibitors could be beneficial for the treatment of bleeding disorders in patients with NS.status: publishe

    The Noonan syndrome gene Lztr1 controls cardiovascular function by regulating vesicular trafficking

    No full text
    Rationale: Noonan syndrome (NS) is one of the most frequent genetic disorders. Bleeding problems are among the most common, yet poorly defined complications associated with NS. A lack of consensus on the management of bleeding complications in patients with NS indicates an urgent need for new therapeutic approaches. Objective: Bleeding disorders have recently been described in patients with NS harboring mutations of LZTR1 (leucine zipper-like transcription regulator 1), an adaptor for CUL3 (CULLIN3) ubiquitin ligase complex. Here, we assessed the pathobiology of LZTR1-mediated bleeding disorders. Methods and Results: Whole-body and vascular specific knockout of Lztr1 results in perinatal lethality due to cardiovascular dysfunction. Lztr1 deletion in blood vessels of adult mice leads to abnormal vascular leakage. We found that defective adherent and tight junctions in Lztr1-depleted endothelial cells are caused by dysregulation of vesicular trafficking. LZTR1 affects the dynamics of fusion and fission of recycling endosomes by controlling ubiquitination of the ESCRT-III (endosomal sorting complex required for transport III) component CHMP1B (charged multivesicular protein 1B), whereas NS-associated LZTR1 mutations diminish CHMP1B ubiquitination. LZTR1-mediated dysregulation of CHMP1B ubiquitination triggers endosomal accumulation and subsequent activation of VEGFR2 (vascular endothelial growth factor receptor 2) and decreases blood levels of soluble VEGFR2 in Lztr1 haploinsufficient mice. Inhibition of VEGFR2 activity by cediranib rescues vascular abnormalities observed in Lztr1 knockout mice Conclusions: Lztr1 deletion phenotypically overlaps with bleeding diathesis observed in patients with NS. ELISA screening of soluble VEGFR2 in the blood of LZTR1-mutated patients with NS may predict both the severity of NS phenotypes and potential responders to anti-VEGF therapy. VEGFR inhibitors could be beneficial for the treatment of bleeding disorders in patients with NS
    corecore