21 research outputs found

    A cross-validated three-dimensional model of an englacial and subglacial drainage system in a High-Arctic glacier

    Get PDF
    The project was supported by the Danish Geological Society and the Arctic Research and Technology Society.Recent speleological surveys of meltwater drainage systems in cold and polythermal glaciers have documented dynamic englacial and in some cases subglacial conduits formed by the ‘cut-and-closure’ mechanism. Investigations of the spatial distribution of such conduits often require a combination of different methods. Here, we studied the englacial drainage system in the cold glacier Longyearbreen, Svalbard by combining speleological exploration of a 478 m long meltwater conduit with a high-resolution ground penetrating radar (GPR) survey with two different centre-frequencies (25 and 100 MHz). The results yielded a 3-D documentation of the present englacial drainage system. The study shows that the overall form of englacial conduits can be detected from velocity−depth converted GPR data, and that the 3-D model can facilitate a method to pinpoint the reflections in a radargram corresponding with the englacial drainage system, although fine detail cannot be resolved. Visible reflections approximately parallel to the mapped englacial water drainage system likely result from sediment incorporated in the ice or from abandoned parts of the englacial drainage system.Publisher PDFPeer reviewe

    Centuries of intense surface melt on Larsen C Ice Shelf

    Get PDF
    Following a southward progression of ice-shelf disintegration along the Antarctic Peninsula, Larsen C Ice Shelf is the focus of ongoing investigation regarding its future stability. The ice shelf is known to be experience surface melt, and commonly features surface meltwater ponds. Here, we use a flowline model and a firn density model to date and interpret observations of melt-affected ice layers found within five 90?m boreholes distributed across the ice shelf. We find that units of ice within the boreholes, which have densities exceeding those expected under normal compaction metamorphism, correspond to two climatic warm periods within the last 300 years on the Antarctic Peninsula. The more recent warm period, from the 1960s onwards, has generated distinct sections of dense ice in two boreholes in Cabinet Inlet, close to the Antarctic Peninsula mountains ? a region currently affected by f?hn winds. Previous work has classified these layers as refrozen pond ice, requiring large quantities of mobile liquid water to form. Our flowline model shows that, whilst preconditioning of the ice began in the late 1960s, it was probably not until the early 1990s that twentieth-century ponding began. The earlier warm period occurred during the 18th century and resulted in two additional sections of anomalously dense ice deep within the boreholes. The first, in one of the Cabinet Inlet boreholes, consists of ice characteristic of refrozen ponds and must have formed in an area currently featuring ponding. The second, in a mid-shelf borehole, formed at the same time in an area which now experiences significant annual melt. Further south on the shelf, the boreholes sample ice that is of an equivalent age but which does not exhibit the same degree of melt influence. This west?east and north?south gradient in past melt distribution resembles current spatial patterns of surface melt intensity. Using flowlines to trace the advection and submergence of continental ice identified in boreholes, we demonstrate that, even by the time the ice reaches the calving front, only the upper 40 to 50?% of the shelf is composed of meteoric ice accumulated on the shelf. This vertical composition implies that basal crevasses must be confined within continental and/or basally accreted ice, and therefore will be unaffected by current climate-induced firn compactionauthorsversio

    Ice and firn heterogeneity within Larsen C Ice Shelf from borehole optical televiewing

    Get PDF
    Research was funded by the UK Natural Environmental Research Council grants NE/L006707/1 and NE/L005409/1 and a HEFCW/Aberystwyth University Capital Equipment Grant to B.H. Data will be available via the project website (www.projectmidas.org) and the UK Polar Data Centre (https://www.bas.ac.uk/data/uk-pdc/) from mid-2017.We use borehole optical televiewing (OPTV) to explore the internal structure of Larsen C Ice Shelf (LCIS). We report a suite of five ~90 m long OPTV logs, recording a light-emitting diode-illuminated, geometrically correct image of the borehole wall, from the northern and central sectors of LCIS collected during austral spring 2014 and 2015. We use a thresholding-based technique to estimate the refrozen ice content of the ice column and exploit a recently calibrated density-luminosity relationship to reveal its structure. All sites are dense and strongly influenced by surface melt, with frequent refrozen ice layers and mean densities, between the depths of 1.87 and 90 m, ranging from 862 to 894 kg m−3. We define four distinct units that comprise LCIS and relate these to ice provenance, dynamic history, and past melt events. These units are in situ meteoric ice with infiltration ice (U1), meteoric ice which has undergone enhanced densification (U2), thick refrozen ice (U3), and advected continental ice (U4). We show that the OPTV-derived pattern of firn air content is consistent with previous estimates, but that a significant proportion of firn air is contained within U4, which we interpret to have been deposited inland of the grounding line. The structure of LCIS is strongly influenced by the E-W gradient in föhn-driven melting, with sites close to the Antarctic Peninsula being predominantly composed of refrozen ice. Melting is also substantial toward the ice shelf center with >40% of the overall imaged ice column being composed of refrozen ice.Publisher PDFPeer reviewe

    Multiple Late Holocene surges of a High-Arctic tidewater glacier system in Svalbard

    Get PDF
    Most large tidewater glaciers in Svalbard are known to have surged at least once in the last few hundredyears. However, very little information exists on the frequency, timing or magnitude of surges prior to theLittle Ice Age (LIA) maximum in ~1900. We investigate the sediment-landform assemblages produced bymultiple advances of the Nathorstbreen glacier system (NGS) in order to reconstruct its Late Holocenesurge history. The glacier has recently undergone one of the largest surges ever observed in Svalbard,advancing ~16 km from 2008 to 2016. We present flow velocities and ice-marginal observations (ter-minus change, proglacial geomorphological processes) from the later stages of this surge. A first detailedassessment of the development of a glaciotectonic mud apron within the fjord during a surge is provided.Geomorphological and sedimentological examination of the terrestrial moraine areas for med prior to themost recent surge reveals that at least two advances were responsible for their formation, based on theidentification of a previously unrecognised ice-contact zone recorded by the distribution of sedimentfacies in coastal exposures. We distinguish between an outer, older advance to the distal part of themoraine system and an inner, younger advance to a position ~2 km upfjord. Radiocarbon dating of shellsembedded in glaciotectonic composite ridges formed by the onshore bulldozing of marine mud duringthe outer (older) of the two advances shows that it occurred at some point during the interval 700e890 cal. yr BP (i.e. ~1160 AD), and not during the LIA as previously assumed. We instead attribute theinner (younger) advance to the LIA at ~1890. By combining these data with previous marine geologicalinvestigations in inner and outer Van Keulenfjorden, we demonstrate that NGS has advanced at least fourtimes prior to the recent 2008e2016 surge: twice at ~2.7 kyr BP, at ~1160 AD, and in ~1890. This rep-resents a unique record of the timing and magnitude of Late Holocene tidewater glacier surges inSvalbar

    Flow-line model code for accumulation of ice along velocity-based trajectories

    Get PDF
    The flow-line model was designed to enable estimation of the age and surface origin for various ice bodies identified within hot-water drilled boreholes on Larsen C Ice Shelf. Surface fluxes are accumulated, converted to thicknesses, and advected down flow from a fixed number of selected points. The model requires input datasets of surface mass balance, surface velocity, vertical strain rates, ice-shelf thickness, and a vertical density profile. This model is part of a larger project. Input datasets such as density profiles and trajectory vectors are available separately. Resolution is dependent on the input datasets. Funding was provided by the NERC grant NE/L005409/1

    Massive subsurface ice formed by refreezing of ice-shelf melt ponds

    Get PDF
    Surface melt ponds form intermittently on several Antarctic ice shelves. Although implicated in ice-shelf break up, the consequences of such ponding for ice formation and ice-shelf structure have not been evaluated. Here we report the discovery of a massive subsurface ice layer, at least 16 km across, several kilometres long and tens of metres deep, located in an area of intense melting and intermittent ponding on Larsen C Ice Shelf, Antarctica. We combine borehole optical televiewer logging and radar measurements with remote sensing and firn modelling to investigate the layer, found to be ∼10 C warmer and ∼170 kg m¯³ denser than anticipated in the absence of ponding and hitherto used in models of ice-shelf fracture and flow. Surface ponding and ice layers such as the one we report are likely to form on a wider range of Antarctic ice shelves in response to climatic warming in forthcoming decades

    Observationally constrained surface mass balance of Larsen C Ice Shelf, Antarctica

    Get PDF
    Abstract. The surface mass balance (SMB) of the Larsen C ice shelf (LCIS), Antarctica, is poorly constrained due to a dearth of in situ observations. Combining several geophysical techniques, we reconstruct spatial and temporal patterns of SMB over the LCIS. Continuous time series of snow height (2.5–6 years) at five locations allow for multi-year estimates of seasonal and annual SMB over the LCIS. There is high interannual variability in SMB as well as spatial variability: in the north, SMB is 0.40 ± 0.06 to 0.41 ± 0.04 m w.e. year−1, while farther south, SMB is up to 0.50 ± 0.05 m w.e. year−1. This difference between north and south is corroborated by winter snow accumulation derived from an airborne radar survey from 2009, which showed an average snow thickness of 0.34 m w.e. north of 66° S, and 0.40 m w.e. south of 68° S. Analysis of ground-penetrating radar from several field campaigns allows for a longer-term perspective of spatial variations in SMB: a particularly strong and coherent reflection horizon below 25–44 m of water-equivalent ice and firn is observed in radargrams collected across the shelf. We propose that this horizon was formed synchronously across the ice shelf. Combining snow height observations, ground and airborne radar, and SMB output from a regional climate model yields a gridded estimate of SMB over the LCIS. It confirms that SMB increases from north to south, overprinted by a gradient of increasing SMB to the west, modulated in the west by föhn-induced sublimation. Previous observations show a strong decrease in firn air content toward the west, which we attribute to spatial patterns of melt, refreezing, and densification rather than SMB. </jats:p
    corecore