69 research outputs found

    Isotopically Light Cd in Sediments Underlying Oxygen Deficient Zones

    Get PDF
    Cadmium is a trace metal of interest in the ocean partly because its concentration mimics that of phosphate. However, deviations from the global mean dissolved Cd/PO4 relationship are present in oxygen deficient zones, where Cd is depleted relative to phosphate. This decoupling has been suggested to result from cadmium sulphide (CdS) precipitation in reducing microenvironments within sinking organic matter. We present Cd concentrations and Cd isotope compositions in organic-rich sediments deposited at several upwelling sites along the northeast Pacific continental margin. These sediments all have enriched Cd concentrations relative to crustal material. We calculate a net accumulation rate of Cd in margin settings of between 2.6 to 12.0 × 107 mol/yr, higher than previous estimates, but at the low end of a recently published estimate for the magnitude of the marine sink due to water column CdS precipitation. Cadmium in organic-rich sediments is isotopically light (δ114/110CdNIST-3108 = +0.02 ± 0.14‰, n = 26; 2 SD) compared to deep seawater (+0.3 ± 0.1‰). However, isotope fractionation during diagenesis in continental margin settings appears to be small. Therefore, the light Cd isotope composition of organic-rich sediments is likely to reflect an isotopically light source of Cd. Non-quantitative biological uptake of light Cd by phytoplankton is one possible means of supplying light Cd to the sediment, which would imply that Cd isotopes could be used as a tracer of past ocean productivity. However, water column CdS precipitation is also predicted to preferentially sequester light Cd isotopes from the water column, which could obfuscate Cd as a tracer. We also observe notably light Cd isotope compositions associated with elevated solid phase Fe concentrations, suggesting that scavenging of Cd by Fe oxide phases may contribute to the light Cd isotope composition of sediments. These multiple possible sources of isotopically light Cd to sediments, along with evidence for complex particle cycling of Cd in the water column, bring into question the straightforward application of Cd isotopes as a paleoproductivity proxy

    Four-Hundred-and-Ninety-Million-Year Record of Bacteriogenic Iron Oxide Precipitation at Sea-Floor Hydrothermal Vents

    Get PDF
    Fe oxide deposits are commonly found at hydrothermal vent sites at mid-ocean ridge and back-arc sea floor spreading centers, seamounts associated with these spreading centers, and intra-plate seamounts, and can cover extensive areas of the seafloor. These deposits can be attributed to several abiogenic processes and commonly contain micron-scale filamentous textures. Some filaments are cylindrical casts of Fe oxyhydroxides formed around bacterial cells and are thus unquestionably biogenic. The filaments have distinctive morphologies very like structures formed by neutrophilic Fe oxidizing bacteria. It is becoming increasingly apparent that Fe oxidizing bacteria have a significant role in the formation of Fe oxide deposits at marine hydrothermal vents. The presence of Fe oxide filaments in Fe oxides is thus of great potential as a biomarker for Fe oxidizing bacteria in modern and ancient marine hydrothermal vent deposits. The ancient analogues of modern deep-sea hydrothermal Fe oxide deposits are jaspers. A number of jaspers, ranging in age from the early Ordovician to late Eocene, contain abundant Fe oxide filamentous textures with a wide variety of morphologies. Some of these filaments are like structures formed by modern Fe oxidizing bacteria. Together with new data from the modern TAG site, we show that there is direct evidence for bacteriogenic Fe oxide precipitation at marine hydrothermal vent sites for at least the last 490 Ma of the Phanerozoic

    The Amundsen Sea Polynya International Research Expedition (ASPIRE)

    Get PDF
    In search of an explanation for some of the greenest waters ever seen in coastal Antarctica and their possible link to some of the fastest melting glaciers and declining summer sea ice, the Amundsen Sea Polynya International Research Expedition (ASPIRE) challenged the capabilities of the US Antarctic Program and RVIB Nathaniel B. Palmer during Austral summer 2010–2011. We were well rewarded by both an extraordinary research platform and a truly remarkable oceanic setting. Here we provide further insights into the key questions that motivated our sampling approach during ASPIRE and present some preliminary findings, while highlighting the value of the Palmer for accomplishing complex, multifaceted oceanographic research in such a challenging environment

    Isotopically Light Cd in Sediments Underlying Oxygen Deficient Zones

    Get PDF
    Cadmium is a trace metal of interest in the ocean partly because its concentration mimics that of phosphate. However, deviations from the global mean dissolved Cd/PO4 relationship are present in oxygen deficient zones, where Cd is depleted relative to phosphate. This decoupling has been suggested to result from cadmium sulphide (CdS) precipitation in reducing microenvironments within sinking organic matter. We present Cd concentrations and Cd isotope compositions in organic-rich sediments deposited at several upwelling sites along the northeast Pacific continental margin. These sediments all have enriched Cd concentrations relative to crustal material. We calculate a net accumulation rate of Cd in margin settings of between 2.6 to 12.0 × 107 mol/yr, higher than previous estimates, but at the low end of a recently published estimate for the magnitude of the marine sink due to water column CdS precipitation. Cadmium in organic-rich sediments is isotopically light (δ114/110CdNIST-3108 = +0.02 ± 0.14‰, n = 26; 2 SD) compared to deep seawater (+0.3 ± 0.1‰). However, isotope fractionation during diagenesis in continental margin settings appears to be small. Therefore, the light Cd isotope composition of organic-rich sediments is likely to reflect an isotopically light source of Cd. Non-quantitative biological uptake of light Cd by phytoplankton is one possible means of supplying light Cd to the sediment, which would imply that Cd isotopes could be used as a tracer of past ocean productivity. However, water column CdS precipitation is also predicted to preferentially sequester light Cd isotopes from the water column, which could obfuscate Cd as a tracer. We also observe notably light Cd isotope compositions associated with elevated solid phase Fe concentrations, suggesting that scavenging of Cd by Fe oxide phases may contribute to the light Cd isotope composition of sediments. These multiple possible sources of isotopically light Cd to sediments, along with evidence for complex particle cycling of Cd in the water column, bring into question the straightforward application of Cd isotopes as a paleoproductivity proxy

    Uranium isotope cycling on the highly productive Peruvian margin

    Get PDF
    Uranium isotopes (δ238U values) in ancient sedimentary rocks (shales, carbonate rocks) are widely used as a tool to reconstruct paleo-redox conditions, but the behaviour of U isotopes under modern non-sulfidic anoxic vs. oxic conditions remains poorly constrained. We present U concentration and isotope data for modern sediments from the Peruvian margin, a highly productive open ocean environment with a range of redox conditions. To investigate U in different host fractions of the sediment (reactive, silicate, and HNO3-soluble fraction), we conducted a series of sequential extractions. Detrital-corrected authigenic U isotope compositions (δ238Uauth) in sediments deposited beneath an oxic water column show little deviation from the dissolved seawater U source, while anoxically deposited sediments have δ238Uauth values that are up to 0.4‰ heavier compared to seawater δ238U. Under anoxic, non-euxinic conditions, the U isotope offset between sediment and seawater is larger compared with oxic, but significantly smaller when compared with euxinic conditions from the literature. The results from sequential extractions show that the reactive sediment fraction records more pronounced differences in δ238Ureactive than δ238Uauth values depending on the oxidation state of the overlying water column. Furthermore, we found a strong correlation between total organic carbon (TOC) and both U concentrations (Uauth) and δ238Uauth values (R2 = 0.70 and 0.94, respectively) at the persistently anoxic site that we examined. These correlations can be caused by several processes including U isotope fractionation during microbially-mediated U reduction at the sediment-water interface (diffusive U input), during sorption onto and/or incorporation into organic matter in the water column (particulate U input) and diagenetic redistribution of U, or a combination of these processes. Our data show that several factors can influence δ238U values including oxidation state of U, the presence or absence of hydrogen sulfide and organic matter. These findings add new constraints to the degree of U isotope fractionation associated with U incorporation into sediments in different low-oxygen environments, thus aiding in interpretation of ancient paleo-redox conditions from U isotope data

    Mechanism for export of sediment-derived iron in an upwelling regime

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L03601, doi:10.1029/2011GL050366.Model simulations performed with a three-dimensional, high-resolution, process study ocean model of eastern boundary upwelling systems are used to describe a mechanism that efficiently transports sediment-derived dissolved iron offshore in the subsurface through the bottom boundary layer (BBL) during downwelling-favorable wind events. In the model, sediment-derived iron accumulates in the BBL on the outer shelf when the winds are upwelling-favorable. When the wind reverses, the iron-laden BBL is mixed into the water column and transported offshore along isopycnals that intersect the bottom. Depending on the frequency of wind reversal, between 10–50% of the shelf sediment-derived iron flux is exported offshore through this previously unidentified subsurface pathway. If this mechanism operates on all coastal upwelling regimes, the global export of sediment-derived iron to the open ocean would be equivalent to ten times larger than the estimated source of dissolved iron from aerosols.NSF supported this work.2012-08-1

    Estimating the Benthic Efflux of Dissolved Iron on the Ross Sea Continental Shelf

    Get PDF
    Continental margin sediments provide a potentially large but poorly constrained source of dissolved iron (dFe) to the upper ocean. The Ross Sea continental shelf is one region where this benthic supply is thought to play a key role in regulating the magnitude of seasonal primary production. Here we present data collected during austral summer 2012 that reveal contrasting low surface (0.08 +/- 0.07 nM) and elevated near-seafloor (0.74 +/- 0.47 nM) dFe concentrations. Combining these observations with results from a high-resolution physical circulation model, we estimate dFe efflux of 5.8 x 10(7) mol yr(-1) from the deeper portions (\u3e400m) of the Ross Sea continental shelf; more than sufficient to account for the inferred winter reserve dFe inventory at the onset of the growing season. In addition, elevated dFe concentrations observed over shallower bathymetry suggest that such features provide additional inputs of dFe to the euphotic zone throughout the year

    Stability of dissolved and soluble Fe(II) in shelf sediment pore waters and release to an oxic water column

    Get PDF
    Shelf sediments underlying temperate and oxic waters of the Celtic Sea (NW European Shelf) were found to have shallow oxygen penetrations depths from late spring to late summer (2.2–5.8 mm below seafloor) with the shallowest during/after the spring-bloom (mid-April to mid-May) when the organic carbon content was highest. Sediment porewater dissolved iron (dFe, 85%) consisted of Fe(II) and gradually increased from 0.4 to 15 μM at the sediment surface to ~100–170 µM at about 6 cm depth. During the late spring this Fe(II) was found to be mainly present as soluble Fe(II) (>85% sFe, 7 h. Iron(II) oxidation experiments in core top and bottom waters also showed removal from solution but at rates up to 5-times slower than predicted from theoretical reaction kinetics. These data imply the presence of ligands capable of complexing Fe(II) and supressing oxidation. The lower oxidation rate allows more time for the diffusion of Fe(II) from the sediments into the overlying water column. Modelling indicates significant diffusive fluxes of Fe(II) (on the order of 23–31 µmol m−2 day−1) are possible during late spring when oxygen penetration depths are shallow, and pore water Fe(II) concentrations are highest. In the water column this stabilised Fe(II) will gradually be oxidised and become part of the dFe(III) pool. Thus oxic continental shelves can supply dFe to the water column, which is enhanced during a small period of the year after phytoplankton bloom events when organic matter is transferred to the seafloor. This input is based on conservative assumptions for solute exchange (diffusion-reaction), whereas (bio)physical advection and resuspension events are likely to accelerate these solute exchanges in shelf-seas

    The geochemistry and geomicrobiology of relict hydrothermal sulphide deposits

    No full text
    The diagenetic re-mineralisation of seafloor-sulphide deposits and the role of microbes in the metal-exchange processes were investigated in metalliferous sediments from the Alvin relict hydrothermal zone in the TAG area at 26º8'N (Mid-Atlantic Ridge). The solid-phase and concomitant pore water concentrations of AI, Si,Ca, Ctot, Corg, S, Fe, Mn, Cu, Zn, P, V, Co, U, Mo, Au, Ag and REEs were measured in a 230 cm long gravity core from the southern periphery of the relict vent field. These measurements were complemented by detailed analysis of bacterial abundance and specific activity. The altered sulphidic sediments are capped with a ~30cm thick layer of carbonate-rich (~60% CaCO3), Fe-stained sediments. Two distinct sulphide layers, interbedded with Fe-oxysilicates, and overlain by a thin layerof Fe/Mn oxyhydroxides, were found in this core. The dominant mineral-phase in both sulphide layers, which originate from mass-wasting of mound sediments, is pyrite with some goethite. Reaction of the exposed metal-sulphides in the upper sulphide layer with seawater has produced a thin layer of secondary atacamite, which is enriched in Au. Primary sphalerite is dissolved in the upper sulphide layer and re-precipitation as secondary sphalerite directly above and below. U continues to be scavenged from the porewater, producing marked enrichments on oxidised sulphide rims. The re-mineralisation processes identified in this core are in close analogy to the large-scale zone-refining that has been described for the active TAG mound and ancient ore-deposits. REE/Fe ratios clearly distinguish between plume derived sediments in the carbonate cap and slumped material from the hydrothermal mound. The REE signature of bulk sediments and clay phases imply multiple stages of alteration by diffuse fluids in the upper sulphide layer and intermediate layer, whereas the lower sulphide layer is not affected. Alteration by reactive low-temperature hydrothermal fluids is also inferred to be responsible for the observed diagenetic overprinting of trace-metal distributions in the upper sulphide layer. The intermediate layer is rich in nontronite, which has been precipitated in situ from diffuse fluids. The presence of Mn- and Fe-reducing bacteria coincide with elevated pore water concentrations of Mn and Fe, indicating direct involvement of bacteria in the cycling of these metals. Total counts of viable cells and general activity measurements show that although bacterial populations are relatively small, they are healthy and well adapted to this potentially toxic environment. The existence of active microbial communities in metalliferous sediments may therefore provide a continuum of bacterial populations between high and low temperature hydrothermal systems, thus representing an important transitional stage in the hydrothermal ecosystem. Microbial reduction and oxidation of S was observed throughout the core, indicating that microorganisms are particularly active in terms of S-cycling. For deep-sea sediments extremely high sulphate reduction rates (67 nmol/cm3/d) were measured in the iron-stained carbonate cap. In the absence of significant organic carbon (~0.2 %) this strongly suggests the synthesis of alternative electron-donors by chemolithotrophic bacteria to support the observed high rates of heterothrophic activity in these sediments
    corecore