60 research outputs found

    Distribution of endemic plant species on an oceanic island – a geospatial analysis of La Palma (Canary Islands)

    Get PDF
    AbstractPlant species distribution on oceanic islands is primarily determined by environmental limitations. Especially endemic species display a strong dependency on climatic conditions as a consequence of their limited distribution. Under such circumstances, environmental changes may cause not only the extinction of local populations, but of whole species. Thus, climate change can be considered a potential threat to island biodiversity. Research objectives involve identifying the main ecological drivers responsible for species distribution on La Palma and giving an outlook on future perspectives. High resolution GIS data and a presence/absence dataset were used for the analysis. Metric data was correlated using simple regressions. The dataset reflects the spatial and ecological distribution of the potential environmental niches very well. In respect to further research, the island of La Palma can be considered to serve as an ideal system for environmental niche modeling

    High species turnover and low intraspecific trait variation in endemic and non-endemic plant species assemblages on an oceanic island

    Get PDF
    Questions Both species turnover and intraspecific trait variation can affect plant assemblage dynamics along environmental gradients. Here, we asked how community assemblage patterns in relation to species turnover and intraspecific variation differ between endemic and non-endemic species. We hypothesized that endemic species show lower intraspecific variation than non-endemic species because they tend to have high rates of in situ speciation, whereas non-endemic species are expected to have a larger gene pool and higher phenotypic plasticity. Location La Palma, Canary Islands. Methods We established 44 sampling sites along a directional gradient of precipitation, heat load, soil nitrogen, phosphorus and pH. Along this gradient, we estimated species abundances and measured three traits (plant height, leaf area and leaf thickness) on perennial endemic and non-endemic plant species. In total, we recorded traits for 1,223 plant individuals of 43 species. Subsequently, we calculated community-weighted mean traits to measure the relative contribution of species turnover, intraspecific variation and their covariation along the analysed gradient. Results The contribution of intraspecific variation to total variation was similar in endemic and non-endemic assemblages. For plant height, intraspecific variation explained roughly as much variation as species turnover. For leaf area and leaf thickness, intraspecific variation explained almost no variation. Species turnover effects mainly drove trait responses along the environmental gradient, but intraspecific variation was important for responses in leaf area to precipitation. Conclusions Despite their distinct evolutionary history, endemic and non-endemic plant assemblages show similar patterns in species turnover and intraspecific variation. Our results indicate that species turnover is the main component of trait variation in the underlying study system. However, intraspecific variation can increase individual species’ fitness in response to precipitation. Overall, our study challenges the theory that intraspecific trait variation is more important for the establishment of non-endemic species compared with endemic species.publishedVersio

    Biogeographic ranges do not support niche theory in radiating Canary Island plant clades

    Get PDF
    Aim: Ecological niche concepts, in combination with biogeographic history, underlie our understanding of biogeographic ranges. Two pillars of this understanding are competitive displacement and niche conservatism. The competitive displacement hypothesis holds that very similar (e.g. closely related) co-occurring species should diverge, forced apart by competition. In contrast, according to the niche conservatism hypothesis, closely related species should have similar niches. If these are fundamental structuring forces, they should be detectable when comparing the climatic niches of endemic species in radiating clades in oceanic archipelagos, where closely related species exist in both sympatry and allopatry and the species' entire ranges are known. We took advantage of this natural experimental system to test whether the climatic niche relationships predicted by the two hypotheses are found. Location: Canary Islands. Methods: For the plant clades Aeonium, Argyranthemum, Descurainia, Echium, Lotus and Sonchus, separately, we tested relationships between phylogenetic distance and climatic niche differentiation (in temperature, precipitation and their combination), using a high-resolution dataset. We also tested for niche conservatism using Blomberg's K and Pagel's λ. We compared climatic niche differentiation between pairs of species existing in sympatry with that for pairs of species in allopatry. For each comparison, we focused on the climatic niche space available to both species. Results: The relationships between phylogenetic distance and climatic niche differentiation were mostly non-significant; some weak but significant positive relationships were found, mainly for Aeonium and Sonchus. Where differences between sympatry and allopatry were found, niche differentiation tended to be greater in allopatry. Main conclusions: The expectations from niche conservatism were frequently not met; instead our results suggest considerable climatic niche lability. All significant differences in climatic niche differentiation were opposite to the predictions from competitive displacement. These forces may be less important in structuring biogeographic ranges than is commonly thought, at least on islands

    A novel dendroecological method finds a non-linear relationship between elevation and seasonal growth continuity on an island with trade wind-influenced water availability

    Get PDF
    Climatic seasonality drives ecosystem processes (e.g. productivity) and influences plant species distribution. However, it is poorly understood how different aspects of seasonality (esp. regarding temperature and precipitation) affect growth continuity of trees in climates with low seasonality because seasonality is often only crudely measured. On islands, exceptionally wide elevational species distribution ranges allow the use of tree rings to identify how growth continuity and climate–growth relationships change with elevation. Here we present a novel dendroecological method to measure stem growth continuity based on annual density fluctuations (ADFs) in tree rings of Pinus canariensis to indicate low climatic seasonality. The species ranges from 300 to more than 2000 m a.s.l. on the trade wind-influenced island of La Palma (Canary Islands), where we measured three decades of tree-ring data of 100 individuals distributed over ten sites along the entire elevational range. The successfully implemented ADF approach revealed a major shift of stem growth continuity across the elevational gradient. In a remarkably clear pattern, stem growth continuity (percentage of ADFs) showed a hump-shaped relationship with elevation reaching a maximum at around 1000 m a.s.l.. Low- to mid-elevation tree growth was positively correlated with the Palmer Drought Severity Index PDSI (indicating aridity) and sea surface temperature (indicating trade wind-influenced moderation of water supply), while high elevation tree growth was positively correlated with winter temperature (indicating a cold induced dormancy period). We conclude that ADFs are a useful method to measure stem growth continuity in low-seasonality climates. Growth of Pinus canariensis on the Canary Islands is more frequently interrupted by winter cold at high elevations and by summer drought at low elevations than in the trade wind-influenced mid elevations, where growth sometimes continues throughout the year. Climate change-associated alterations in trade wind cloud formation might cause non-analogue growth limitations for many unique island species

    Co-occurrence frequency in vegetation patches decreases towards the harsh edge along an arid volcanic elevational gradient

    Get PDF
    Positive plant-plant interactions are thought to drive vegetation patterns in harsh environments, such as semi-arid areas. According to the stress-gradient hypothesis (SGH), the role of positive interactions between species (facilitation) is expected to increase with harshness, predicting associated variation in species composition along environmental gradients. However, the relation between stress and facilitation along environmental gradients is debated. Furthermore, differentiating facilitative interactions from other underlying mechanisms, such as microtopographic heterogeneity, is not trivial. We analysed the spatial cooccurrence relationships of vascular plant species that form patchy vegetation in arid lapilli fields (tephra) from recent volcanic eruptions on La Palma, Canary Islands. We assume a harshness gradient negatively correlated with elevation because of more arid conditions at lower elevations where water availability is considered the most limiting resource. Based on the SGH we expect a greater degree of co-occurrence at lower elevations, as an outcome of facilitation is plants co-occurring in the same patch. We tested this at both the species and the individual plant level. We analysed the species composition of 1277 shrubby vegetation patches at 64 different sampling points, ranging from the coast to around 700 m a.s.l. Patch morphology and microtopographic heterogeneity variables were also measured, to account for their potential effects on the species composition of patches. We used generalized linear models and generalized mixed-effects models to analyse species richness, number of individuals in patches and percentage of patches with positive co-occurrences, and a pairwise co-occurrence analysis combined with a graphical network analysis to reveal positive links between 13 of the species. We found that the percentage of patches with positive co-occurrences increased at higher elevations, in contrast to the predictions of the SGH, but in accordance with a refined stress-gradient hypothesis for arid sites, in which characteristics of the interacting species are incorporated

    The effect of small-scale topography on patterns of endemism within islands

    Get PDF
    Topography influences evolutionary and ecological processes by isolating populations and by enhancing habitat diversity. While the effects of large-scale topography on patterns of species richness and endemism are increasingly well documented, the direct effect of local topography on endemism is less understood. This study compares different aspects of topographic isolation, namely the isolating effect of deep barrancos (ravines) and the effect of increasing isolation with elevation in influencing patterns of plant endemism within a topographically diverse oceanic island (La Palma, Canary Islands, Spain). We collected plant presence–absence data from 75 plots in 8 barrancos on the northern coast of La Palma, spanning an elevation gradient from 95 to 674m a.s.l. Using mixed-effects models, we assessed the effect of barranco depth and elevation on the percentage of single-island endemics, multi-island endemics and archipelago endemics. We found that percent endemism was not significantly correlated with barranco depth, and correlated negatively with elevation within barrancos (rather than the expected positive relationship). The topographic barriers associated with the deep island barrancos thus appear insufficient to drive speciation through isolation in oceanic island plants. The decrease in endemism with elevation contradicts findings by previous broader-scale studies and it may reflect local influences, such as high habitat heterogeneity at low elevations

    Geodiversity and biodiversity on a volcanic island: The role of scattered phonolites for plant diversity and performance

    Get PDF
    Oceanic islands are cradles of endemism, contributing substantially to global biodiversity. A similarity in magmatic origin translates into high global comparability of substrates of volcanic islands on the oceanic crust with, however, slightly chemically or physically differentiated petrography in some places. Phonolites are examples of rare localities with intermediate chemical characteristics between felsic and mafic and with diverse textures. They contribute to habitat heterogeneity and offer specific growth conditions in a significantly different matrix of basaltic substrates. The explicit contribution of geodiversity to island biodiversity has been little studied, despite growing evidence of its importance on continents. On the island of La Palma, Canary Islands, isolated phonolitic rocks are conspicuous due to their light colour and specific shape. Although these outcrops only cover small areas, their unique form and composition increase within-island geodiversity. To investigate how this affects biodiversity on La Palma, we sampled all vascular plant species in 120 plots on four sets of paired sites in order to test if plant diversity and performance is enhanced on phonolitic rocks compared to basaltic rocks. We recorded species number and abundance as well as individual plant height and diameter as proxies for aboveground resource allocation and tested for differences in vegetation cover and species composition between the bedrock types. We found higher species richness and abundance on phonolites than neighbouring basaltic substrates, and individuals of the same species were larger (in height and diameter) on phonolites compared to neighbouring basalt. An endemic woody species with two distinct varieties even appears almost exclusively on the small surfaces of phonolitic rock. Despite extremely limited spatial extent, phonolitic rocks can play an important role in plant biodiversity on islands
    • 

    corecore