8 research outputs found

    Peroxidasin protein expression and enzymatic activity in metastatic melanoma cell lines are associated with invasive potential

    Get PDF
    Peroxidasin, a heme peroxidase, has been shown to play a role in cancer progression. mRNA expression has been reported to be upregulated in metastatic melanoma cell lines and connected to the invasive phenotype, but little is known about how peroxidasin acts in cancer cells. We have analyzed peroxidasin protein expression and activity in eight metastatic melanoma cell lines using an ELISA developed with an in-house peroxidasin binding protein. RNAseq data analysis confirmed high peroxidasin mRNA expression in the five cell lines classified as invasive and low expression in the three non-invasive cell lines. Protein levels of peroxidasin were higher in the cell lines with an invasive phenotype. Active peroxidasin was secreted to the cell culture medium, where it accumulated over time, and peroxidasin protein levels in the medium were also much higher in invasive than non-invasive cell lines. The only well-established physiological role of peroxidasin is in the formation of a sulfilimine bond, which cross-links collagen IV in basement membranes via catalyzed oxidation of bromide to hypobromous acid. We found that peroxidasin secreted from melanoma cells formed sulfilimine bonds in uncross-linked collagen IV, confirming peroxidasin activity and hypobromous acid formation. Moreover, 3-bromotyrosine, a stable product of hypobromous acid reacting with tyrosine residues, was detected in invasive melanoma cells, substantiating that their expression of peroxidasin generates hypobromous acid, and showing that it does not exclusively react with collagen IV, but also with other biomolecules

    Pre-steady-state Kinetics Reveal the Substrate Specificity and Mechanism of Halide Oxidation of Truncated Human Peroxidasin 1

    No full text
    Human peroxidasin 1 is a homotrimeric multidomain peroxidase that is secreted to the extracellular matrix. The heme enzyme was shown to release hypobromous acid which mediates the formation of specific covalent sulfilimine bonds to reinforce collagen IV in basement membranes. Maturation by proteolytic cleavage is known to activate the enzyme. Here we present the first multi-mixing stopped-flow study on a fully functional truncated variant of human peroxidasin 1 comprising four immune-globulin-like domains and the catalytically active peroxidase domain. The kinetic data unravel the so far unknown substrate specificity and mechanism of halide oxidation of human peroxidasin 1. The heme enzyme is shown to follow the halogenation cycle which is induced by the rapid H2O2-mediated oxidation of the ferric enzyme to the redox intermediate Compound I. We demonstrate that chloride cannot act as two-electron donor of Compound I, whereas thiocyanate, iodide and bromide efficiently restore the ferric resting state. We present all relevant apparent bimolecular rate constants, the spectral signatures of the redox intermediates and the standard reduction potential of the Fe(III)/Fe(II) couple and we demonstrate that the prosthetic heme group is posttranslationally modified and cross-linked with the protein. These structural features provide the basis of human peroxidasin 1 to act as an effective generator of hypobromous acid which mediates the formation of covalent crosslinks in collagen IV

    Human peroxidasin 1 promotes angiogenesis through ERK1/2, Akt and FAK pathways.

    No full text
    The term angiogenesis refers to sprouting of new blood vessels from pre-existing ones. The angiogenic process involves cell migration and tubulogenesis requiring interaction between endothelial cells and the extracellular matrix. Human peroxidasin 1 (hsPxd01) is a multidomain heme peroxidase found embedded in the basement membranes. As it promotes the stabilization of extracellular matrix, we investigated its possible role in angiogenesis both in vitro and in vivo.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Blocking negative effects of senescence in human skin fibroblasts with a plant extract

    No full text
    Skin aging: Plant extract blocks negative effects of senescence A plant extract from the goldenrod (Solidago virgaurea) ameliorates the negative influence of senescent cells, which accumulate in the skin with aging and create a tissue environment that leads to an impaired skin structure and contributes to tumour formation. Ingo Lämmermann and a team of scientists under the lead of Johannes Grillari at the University of Natural Resources and Life Sciences, Vienna, Austria, screened several plant extracts for their potential to attenuate such detrimental effects of senescent cells on the skin. One extract from S. virgaurea indeed delayed the aging process of skin cells in vitro and reduced the secretion of tumour promoting molecules and pro-inflammatory factors, thereby ameliorating the negative influence on nearby cells. Thus, the investigated plant extract represents a promising possibility to block the age-associated loss of tissue functionality in human skin
    corecore