14 research outputs found
A consensus protocol for functional connectivity analysis in the rat brain
Task-free functional connectivity in animal models provides an experimental framework to examine connectivity phenomena under controlled conditions and allows for comparisons with data modalities collected under invasive or terminal procedures. Currently, animal acquisitions are performed with varying protocols and analyses that hamper result comparison and integration. Here we introduce StandardRat, a consensus rat functional magnetic resonance imaging acquisition protocol tested across 20 centers. To develop this protocol with optimized acquisition and processing parameters, we initially aggregated 65 functional imaging datasets acquired from rats across 46 centers. We developed a reproducible pipeline for analyzing rat data acquired with diverse protocols and determined experimental and processing parameters associated with the robust detection of functional connectivity across centers. We show that the standardized protocol enhances biologically plausible functional connectivity patterns relative to previous acquisitions. The protocol and processing pipeline described here is openly shared with the neuroimaging community to promote interoperability and cooperation toward tackling the most important challenges in neuroscience
Metabolic changes assessed by MRS accurately reflect brain function during drug-induced epilepsy in mice in contrast to fMRI-based hemodynamic readouts
Functional proton magnetic resonance spectroscopy ((1)H-MRS) enables the non-invasive assessment of neural activity by measuring signals arising from endogenous metabolites in a time resolved manner. Proof-of-principle of this approach has been demonstrated in humans and rats; yet functional (1)H-MRS has not been applied in mice so far, although it would be of considerable interest given the many genetically engineered models of neurological disorders established in this species only. Mouse (1)H-MRS is challenging as the high demands on spatial resolution typically result in long data acquisition times not commensurable with functional studies. Here, we propose an approach based on spectroscopic imaging in combination with the acquisition of the free induction decay to maximize signal intensity. Highly resolved metabolite maps have been recorded from mouse brain with 12min temporal resolution. This enabled monitoring of metabolic changes following the administration of bicuculline, a GABA-A receptor antagonist. Changes in levels of metabolites involved in energy metabolism (lactate and phosphocreatine) and neurotransmitters (glutamate) were investigated in a region-dependent manner and shown to scale with the bicuculline dose. GABAergic inhibition induced spectral changes characteristic for increased neurotransmitter turnover and oxidative stress. In contrast to metabolic readouts, BOLD and CBV fMRI responses did not scale with the bicuculline dose indicative of the failure of neurovascular coupling. Nevertheless fMRI measurements supported the notion of increased oxidative stress revealed by functional MRS. Hence, the combined analysis of metabolic and hemodynamic changes in response to stimulation provides complementary insight into processes associated with neural activity
In vivo imaging of hypoxia-inducible factor regulation in a subcutaneous and orthotopic GL261 glioma tumor model using a reporter gene assay
Intratumoral hypoxia changes the metabolism of gliomas, leading to a more aggressive phenotype with increased resistance to radio- and chemotherapy. Hypoxia triggers a signaling cascade with hypoxia-inducible factor (HIF) as a key regulator. We monitored activation of the HIF pathway longitudinally in murine glioma tumors. GL261 cells, stably transfected with a luciferase reporter driven under the control of a promoter comprising the HIF target gene motive hypoxia response element, were implanted either subcutaneously or orthotopically. In vivo experiments were carried out using bioluminescence imaging. Tumors were subsequently analyzed using immunofluorescence staining for hypoxia, endothelial cells, tumor perfusion, and glucose transporter expression. Transient upregulation of the HIF signaling was observed in both subcutaneous and orthotopic gliomas. Immunofluorescence staining confirmed hypoxic regions in subcutaneous and, to a lesser extent, intracranial tumors. Subcutaneous tumors showed substantial necrosis, which might contribute to the decreased bioluminescence output observed toward the end of the experiment. Orthotopic tumors were less hypoxic than subcutaneous ones and did not develop extensive necrotic areas. Although this may be the result of the overall smaller size of orthotopic tumors, it might also reflect differences in the local environment, such as the better intrinsic vascularization of brain tissue compared to the subcutaneous tissue compartment
Quantitative assessment of microvasculopathy in arcAβ mice with USPIO-enhanced gradient echo MRI
Magnetic resonance imaging employing administration of iron oxide-based contrast agents is widely used to visualize cellular and molecular processes in vivo. In this study, we investigated the ability of [Formula: see text] and quantitative susceptibility mapping to quantitatively assess the accumulation of ultrasmall superparamagnetic iron oxide (USPIO) particles in the arcAβ mouse model of cerebral amyloidosis. Gradient-echo data of mouse brains were acquired at 9.4 T after injection of USPIO. Focal areas with increased magnetic susceptibility and [Formula: see text] values were discernible across several brain regions in 12-month-old arcAβ compared to 6-month-old arcAβ mice and to non-transgenic littermates, indicating accumulation of particles after USPIO injection. This was concomitant with higher [Formula: see text] and increased magnetic susceptibility differences relative to cerebrospinal fluid measured in USPIO-injected compared to non-USPIO-injected 12-month-old arcAβ mice. No differences in [Formula: see text] and magnetic susceptibility were detected in USPIO-injected compared to non-injected 12-month-old non-transgenic littermates. Histological analysis confirmed focal uptake of USPIO particles in perivascular macrophages adjacent to small caliber cerebral vessels with radii of 2-8 µm that showed no cerebral amyloid angiopathy. USPIO-enhanced [Formula: see text] and quantitative susceptibility mapping constitute quantitative tools to monitor such functional microvasculopathies
Role of the GLUT1 Glucose Transporter in Postnatal CNS Angiogenesis and Blood-Brain Barrier Integrity
Rationale: Endothelial cells (ECs) are highly glycolytic and generate the majority of their energy via the breakdown of glucose to lactate. At the same time, a main role of ECs is to allow the transport of glucose to the surrounding tissues. The facilitative glucose transporter isoform 1 (GLUT1/Slc2a1) is highly expressed in ECs of the central nervous system (CNS), and is often implicated in blood-brain barrier (BBB) dysfunction, but whether and how GLUT1 controls EC metabolism and function is poorly understood. Objective: We evaluated the role of GLUT1 in endothelial metabolism and function during postnatal CNS development as well as at the adult BBB. Methods and Results: Inhibition of GLUT1 decreases EC glucose uptake and glycolysis, leading to energy depletion and the activation of the cellular energy sensor AMPK, and decreases EC proliferation without affecting migration. Deletion of GLUT1 from the developing postnatal retinal endothelium reduces retinal EC proliferation and lowers vascular outgrowth, without affecting the number of tip cells. In contrast, in the brain, we observed a lower number of tip cells in addition to reduced brain EC proliferation, indicating that within the CNS, organotypic differences in EC metabolism exist. Interestingly, when ECs become quiescent, endothelial glycolysis is repressed and GLUT1 expression increases in a Notch-dependent fashion. GLUT1 deletion from quiescent adult ECs leads to severe seizures, accompanied by neuronal loss and CNS inflammation. Strikingly, this does not coincide with BBB leakiness, altered expression of genes crucial for BBB barrier functioning nor reduced vascular function. Instead, we found a selective activation of inflammatory and extracellular matrix (ECM) related gene sets. Conclusions: GLUT1 is the main glucose transporter in ECs and becomes uncoupled from glycolysis during quiescence in a Notch-dependent manner. It is crucial for developmental CNS angiogenesis and adult CNS homeostasis but does not affect BBB barrier function
Role of the GLUT1 Glucose Transporter in Postnatal CNS Angiogenesis and Blood-Brain Barrier Integrity
RATIONALE: Endothelial cells (ECs) are highly glycolytic and generate the majority of their energy via the breakdown of glucose to lactate. At the same time, a main role of ECs is to allow the transport of glucose to the surrounding tissues. GLUT1 (glucose transporter isoform 1/Slc2a1) is highly expressed in ECs of the central nervous system (CNS) and is often implicated in blood-brain barrier (BBB) dysfunction, but whether and how GLUT1 controls EC metabolism and function is poorly understood. OBJECTIVE: We evaluated the role of GLUT1 in endothelial metabolism and function during postnatal CNS development as well as at the adult BBB. METHODS AND RESULTS: Inhibition of GLUT1 decreases EC glucose uptake and glycolysis, leading to energy depletion and the activation of the cellular energy sensor AMPK (AMP-activated protein kinase), and decreases EC proliferation without affecting migration. Deletion of GLUT1 from the developing postnatal retinal endothelium reduces retinal EC proliferation and lowers vascular outgrowth, without affecting the number of tip cells. In contrast, in the brain, we observed a lower number of tip cells in addition to reduced brain EC proliferation, indicating that within the CNS, organotypic differences in EC metabolism exist. Interestingly, when ECs become quiescent, endothelial glycolysis is repressed, and GLUT1 expression increases in a Notch-dependent fashion. GLUT1 deletion from quiescent adult ECs leads to severe seizures, accompanied by neuronal loss and CNS inflammation. Strikingly, this does not coincide with BBB leakiness, altered expression of genes crucial for BBB barrier functioning nor reduced vascular function. Instead, we found a selective activation of inflammatory and extracellular matrix related gene sets. CONCLUSIONS: GLUT1 is the main glucose transporter in ECs and becomes uncoupled from glycolysis during quiescence in a Notch-dependent manner. It is crucial for developmental CNS angiogenesis and adult CNS homeostasis but does not affect BBB barrier function.status: publishe