35 research outputs found

    Branched chain amino acids, an ''essential'' link between diet, clock and sleep?

    Full text link
    The branched-chain amino acids: leucine, isoleucine and valine occupy a special place among the essential amino acids because of their importance not only in the structure of proteins but also in general and cerebral metabolism. Among the first amino acids absorbed after food intake, they play a major role in the regulation of protein synthesis and insulin secretion. They are involved in the modulation of brain uptake of monoamine precursors with which they may compete for occupancy of a common transporter. In the brain, branched-chain amino acids are involved not only in protein synthesis but also in the metabolic cycles of GABA and Glutamate, and in energy metabolism. In particular, they can affect GABAergic neurons and the excitation/inhibition balance. Branched-chain amino acids are known for the 24-hour rhythmicity of their plasma concentrations, which is remarkably conserved in rodent models. This rhythmicity is partly circadian, independent of sleep and food. Moreover, their concentration increases when sleep is disturbed and in obesity and diabetes. The mechanisms regulating these rhythms and their physiological impact remain poorly understood. In this context, the Drosophila model has not yet been widely used, but it is highly relevant and the first results indicate that it can generate new concepts. The elucidation of the metabolism and fluxes of branched-chain amino acids is beginning to shed light on the mysterious connections between clock, sleep, and metabolism, opening the possibility of new therapies

    Requirement for Dynamin during Notch Signaling inDrosophilaNeurogenesis

    Get PDF
    AbstractSingling out of a unique neural precursor from a group of equivalent cells, duringDrosophilaneurogenesis, involves Notch-mediated lateral signaling. During this process, activation of the Notch signaling pathway leads to repression of neural development. Disruption of this signaling pathway results in the development of an excess of neural cells. The loss of activity of dynamin, which is encoded by the geneshibireand is required for endocytosis, results in a similar phenotype. Here we have investigated the requirement ofshibirefunction for Notch signaling during the segregation of sensory bristles on the notum of the fly. Overexpression of different constitutively active forms of Notch inshibiremutant flies indicates thatshibirefunction is not necessary for transduction of the signal downstream of Notch, even when the receptor is integrated in the plasma membrane. However, when wild-type Notch is activated by its ligand Delta, dynamin is required in both signaling and receiving cells for normal singling out of precursors. This suggests an active role of the signaling cell for ligand-mediated receptor endocytosis in the case of transmembrane ligands. We discuss the possible implications of these results for normal functioning of Notch-mediated lateral signaling

    Regulation of synaptic connectivity: levels of fasciclin II influence synaptic growth in the Drosophila CNS

    Get PDF
    Much of our understanding of synaptogenesis comes from studies that deal with the development of the neuromuscular junction (NMJ). Although well studied, it is not clear how far the NMJ represents an adequate model for the formation of synapses within the CNS. Here we investigate the role of Fasciclin II (Fas II) in the development of synapses between identified motor neurons and cholinergic interneurons in the CNS of Drosophila. Fas II is a neural cell adhesion molecule homolog that is involved in both target selection and synaptic plasticity at the NMJ in Drosophila. In this study, we show that levels of Fas II are critical determinants of synapse formation and growth in the CNS. The initial establishment of synaptic contacts between these identified neurons is seemingly independent of Fas II. The subsequent proliferation of these synaptic connections that occurs postembryonically is, in contrast, significantly retarded by the absence of Fas II. Although the initial formation of synaptic connectivity between these neurons is seemingly independent of Fas II, we show that their formation is, nevertheless, significantly affected by manipulations that alter the relative balance of Fas II in the presynaptic and postsynaptic neurons. Increasing expression of Fas II in either the presynaptic or postsynaptic neurons, during embryogenesis, is sufficient to disrupt the normal level of synaptic connectivity that occurs between these neurons. This effect of Fas II is isoform specific and, moreover, phenocopies the disruption to synaptic connectivity observed previously after tetanus toxin light chain-dependent blockade of evoked synaptic vesicle release in these neurons

    The Perilipin Homologue, Lipid Storage Droplet 2, Regulates Sleep Homeostasis and Prevents Learning Impairments Following Sleep Loss

    Get PDF
    Starvation, which is common in the wild, appears to initiate a genetic program that allows fruitflies to remain awake without the sleepiness and cognitive impairments that typically follow sleep deprivation

    Vaccaro et al. 2016 sleep raw data

    No full text
    Data for S2 Fi

    Les acides aminés branchés, un lien « essentiel » entre alimentation, horloge et sommeil ?

    No full text
    Médecine du Sommeil, 2022, sous pressThe branched-chain amino acids: leucine, isoleucine and valine occupy a special place among the essential amino acids because of their importance not only in the structure of proteins but also in general and cerebral metabolism. Among the first amino acids absorbed after food intake, they play a major role in the regulation of protein synthesis and insulin secretion. They are involved in the modulation of brain uptake of monoamine precursors with which they may compete for occupancy of a common transporter. In the brain, branched-chain amino acids are involved not only in protein synthesis but also in the metabolic cycles of GABA and Glutamate, and in energy metabolism. In particular, they can affect GABAergic neurons and the excitation/inhibition balance. Branched-chain amino acids are known for the 24-hour rhythmicity of their plasma concentrations, which is remarkably conserved in rodent models. This rhythmicity is partly circadian, independent of sleep and food. Moreover, their concentration increases when sleep is disturbed and in obesity and diabetes. The mechanisms regulating these rhythms and their physiological impact remain poorly understood. In this context, the Drosophila model has not yet been widely used, but it is highly relevant and the first results indicate that it can generate new concepts. The elucidation of the metabolism and fluxes of branched-chain amino acids is beginning to shed light on the mysterious connections between clock, sleep, and metabolism, opening the possibility of new therapies.Les acides aminés branchés : leucine, isoleucine et valine occupent une place particulière parmi les acides aminés essentiels de par leur importance non seulement dans la structure des protéines mais aussi dans le métabolisme général et cérébral. Ils sont parmi les premiers acides aminés absorbés après la prise alimentaire et jouent un rôle majeur dans la régulation de la synthèse protéique et de la sécrétion d’insuline. Ils participent à la modulation de l’import cérébral des précurseurs de monoamines avec lesquels ils peuvent entrer en compétition pour l’occupation d’un transporteur commun. Dans le cerveau, les acides aminés branchés interviennent également dans les cycles métaboliques du GABA et du Glutamate, et dans le métabolisme énergétique. Ils peuvent notamment affecter les neurones GABAergiques et la balance excitation/inhibition. Les acides aminés branchés sont connus pour la rythmicité sur 24h de leurs concentrations plasmatiques qui est remarquablement conservée chez les modèles rongeurs. Cette rythmicité est en partie circadienne, indépendante du sommeil et de l’alimentation. Par ailleurs leur concentration augmente lorsque le sommeil est perturbé ainsi que dans l’obésité et le diabète. Les mécanismes régulant ces rythmes et leur impact physiologique restent mal compris. Dans ce contexte, le modèle drosophile a encore été peu utilisé, mais il a toute sa pertinence et les premiers résultats indiquent qu’il peut générer de nouveaux concepts. L’élucidation du métabolisme et des flux des acides aminés branchés commence à éclairer les connections mystérieuses qui existent entre horloge, sommeil, et métabolisme, ouvrant la possibilité de nouvelles thérapies

    Les acides aminés branchés, un lien « essentiel » entre alimentation, horloge et sommeil ?

    No full text
    Médecine du Sommeil, 2022, sous pressThe branched-chain amino acids: leucine, isoleucine and valine occupy a special place among the essential amino acids because of their importance not only in the structure of proteins but also in general and cerebral metabolism. Among the first amino acids absorbed after food intake, they play a major role in the regulation of protein synthesis and insulin secretion. They are involved in the modulation of brain uptake of monoamine precursors with which they may compete for occupancy of a common transporter. In the brain, branched-chain amino acids are involved not only in protein synthesis but also in the metabolic cycles of GABA and Glutamate, and in energy metabolism. In particular, they can affect GABAergic neurons and the excitation/inhibition balance. Branched-chain amino acids are known for the 24-hour rhythmicity of their plasma concentrations, which is remarkably conserved in rodent models. This rhythmicity is partly circadian, independent of sleep and food. Moreover, their concentration increases when sleep is disturbed and in obesity and diabetes. The mechanisms regulating these rhythms and their physiological impact remain poorly understood. In this context, the Drosophila model has not yet been widely used, but it is highly relevant and the first results indicate that it can generate new concepts. The elucidation of the metabolism and fluxes of branched-chain amino acids is beginning to shed light on the mysterious connections between clock, sleep, and metabolism, opening the possibility of new therapies.Les acides aminés branchés : leucine, isoleucine et valine occupent une place particulière parmi les acides aminés essentiels de par leur importance non seulement dans la structure des protéines mais aussi dans le métabolisme général et cérébral. Ils sont parmi les premiers acides aminés absorbés après la prise alimentaire et jouent un rôle majeur dans la régulation de la synthèse protéique et de la sécrétion d’insuline. Ils participent à la modulation de l’import cérébral des précurseurs de monoamines avec lesquels ils peuvent entrer en compétition pour l’occupation d’un transporteur commun. Dans le cerveau, les acides aminés branchés interviennent également dans les cycles métaboliques du GABA et du Glutamate, et dans le métabolisme énergétique. Ils peuvent notamment affecter les neurones GABAergiques et la balance excitation/inhibition. Les acides aminés branchés sont connus pour la rythmicité sur 24h de leurs concentrations plasmatiques qui est remarquablement conservée chez les modèles rongeurs. Cette rythmicité est en partie circadienne, indépendante du sommeil et de l’alimentation. Par ailleurs leur concentration augmente lorsque le sommeil est perturbé ainsi que dans l’obésité et le diabète. Les mécanismes régulant ces rythmes et leur impact physiologique restent mal compris. Dans ce contexte, le modèle drosophile a encore été peu utilisé, mais il a toute sa pertinence et les premiers résultats indiquent qu’il peut générer de nouveaux concepts. L’élucidation du métabolisme et des flux des acides aminés branchés commence à éclairer les connections mystérieuses qui existent entre horloge, sommeil, et métabolisme, ouvrant la possibilité de nouvelles thérapies

    Identification of Genes Associated with Resilience/Vulnerability to Sleep Deprivation and Starvation in Drosophila

    No full text
    Background and Study Objectives:Flies mutant for the canonical clock protein cycle (cyc01) exhibit a sleep rebound that is ~10 times larger than wild-type flies and die after only 10 h of sleep deprivation. Surprisingly, when starved, cyc01 mutants can remain awake for 28 h without demonstrating negative outcomes. Thus, we hypothesized that identifying transcripts that are differentially regulated between waking induced by sleep deprivation and waking induced by starvation would identify genes that underlie the deleterious effects of sleep deprivation and/or protect flies from the negative consequences of waking. Design: We used partial complementary DNA microarrays to identify transcripts that are differentially expressed between cyc01 mutants that had been sleep deprived or starved for 7 h. We then used genetics to determine whether disrupting genes involved in lipid metabolism would exhibit alterations in their response to sleep deprivation. Setting: Laboratory. Patients or Participants: Drosophila melanogaster. Interventions: Sleep deprivation and starvation. Measurements and Results: We identified 84 genes with transcript levels that were differentially modulated by 7 h of sleep deprivation and starvation in cyc01 mutants and were confirmed in independent samples using quantitative polymerase chain reaction. Several of these genes were predicted to be lipid metabolism genes, including bubblegum, cueball, and CG4500, which based on our data we have renamed heimdall (hll). Using lipidomics we confirmed that knockdown of hll using RNA interference significantly decreased lipid stores. Importantly, genetically modifying bubblegum, cueball, or hll resulted in sleep rebound alterations following sleep deprivation compared to genetic background controls. Conclusions: We have identified a set of genes that may confer resilience/vulnerability to sleep deprivation and demonstrate that genes involved in lipid metabolism modulate sleep homeostasis

    Data from: Drosophila clock is required in brain pacemaker neurons to prevent premature locomotor aging independently of its circadian function

    No full text
    Circadian clocks control many self-sustained rhythms in physiology and behavior with approximately 24-hour periodicity. In many organisms, oxidative stress and aging negatively impact the circadian system and sleep. Conversely, loss of the clock decreases resistance to oxidative stress, and may reduce lifespan and speed up brain aging and neurodegeneration. Here we examined the effects of clock disruptions on locomotor aging and longevity in Drosophila. We found that lifespan was similarly reduced in three arrhythmic mutants (ClkAR, cyc0 and tim0) and in wild-type flies under constant light, which stops the clock. In contrast, ClkAR mutants showed significantly faster age-related locomotor deficits (as monitored by startle-induced climbing) than cyc0 and tim0, or than control flies under constant light. Reactive oxygen species accumulated more with age in ClkAR mutant brains, but this did not appear to contribute to the accelerated locomotor decline of the mutant. Clk, but not Cyc, inactivation by RNA interference in the pigment-dispersing factor (PDF)-expressing central pacemaker neurons led to similar loss of climbing performance as ClkAR. Conversely, restoring Clk function in these cells was sufficient to rescue the ClkAR locomotor phenotype, independently of behavioral rhythmicity. Accelerated locomotor decline of the ClkAR mutant required expression of the PDF receptor and correlated to an apparent loss of dopaminergic neurons in the posterior protocerebral lateral 1 (PPL1) clusters. This neuronal loss was rescued when the ClkAR mutation was placed in an apoptosis-deficient background. Impairing dopamine synthesis in a single pair of PPL1 neurons that innervate the mushroom bodies accelerated locomotor decline in otherwise wild-type flies. Our results therefore reveal a novel circadian-independent requirement for Clk in brain circadian neurons to maintain a subset of dopaminergic cells and avoid premature locomotor aging in Drosophila
    corecore