902 research outputs found

    Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method

    Get PDF
    BACKGROUND: Many processes in molecular biology involve the recognition of short sequences of nucleic-or amino acids, such as the binding of immunogenic peptides to major histocompatibility complex (MHC) molecules. From experimental data, a model of the sequence specificity of these processes can be constructed, such as a sequence motif, a scoring matrix or an artificial neural network. The purpose of these models is two-fold. First, they can provide a summary of experimental results, allowing for a deeper understanding of the mechanisms involved in sequence recognition. Second, such models can be used to predict the experimental outcome for yet untested sequences. In the past we reported the development of a method to generate such models called the Stabilized Matrix Method (SMM). This method has been successfully applied to predicting peptide binding to MHC molecules, peptide transport by the transporter associated with antigen presentation (TAP) and proteasomal cleavage of protein sequences. RESULTS: Herein we report the implementation of the SMM algorithm as a publicly available software package. Specific features determining the type of problems the method is most appropriate for are discussed. Advantageous features of the package are: (1) the output generated is easy to interpret, (2) input and output are both quantitative, (3) specific computational strategies to handle experimental noise are built in, (4) the algorithm is designed to effectively handle bounded experimental data, (5) experimental data from randomized peptide libraries and conventional peptides can easily be combined, and (6) it is possible to incorporate pair interactions between positions of a sequence. CONCLUSION: Making the SMM method publicly available enables bioinformaticians and experimental biologists to easily access it, to compare its performance to other prediction methods, and to extend it to other applications

    FAIR principles and the IEDB: short-term improvements and a long-term vision of OBO-foundry mediated machine-actionable interoperability.

    Get PDF
    The Immune Epitope Database (IEDB), at www.iedb.org, has the mission to make published experimental data relating to the recognition of immune epitopes easily available to the scientific public. By presenting curated data in a searchable database, we have liberated it from the tables and figures of journal articles, making it more accessible and usable by immunologists. Recently, the principles of Findability, Accessibility, Interoperability and Reusability have been formulated as goals that data repositories should meet to enhance the usefulness of their data holdings. We here examine how the IEDB complies with these principles and identify broad areas of success, but also areas for improvement. We describe short-term improvements to the IEDB that are being implemented now, as well as a long-term vision of true 'machine-actionable interoperability', which we believe will require community agreement on standardization of knowledge representation that can be built on top of the shared use of ontologies

    The Immune Epitope Database and Analysis Resource Program 2003–2018: reflections and outlook

    Get PDF
    The Immune Epitope Database and Analysis Resource (IEDB) contains information related to antibodies and T cells across an expansive scope of research fields (infectious diseases, allergy, autoimmunity, and transplantation). Capture and representation of the data to reflect growing scientific standards and techniques have required continual refinement of our rigorous curation and query and reporting processes beginning with the automated classification of over 28 million PubMed abstracts, and resulting in easily searchable data from over 20,000 published manuscripts. Data related to MHC binding and elution, nonpeptidics, natural processing, receptors, and 3D structure is first captured through manual curation and subsequently maintained through recuration to reflect evolving scientific standards. Upon promotion to the free, public database, users can query and export records of specific relevance via the online web portal which undergoes iterative development to best enable efficient data access. In parallel, the companion Analysis Resource site hosts a variety of tools that assist in the bioinformatic analyses of epitopes and related structures, which can be applied to IEDB-derived and independent datasets alike. Available tools are classified into two categories: analysis and prediction. Analysis tools include epitope clustering, sequence conservancy, and more, while prediction tools cover T and B cell epitope binding, immunogenicity, and TCR/BCR structures. In addition to these tools, benchmarking servers which allow for unbiased performance comparison are also offered. In order to expand and support the user-base of both the database and Analysis Resource, the research team actively engages in community outreach through publication of ongoing work, conference attendance and presentations, hosting of user workshops, and the provision of online help. This review provides a description of the IEDB database infrastructure, curation and recuration processes, query and reporting capabilities, the Analysis Resource, and our Community Outreach efforts, including assessment of the impact of the IEDB across the research community.Fil: Martini, Sheridan. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Nielsen, Morten. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones BiotecnolĂłgicas. Universidad Nacional de San MartĂ­n. Instituto de Investigaciones BiotecnolĂłgicas; Argentina. Technical University of Denmark; DinamarcaFil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados Unidos. University of California at San Diego; Estados UnidosFil: Sette, Alessandro. La Jolla Institute for Allergy and Immunology; Estados Unidos. University of California at San Diego; Estados Unido

    Determination of a predictive cleavage motif for eluted major histocompatibility complex class II ligands

    Get PDF
    CD4+ T cells have a major role in regulating immune responses. They are activated by recognition of peptides mostly generated from exogenous antigens through the major histocompatibility complex (MHC) class II pathway. Identification of epitopes is important and computational prediction of epitopes is used widely to save time and resources. Although there are algorithms to predict binding affinity of peptides to MHC II molecules, no accurate methods exist to predict which ligands are generated as a result of natural antigen processing. We utilized a dataset of around 14,000 naturally processed ligands identified by mass spectrometry of peptides eluted from MHC class II expressing cells to investigate the existence of sequence signatures potentially related to the cleavage mechanisms that liberate the presented peptides from their source antigens. This analysis revealed preferred amino acids surrounding both N- and C-terminuses of ligands, indicating sequence-specific cleavage preferences. We used these cleavage motifs to develop a method for predicting naturally processed MHC II ligands, and validated that it had predictive power to identify ligands from independent studies. We further confirmed that prediction of ligands based on cleavage motifs could be combined with predictions of MHC binding, and that the combined prediction had superior performance. However, when attempting to predict CD4+ T cell epitopes, either alone or in combination with MHC binding predictions, predictions based on the cleavage motifs did not show predictive power. Given that peptides identified as epitopes based on CD4+ T cell reactivity typically do not have well-defined termini, it is possible that motifs are present but outside of the mapped epitope. Our attempts to take that into account computationally did not show any sign of an increased presence of cleavage motifs around well-characterized CD4+ T cell epitopes. While it is possible that our attempts to translate the cleavage motifs in MHC II ligand elution data into T cell epitope predictions were suboptimal, other possible explanations are that the cleavage signal is too diluted to be detected, or that elution data are enriched for ligands generated through an antigen processing and presentation pathway that is less frequently utilized for T cell epitopes.Fil: Paul, Sinu. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Karosiene, Edita. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Dhanda, Sandeep Kumar. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Jurtz, Vanessa. Technical University of Denmark; DinamarcaFil: Edwards, Lindy. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Nielsen, Morten. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - La Plata. Instituto de Investigaciones BiotecnolĂłgicas. Universidad Nacional de San MartĂ­n. Instituto de Investigaciones BiotecnolĂłgicas; Argentina. Technical University of Denmark; DinamarcaFil: Sette, Alessandro. University of California at San Diego; Estados Unidos. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados Unidos. University of California at San Diego; Estados Unido

    Evidence for a quadruplex structure in the polymorphic hs1.2 enhancer of the immunoglobulin heavy chain 3’ regulatory regions and its conservation in mammals

    Get PDF
    Regulatory regions in the genome can act through a variety of mechanisms that range from the occurrence of histone modifications to the presence of protein-binding loci for self-annealing sequences. The final result is often the induction of a conformational change of the DNA double helix, which alters the accessibility of a region to transcription factors and consequently gene expression. A similar to 300 kb regulatory region on chromosome 14 at the 3' end (3'RR) of immunoglobulin (Ig) heavy-chain genes shows very peculiar features, conserved in mammals, including enhancers and transcription factor binding sites. In primates, the 3'RR is present in two copies, both having a central enhancer named hs1.2. We previously demonstrated the association between different hs1.2 alleles and Ig plasma levels in immunopathology. Here, we present the analysis of a putative G-quadruplex structure (tetraplex) consensus site embedded in a variable number tandem repeat (one to four copies) of hs1.2 that is a distinctive element among the enhancer alleles, and an investigation of its three-dimensional structure using bioinformatics and spectroscopic approaches. We suggest that both the role of the enhancer and the alternative effect of the hs1.2 alleles may be achieved through their peculiar three-dimensional-conformational rearrangement

    Efficacy and tolerability of pregabalin as preventive treatment for migraine: a 3-month follow-up study

    Get PDF
    Migraine is a common neurological disorder and epidemiological studies have documented its high social and economic impact. Unfortunately, preventive treatment is often insufficient to substantially reduce migraine frequency or it is not well tolerated. Antiepileptic drugs are increasingly used in migraine prevention. However, data on efficacy and tolerability of pregabalin in patients with migraine are still lacking. Our aim was to evaluate efficacy and tolerability of pregabalin in patients with migraine. We recruited 47 patients who started pregabalin at 75 mg/day, which was titrated to 300 mg/day as tolerated. A total of six patients (13%) reported one or more side effects during the intake of pregabalin; however, three of them discontinued pregabalin, because side effects were intolerable and persistent. Statistically significant reduction in migraine frequency compared to baseline (p < 0.001) was evident after 1 and 3 months of treatment. A greater frequency reduction was observed in those patients who increased the dosage within the first month of therapy. Our data suggest that pregabalin may be well tolerated and may represent an alternative preventive treatment in migraneurs. Limitations of the present study were a small sample size and an uncontrolled, open-label design; further randomized case–control studies are warranted to confirm our findings

    The Importance of Measuring SARS-CoV-2-Specific T-Cell Responses in an Ongoing Pandemic

    Get PDF
    Neutralizing antibodies are considered a correlate of protection against SARS-CoV-2 infection and severe COVID-19, although they are not the only contributing factor to immunity: T-cell responses are considered important in protecting against severe COVID-19 and contributing to the success of vaccination effort. T-cell responses after vaccination largely mirror those of natural infection in magnitude and functional capacity, but not in breadth, as T-cells induced by vaccination exclusively target the surface spike glycoprotein. T-cell responses offer a long-lived line of defense and, unlike humoral responses, largely retain reactivity against the SARS-CoV-2 variants. Given the increasingly recognized role of T-cell responses in protection against severe COVID-19, the circulation of SARS-CoV-2 variants, and the potential implementation of novel vaccines, it becomes imperative to continuously monitor T-cell responses. In addition to “classical” T-cell assays requiring the isolation of peripheral blood mononuclear cells, simple whole-blood-based interferon-γ release assays have a potential role in routine T-cell response monitoring. These assays could be particularly useful for immunocompromised people and other clinically vulnerable populations, where interactions between cellular and humoral immunity are complex. As we continue to live alongside COVID-19, the importance of considering immunity as a whole, incorporating both humoral and cellular responses, is crucial.</p

    Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In an epitope-based vaccine setting, the use of conserved epitopes would be expected to provide broader protection across multiple strains, or even species, than epitopes derived from highly variable genome regions. Conversely, in a diagnostic and disease monitoring setting, epitopes that are specific to a given pathogen strain, for example, can be used to monitor responses to that particular infectious strain. In both cases, concrete information pertaining to the degree of conservancy of the epitope(s) considered is crucial.</p> <p>Results</p> <p>To assist in the selection of epitopes with the desired degree of conservation, we have developed a new tool to determine the variability of epitopes within a given set of protein sequences. The tool was implemented as a component of the Immune Epitope Database and Analysis Resources (IEDB), and is directly accessible at <url>http://tools.immuneepitope.org/tools/conservancy</url>.</p> <p>Conclusion</p> <p>An epitope conservancy analysis tool was developed to analyze the variability or conservation of epitopes. The tool is user friendly, and is expected to aid in the design of epitope-based vaccines and diagnostics.</p

    Dataset size and composition impact the reliability of performance benchmarks for peptide-MHC binding predictions

    Get PDF
    BACKGROUND: It is important to accurately determine the performance of peptide:MHC binding predictions, as this enables users to compare and choose between different prediction methods and provides estimates of the expected error rate. Two common approaches to determine prediction performance are cross-validation, in which all available data are iteratively split into training and testing data, and the use of blind sets generated separately from the data used to construct the predictive method. In the present study, we have compared cross-validated prediction performances generated on our last benchmark dataset from 2009 with prediction performances generated on data subsequently added to the Immune Epitope Database (IEDB) which served as a blind set. RESULTS: We found that cross-validated performances systematically overestimated performance on the blind set. This was found not to be due to the presence of similar peptides in the cross-validation dataset. Rather, we found that small size and low sequence/affinity diversity of either training or blind datasets were associated with large differences in cross-validated vs. blind prediction performances. We use these findings to derive quantitative rules of how large and diverse datasets need to be to provide generalizable performance estimates. CONCLUSION: It has long been known that cross-validated prediction performance estimates often overestimate performance on independently generated blind set data. We here identify and quantify the specific factors contributing to this effect for MHC-I binding predictions. An increasing number of peptides for which MHC binding affinities are measured experimentally have been selected based on binding predictions and thus are less diverse than historic datasets sampling the entire sequence and affinity space, making them more difficult benchmark data sets. This has to be taken into account when comparing performance metrics between different benchmarks, and when deriving error estimates for predictions based on benchmark performance.Fil: Kim, Yohan. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Sidney, John. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Buus, Søren. Universidad de Copenhagen; DinamarcaFil: Sette, Alessandro. La Jolla Institute for Allergy and Immunology; Estados UnidosFil: Nielsen, Morten. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentina. Technical University of Denmark; DinamarcaFil: Peters, Bjoern. La Jolla Institute for Allergy and Immunology; Estados Unido
    • …
    corecore