
REVIEW

The Immune Epitope Database and Analysis Resource Program
2003–2018: reflections and outlook

Sheridan Martini1 & Morten Nielsen2,3 & Bjoern Peters1,4 & Alessandro Sette1,4

Received: 27 August 2019 /Accepted: 12 October 2019 /Published online: 25 November 2019
#

Abstract
The Immune Epitope Database and Analysis Resource (IEDB) contains information related to antibodies and T cells across an
expansive scope of research fields (infectious diseases, allergy, autoimmunity, and transplantation). Capture and representation of
the data to reflect growing scientific standards and techniques have required continual refinement of our rigorous curation and
query and reporting processes beginning with the automated classification of over 28 million PubMed abstracts, and resulting in
easily searchable data from over 20,000 published manuscripts. Data related to MHC binding and elution, nonpeptidics, natural
processing, receptors, and 3D structure is first captured throughmanual curation and subsequently maintained through recuration
to reflect evolving scientific standards. Upon promotion to the free, public database, users can query and export records of
specific relevance via the online web portal which undergoes iterative development to best enable efficient data access. In
parallel, the companion Analysis Resource site hosts a variety of tools that assist in the bioinformatic analyses of epitopes and
related structures, which can be applied to IEDB-derived and independent datasets alike. Available tools are classified into two
categories: analysis and prediction. Analysis tools include epitope clustering, sequence conservancy, and more, while prediction
tools cover T and B cell epitope binding, immunogenicity, and TCR/BCR structures. In addition to these tools, benchmarking
servers which allow for unbiased performance comparison are also offered. In order to expand and support the user-base of both
the database and Analysis Resource, the research team actively engages in community outreach through publication of ongoing
work, conference attendance and presentations, hosting of user workshops, and the provision of online help. This review provides
a description of the IEDB database infrastructure, curation and recuration processes, query and reporting capabilities, the
Analysis Resource, and our Community Outreach efforts, including assessment of the impact of the IEDB across the research
community.
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Overview and introduction

Our initial focus in the 2003–2011 period was to design and
render operational the Immune Epitope Database (IEDB) and
associated Analysis Resource (IEDB-AR) (Peters et al. 2005a;
Peters et al. 2005b; Vita et al. 2010; Zhang et al. 2008). In the
second quarter of 2011, the IEDB reached the key milestone of
being up-to-date with curation of published immune epitope data
within its scope (Salimi et al. 2012). Then, and now, it remains a
priority that we continuously optimize processes, since the num-
ber of epitopes/year steadily increases. Due to the unprecedented
amount of data accumulated, in the 2012–present period, we
introduced significant enhancements in the database structure,
usability, and query capacity (Vita et al. 2019; Vita et al. 2015).
Likewise, the performance and breadth of the existing tools with-
in the Analysis Resource were improved while designing
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altogether new classes of tools (Dhanda et al. 2019). These ac-
tivities were designed to fulfill the ongoing aim of facilitating the
analysis, compilation, and display of the large amount of data
available and to support epitope prediction and analysis based on
data and sequences provided by the users.

The LJI team was awarded support for the IEDB for a new
period, spanning years 2019–2025. Throughout this period,
our vision will be to meet the challenge of data growth and
complexity, and to offer the best available bioinformatics tools
to the epitope community. The new cycle of work is associat-
ed with distinctive opportunities and challenges. We will con-
tinue to provide a one-stop resource to catalog and analyze
immunological data; including B cell and T cell recognition
and MHC binding data, and also the exponentially growing
amounts of data related to natural ligands and epitope-specific
BCR/TCRs. The vision includes parallel growth of the tools
and algorithms available to the community.

Throughout these efforts, we will continue building the
IEDB in support of the broad movement that creates and
brings full utilization to community-based ontologies and data
standards. As such, a key component of both design and out-
reach activities is to connect the epitope data in the IEDBwith
other knowledge resources such as the BRCs, ImmPort,
IMGT, PDB, UniProt, and NCBI. Realizing this vision also
requires meeting significant challenges in terms of infrastruc-
ture. The original IEDB was designed in 2003, and it dealt
with a data landscape of much lesser volume and complexity.
In the last 5 years alone, although the number of published
references per year remains fairly constant, the average num-
ber of epitopes published per reference has increased 12-fold,
and the number of unique visitors to the IEDB websites has
doubled. These trends are expected to continue and would put
a static IEDB design under pressure. Keeping up with expo-
nential increases in data content and user-base will require
constant enhancement of IEDB systems and operations.

Database infrastructure

Continuously maintaining and enhancing the database-
associated infrastructure is key to accommodate increases in the
volume of data contained in the database, increases in the number
of users, and future technological advancements. The infrastruc-
ture is based on three separate database systems, namely
External, Curation, and Submission (Fig. 1). In the External sys-
tem, epitope data from multiple sources can be queried and an-
alyzed by external users. The associated Curation system allows
IEDB staff to capture immune epitopes and accompanying bio-
logical information from the scientific literature. Finally, the
Submission system allows investigators from the broader re-
search community to send their epitope data and accompanying
biological information to the IEDB.

Currently, all database and application servers are run on
Virtual Machines (VMs) that are strategically deployed across
multiple hardware platforms in different locations, including
cloud environments. This is well coordinated, and all of the
virtual machines are cloned from a validated ancestor VM to
ensure they are consistent and reliable when deployed. This
approach allows for rapid recreation of clean instances should
there be corruption, and a safety net for system administrators
and programmers as they interact with these systems. Although
many of the technologies were harmonized and security-patched
over time, it is anticipated that in the coming years, several areas
will benefit from major updates and/or complete replacements.

The IT architecture used for the IEDB needs to accommodate
a large number of differences in the types of applications and
users which have variable hardware and/or network configura-
tions and are located at both domestic and international sites.
Accordingly, efforts are directed to ensure that our architecture
is capable of accommodating this variability among users world-
wide. To this end, we set up a VMware vSphere computing
cluster hosting virtualized machines at LJI (sometimes referred
to as a “private cloud”).With all systems running on theVMware
vSphere cluster, hardware and networking components standard-
ized to efficiently assign resources when and where needs arise.

Web portal

The IEDB web portal (www.iedb.org) is the central access
point for external users to the IEDB data and tools. The
present website encompasses several interfaces to query and
browse curated data; tools to predict, analyze, and visualize
epitopes; user support in the form of specific tutorials and help
desk; and other resources such as downloads of the full
database; a news section with reports, manuscripts, and
compendia; and a list of links to related resources.
Maintenance of these systems is routine, but parallel
activities aim to continually enhance the web portal to
optimize the value of the IEDB for its user community.

A thorough and formalized process is in place to identify,
prioritize, and implement enhancements in the IEDB web
portal. Indeed, the IEDB portal was completely redesigned
based on input received from usability studies and user feed-
back, to reduce the content in the first page and focus the user
on the most frequently used features. Our formalized process
identifies potential enhancements based on feedback from the
IEDB team itself, interactions with existing users and the
wider scientific community, and feedback from the NIAID.
On an annual basis, we review suggestions, provide a prelim-
inary feasibility assessment based on the time and resources
necessary for implementation, then for selected projects dem-
onstrate and test prototypes before release.

To ensure usability of the web portal, we continuously evalu-
ate interfaces for practical flow and usability with the scientific
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community. It is of particular importance that the user interface
(UI) is clear and intuitive and it is not uncommon for scientific
websites to focus on providing a large number of features while
neglecting the UI. A common blind spot is found when evalua-
tion is limited to only those directly involved in developing func-
tionality interface elements; because in fact, those who are best-
suited to judge if a feature is easy to use are those who are less
familiar with its development. To avoid this pitfall, we routinely
conduct tests of new functionality by outside users from the
scientific community. These recommendations were a major
component of the IEDB 2.0 and 3.0 redesigns (Vita et al. 2015;
Vita et al. 2010).

We engage experts in the field of epitope identification, but
also bioinformatics and experimentalists across areas in im-
munology. These experts can be identified, for example, by
querying authors most prolific in publishing papers in a spe-
cific subject or engaging representatives of other related and
relevant NIAID programs. Ultimately, the broader scientific
community is the best and most important judge of the ade-
quacy and effectiveness of the IEDB, so this feedback on the

scientific value and accuracy of the interfaces is of crucial
importance.

Based on site and conference surveys, junior scientists
(those at the postdoctoral level) are the largest user group
of the IEDB. Accordingly, we engage postdoctoral fellows
from LJI and other local research institutions, presenting
volunteers with UIs (either existing ones or new proto-
types) and monitoring them as we ask to solve a scientific
question. We have also found it beneficial to perform re-
views of the entire website by professional, external usabil-
ity consultants focused on ensuring that the navigation
structure and UI design is consistent with best practices
for human-computer interaction.

Convergence of each described evaluation technique
drives the IEDB development feedback cycle depicted in
Fig. 2. Through constant collection and assessment of this
information, the IEDB team is able to focus efforts on core
concepts most desired by the community and to implement
new features following basic UI paradigms which ultimate-
ly streamline data accessibility. Specific examples of the
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Fig. 1 Diagram of database
structure
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IEDB UI development are detailed in the “Query and
reporting” section below.

Maintaining the data currently
in the database through recuration

Data recuration is the process by which previously curated and
public data records are updated to improve retrieval and/or clar-
ify content. This process is critical to optimize the IEDB as it is
reflective of scientific progress and priorities driven continuous-
ly by community needs. A continuous stream of suggestions for
recuration arises from outreach activities (user feedback, inter-
actions with other NIAID supported programs), errors identi-
fied by validation rules, and the integration of ontologies. A
number of external ontologies are integrated into the IEDB’s
curation and search interfaces as “finder” applications including
the Organism finder utilizing the National Center for
Biotechnology Information (NCBI) Taxonomy (Coordinators
2018), the Molecule finder utilizing UniProt reference
proteomes (The UniProt 2018) and Chemical Entities of
Biological Interest (ChEBI) (Hastings et al. 2013), the Assay
finder that uses the Ontology for Biomedical Investigations
(OBI) (Bandrowski et al. 2016), the MHC Restriction Finder
utilizing the MHC Restriction Ontology (MRO) (Vita et al.
2016), and the Geolocation finder that uses the Gazetteer
Ontology (GO) (Ashburner 2015). For each finder, we annually
review the hierarchy to uncover curation errors and test each
tree for functional synonyms.

For example, when mapping IEDB disease states to the
Disease Ontology (DO) (Schriml et al. 2012), we identified
curation errors regarding the relationship between the disease
and the infectious agent curated as causing that disease. For
example, the disease “Hepatitis C infection” cannot be caused
by the “Hepatitis B” virus agent. Similarly, “Plasmodium
falciparum”malaria cannot be caused by “Plasmodium vivax”

agent. Errors such as these were corrected and will be
prevented going forward by the implementation of validation
rules that rely upon the logical definitions found in DO.

We rely on automated validation as a key process to identify
data in need of recuration. Several layers of automated valida-
tion are applied throughout the curation process, thus preemp-
tively addressing potential recuration needs and issues. This
computer-based validation was first introduced in 2008, and
since undergone constant and significant expansion. Currently,
the validation file contains 253 separate rules. Separately, we
have also begun to make use of logical axioms defined by on-
tologies to enhance our validation system. We expect that we
will continue to expand these validation rules, and to specifically
modify them to reflect the changes in the database structure or
ontology thatmay be introduced as a result of the proposedwork
and continued evolution of the IEDB data and structure.

Since the database in under constant scrutiny and feedback is
continuously received through a variety of channels, recuration
tasks are collated throughout the year and then reviewed to
determine need and feasibility on an annual basis. To prioritize
and select suggestions for action, we first consolidate the list of
change requests, eliminating duplications and overlap; conduct
a cost-benefit analysis; and finally nominate the highest priority
tasks for immediate action, while flagging some lower priority
tasks for possible action if resources become available.

Populating the database with data
from scientific literature

Populating the database with new data from the literature re-
lies on an established processes and procedures for epitope
curation, which have been optimized over 16 years of main-
taining the IEDB. During this time, the IEDB has become the
predominant resource of epitope information containing data
on over 2 million experiments from over 20,000 papers. The
overall process is based on identifying and classifying the
suitability of journal articles, curating each of the selected
papers, peer-reviewing the curated records, and finally pro-
moting approved records to the external IEDB site. In addition
to processing newly published, high priority in-scope papers,
a “backlog” of outstanding papers is simultaneously moni-
tored. The backlog consists of published literature which is
in-scope (i.e., containing epitope-related information) but
does not fall within our high priority curation categories of
infectious disease, autoimmunity, allergy, or transplantation.
In 2011, the IEDB team hit a landmark goals of completing
the historical curation of all papers published prior to estab-
lishment of the IEDB itself. Since then, the number of out-
standing papers has varied between ~ 100 and ~ 1000 papers;
the fluctuation is mostly associated with new categories of
papers being prioritized and added to the curation pipeline,
causing an influx to the total number of papers. Our team

Fig. 2 Process to improve website usability
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tracks the number of new papers being published and curated
per period of time. The effort allocation is designed so that the
rate of papers curated exceeds the rate of newly introduced
papers, allowing us to reduce the backlog and effectively tack-
le new paper categories over time.

Identifying curatable journal articles

A formalized rigorous process is utilized to identify the jour-
nal articles that will be curated, based on the combined use of
PubMed and PDB queries (Fig. 3, step 1), automated text
classifiers and categorizers (Fig. 3, step 2), and manual inspec-
tion of records by senior immunologists (Fig. 3, step 3) (Fleri
et al. 2017). While the total number of missed references can-
not be known, the number of missed references identified as a
result of user and expert feedback is approximately 10 per year
out of an annual average of 858 curated references, corre-
sponding to 1.2%. These data suggest that the PubMed query
is capable of capturing the vast majority of relevant references.
References that were missed are examined as to at which step
they were discarded, and used to update the query and classi-
fication procedure.

We utilize a general query based on abstracts to identify
potentially curatable articles (Seymour et al. 2011; Wang et al.
2007). Utilizing this type of continuously updated query since
program inception in 2003, we have identified over 229,000
abstracts of potential relevance, spanning the entire history of
papers cataloged in PubMed. Upon each execution, the query
identifies new PubMed records, which correspond to newly
published reports or papers from earlier years that have since
been added to the PubMed repository. While this query process
has been developed and optimized over a long period of time,
we found that the query’s recall rate can drop when new fields
of expertise are targeted by the curation efforts or new technol-
ogies are introduced in the scientific literature, leading to new
keywords and query modifications introduced as a result.

The abstract of each reference identified by the PubMed
query is further analyzed to determine whether the reference
meets the IEDB inclusion criteria. The specific criteria are
described in more detail in our online curation manual and
previous publications (Fleri et al. 2017; Vita et al. 2008; Vita
et al. 2006). To minimize human inspection of the large num-
ber of abstracts, and to maintain low and acceptable error
rates, we established and validated a semi-automated process
in which iteratively trained document classifiers are used to
eliminate papers with high probability of being uncuratable
(Seymour et al. 2011; Wang et al. 2007). The probability
threshold associated with the automated classifier was inten-
tionally set high, so that no more than a 5% false negative rate
would be tolerated. Senior immunologists on the IEDB team
then manually inspect each of the abstracts deemed curatable
by the classifier. We retrain the classifier annually utilizing the
results of manual curation.

Curating journal articles

Once a paper has been selected for curation, a process involv-
ing curation of the experimental data and peer review of the
curated record is utilized to ensure correctness, completeness,
and consistency (Vita et al. 2008). Throughout curation, the
epitope-related data are entered into the database utilizing an
internal web interface specifically developed to enhance
curation speed, accuracy, and consistency. Many fields use
controlled vocabularies that are made available to the curators
by a variety of finders facilitating the selection of appropriate
field values. For example, the Organism finder for antigens
and hosts is based on the NCBI taxonomy, and the Assay
finder utilizes entries in OBI. In addition to the finders, many
of the fields have drop-down menus that the curators use to
select from a limited number of allowable values. The design
of the system has undergone several iterations and continues

Fig. 3 Workflow for identifying
curatable journal articles
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to be improved upon and expanded utilizing feedback from
the curation team.

Quality control is ensured by several system-enforced
mechanisms throughout the curation process. First, as data
are being entered, the website applies embedded validation
rules (as mentioned above) ensuring entered data match the
field type and are properly formatted. Second, each curation is
peer-reviewed by an independent curator for accuracy and
adherence to the IEDB curation guidelines. This peer review
process is iterative, and a reference will not be released to
external users until both the curator and the reviewer are sat-
isfied with the quality of the curated data.

Each paper is tracked in our Curation Tracking System,
indicating the paper’s status in the curation pipeline: assigned
to a curator, in curation, initial curation complete, in review,
and finalized for promotion to the database. The timeline for
each one of these steps is also recorded systematically, and
when analyzed, helps the curation team identify process bot-
tlenecks and consider possible solutions to improve
throughput.

Populating the database with naturally processed
MHC ligand data

In physiological conditions, MHC molecules are mostly
found with their peptide-binding site occupied by naturally
processed (NP) peptides derived from proteins expressed
within the cell, or acquired from the extracellular milieu.
Their capture is of significant interest to characterize possible
epitopes recognized in the context of autoimmunity and can-
cer, and increasingly as a powerful approach to discern poten-
tial candidates for epitope identification studies. The ability to
compare NP data with MHC binding data allows us to gain
insight into antigen processing and potentially develop new
predictive algorithms.

Currently, NP data represent over 400,000 total ligands
derived from more than 500 submitted and published papers,
spanning the time-period of 1990 through 2019. While the
vast majority of these NPs were “conventional” peptides, over
20,000 ligands with post-translational modifications were also
reported (Vaughan et al. 2017). Not surprisingly, most of the
NP ligand data have been defined from humans with rodent
NP data far less abundant. Our process for reference classifi-
cation already identifies and categorizes NP epitope papers.
These references are currently processed, utilizing established
procedures, by curators specifically familiar with NP data
curation.

Parallel efforts in the mass spectrometry (MS) community
have led to database developments capturing primary data,
such as selected reaction monitoring (SRM), data-dependent
acquisition (DDA), and data-independent acquisition (DIA)
(Caron et al. 2015). We do not envision that the IEDB will
act as a repository of this primary data, which will continue to

be stored in the various resources specifically dedicated to NP
data. We envision that the IEDB will specialize in making
available data on the ultimate epitope recognized, using link-
in and link-out functionalities, the associated metadata, and
thus enable the integrated analysis of data from different stud-
ies and resources.

Integrated approaches are key to ensure interoperability of
data repositories. To this end, the Human Immuno-Peptidome
Project (HIPP), associated with the Human Proteomic
Organization (HUPO), provides a collaborative and integra-
tive conduit for immunopeptidomic data storage and analysis.
In parallel, we will continue to capture NP data from the var-
ious peptidome repositories, such as SWATHAtlas and, devel-
op links between the IEDB and the various peptidome repos-
itories so users can access relevant information.

Maintaining and further enhancing a central source
of BCR and TCR repertoire data

From its initiation, the scope of the IEDB has been to capture
experiments defining epitope-specific immune responses.
Recent years have seen technological advances in the genera-
tion of BCR and TCR sequence data. Cutting-edge research is
now defining the universe of TCR and BCRs present in the
general population, under steady-state conditions (non-
diseased) and as a result of perturbation, such as diseases,
infections, vaccination, and aging (Rubelt et al. 2017). Most
importantly in this context, the BCR and TCR repertoires
associated with recognition of specific antigens are starting
to be defined and understood. Parallel recent research suggests
that knowledge of BCR/TCR sequences might actually be
utilized to predict the specific epitopes recognized by these
effector cells (Glanville et al. 2017). These advances have
the potential to revolutionize our understanding of adaptive
immunity and lead to novel diagnostic, therapeutic, and vac-
cine applications. As these receptor data are reported differ-
ently than epitope data by themselves, we adjusted our
curation efforts and are continuously curating and recurating
records related to epitope-specific antibodies and TCRs with
known sequences. We have introduced appropriate modifica-
tions to the IEDB curation processes and underlying systems
(ontologies, validation checks and so on) to support this new
data type.

The processes implemented to curate these sequences have
been described in detail in a recent review (Mahajan et al.
2018). In short, to identify which journal articles contain
epitope-specific receptor information, we expanded our query
for keywords (e.g., “TCR repertoire,” “CDR3 sequence”), to
retrieve additional papers. To further enhance our query, we
also examined several databases dedicated to antigen-specific
receptors such as Atlas DB, Harvard DB, DTU, VDJ DB, and
AdBio, to identify additional keywords in articles included in
those databases that were missing from the IEDB. After
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identifying the relevant references, we determined what infor-
mation should be captured beyond the description of the epi-
tope in the IEDB, by community standards (Breden et al.
2017; Rubelt et al. 2017), which recommend submitting the
raw sequence information of receptor repertoires to Sequence
Read Archive (SRA) (Leinonen et al. 2011), submitting the
assembled receptor repertoires to dedicated repositories of
such data that follow AIRR recommendations (such as
VDJserver, iReceptor), and linking to the IEDB to identify
specific epitopes recognized by receptors.

The IEDB-3D curation

IEDB-3D is the 3D structural component of IEDB
(Ponomarenko et al. 2011). As of January 2019, there are
2555 B cell, 276 T cell, and 1075 MHC curated 3D struc-
tural assays. The curated data include receptor, epitope,
and antigen sequences, and other structure data such as
curated and calculated residue contacts between antigen
and receptor included. Newly published manuscripts con-
taining this data are identified through a biweekly PDB
query targeting crystal structures that include an antibody,
TCR, or MHC molecule based on analysis of the sequence
of the crystalized protein chains. If epitope-paratope con-
tact information is provided in the references, it is captured
in the database as “curated contact” information. In addi-
tion, the contact information is also always calculated in all
cases and included in the record as “calculated contacts.”
We also distinguish CDR regions from full receptor chain
sequences based on the IMGT numbering scheme (Lefranc
et al. 2003) using ANARCI (Dunbar and Deane 2016),
which enables searching for e.g., antibodies with a specific
heavy chain CDR3 sequence identified in either crystallog-
raphy or repertoire sequencing data. Since the 3D data can
be used for developing and validating epitope prediction
algorithms, the dataset has been made available as a sepa-
rate, continually updated download that provides a simpli-
fied data structure aimed at structural biologists.

The evolution of the curation needs and targets
throughout the IEDB life span

Over the last ten years, the IEDB epitope content (in terms of
total number of epitopes) has increased approximately 10-fold
or ~ 20%/year, with a sharp rise since 2015 (Fig. 4a). Despite
the fact that the IEDB is now in “maintenance mode” for the
epitope categories originally envisioned to be in scope, data
growth shows no sign of abating and is, in fact, accelerating.
To identify the cause of this accelerated growth, we performed
quantitative analyses, on papers curated 2004–2018.

This phenomenon resulted from a progressive increase in
the number of epitopes per paper (Fig. 4b), despite the number
of new epitope papers appearing in the literature slightly

decreasing over time. Keeping up with this growth in addition
to tackling new categories of epitope papers necessitated a
continued effort to increase a curator’s capacity to process
data. Our analysis showed that curator output increased ap-
proximately eight-fold over the last decade, and will likely
need to increase further. Improving curation efficiency and
throughput remains a key focus of the IEDB efforts.

The Data Submission Tool

The database is also populated through direct investigator
submissions. Support for these submission requests has
resulted in the generation of the Data Submission Tool
(DST) which provides multiple channels for data submis-
sion: Extensible Markup Language (XML) file submission,
a spreadsheet Microsoft Excel file submission, and online
wizard-assisted submissions. Regardless of submission
method, all approaches follow the same workflow depicted
in Fig. 5. Data submitters first contact the IEDB website,
are issued an account, and can then access the DST inter-
face, where template files and explicit directions (as well as
help) can be obtained. After dataset validation, and once
both the IEDB staff and the submitter are satisfied, the data
are approved for public release on the IEDB; however,
timing of release is ultimately at the submitter’s discretion
since often investigators prefer to wait until publications
are at least in press.

On average, the IEDB team receives 35 data submission
requests containing around 40,000 epitopes/peptides per year.
A major source of data has been the NIH-funded epitope dis-
covery contracts. Of 353,468 epitopes submitted electronical-
ly, the IEDB had processed 191,149 epitopes submitted by
investigators from 22 epitope discovery contracts as of 31
December 2018.

Since the DSTwas introduced at the start of 2009, 98% of
submission requests have been made via spreadsheets. This
makes apparent that the IEDB data submission community
strongly prefers utilizing spreadsheets. We will thus focus on
the spreadsheet submission going forward and will incorpo-
rate aspects of the other systems, namely stringency of the
XML submission and user-friendly guidance of the wizard
system into the spreadsheet submission itself.

The current spreadsheet templates for T cell, linear B
cell, discontinuous B cell, MHC binding, MHC ligand elu-
tion, and non-peptidic data have been in place for several
years and have had slight revisions, as needed, based pri-
marily on modifications to the data schema. We are cur-
rently developing new versions of the templates to accom-
modate BCR/TCR sequence data and make modifications
to the MHC ligand elution template including enhancing
data validation and error reporting.
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Query and reporting capabilities enable
access to data throughout the IEDB

The IEDB content continuously evolves in terms of volume
and information type; this evolution is paralleled by a contin-
uous enlargement in the number and types of users. We regu-
larly modify and optimize query and reporting strategies to
balance this growth. To accomplish this goal, we gather feed-
back regarding the usability and desired enhancements of the
IEDB UI. In the past, surveys via SurveyMonkey were de-
ployed as a link on the IEDB home page and sent to members
of the epitope discovery groups, subscribers to the IEDB
Solutions Center, people who had inquired and/or signed up
for the User Workshops, and users who had submitted help
requests. User observation sessions were also conducted in
order to collect usability metrics and feedback. Comments
were combined with all requests received from the help desk

as additional input and revealed a clear overall message that
the website needed to be easier to use, and that most users
wanted to perform simple queries, which needed to be imme-
diately obvious how to perform.

Once the main user needs were identified, they were
scrutinized by usability experts who provided feedback fo-
cused on the placement of control elements, color patterns,
font sizes, use of icons, and other features that their research
showed to improve the ability of users to effectively navi-
gate web pages. Following multiple iterations, a final pro-
totype was completed and demonstrated to a representative
group of users for further feedback. The final result of this
process was the IEDB 3.0 homepage redesign (Vita et al.
2015) shown in Fig. 6, which moved the main query func-
tionality onto the home page and focused it on high interest
elements. Different sets of query results are then presented
on a web page with different tabs that match the query

Fig. 5 Workflow of investigator
initiated data submissions
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parameters. Additional controls on the result page allow to
further narrow down the results. This tab-based presenta-
tion of results matches a common web page interface para-
digm that users are already familiar with. One of the most
common examples is travel websites, which present flights,
hotels, and car rentals in response to a query for travel to a
certain city. This redesign was a major success, with a sig-
nificant drop in the rate of users that visited the IEDB home
page but leave without further action because they could
not understand how to proceed (i.e., the “bounce rate,” as
defined by Google Analytics).

Another significant component of the IEDB 3.0 rede-
sign was the addition of “finder applications” that assist
users in specifying antigens, MHC alleles, assays, source
and host species, and diseases. These applications com-
bine the use of autocomplete functionality in textboxes
that are synonym-aware, with tree-based views of term
taxonomies, clearly depicting the hierarchical relation-
ships among terms sourced from community ontologies.

Implementing a dedicated search interface
for TCR/BCR sequences

To develop a targeted search interface, we introduced a
receptor specific search pane on the results page

(Mahajan et al. 2018). This search pane allows users to
search for all epitopes having antibodies or TCRs with
known sequence information or to further narrow those
results by specific receptor type (e.g., alpha beta TCR) or
chain type (e.g., light chain). Additionally, this search pane
allows one to search by full-length or CDR sequence and
utilizes a BLAST match functionality, including limiting
sequence identity levels (90–60% or substring matches).
This pane also includes the option to search for all epitopes
for which there is a known 3D structure of its binding to an
antibody or TCR.

Additionally, a new receptor results tab was introduced,
next to the pre-existing epitope, antigen, assays, and ref-
erences results tabs. This tab shows the receptor ID, the
species in which the receptor was generated in, the type
(alpha/beta TCR, etc.) and, if available, the CDR3 se-
quences of chains 1 and 2. To display the detailed results
associated with each record, we implemented a new page
specifically for this purpose. Receptor information such as
ID, name, receptor type, and chain 1/2 gene usage and
sequence information is included. In addition, information
regarding the epitope(s) associated with each receptor is
provided, including sequence, epitope ID, antigen, and
organism of origin, along with the specific immunogenic
assays reported for each epitope.

Fig. 6 IEDB 3.0 Homepage
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Complying with FAIR principles through ontology
and external links

The FAIR principles (Findabi l i ty, Accessibi l i ty,
Interoperability, and Reusability) were introduced in 2016 to
serve as essential principles which should drive the design of
data repositories to best optimize the usefulness of their data
holdings (Wilkinson et al. 2016). Since the functional purpose
of the IEDB is to support human users querying through the
website’s graphical browser interface, the relevance of these
principles to our mission was immediately realized.

Our user community predominantly consists of experimen-
tal scientists, so most effort thus far has gone into making the
query and reporting interfaces accessible without any advanced
computational skills. At the same time, and in partnership with
those in the database community, significant effort has been
made towards making the IEDB data more computable. This
is done to utilize automated inferences for data validation, to
enable advanced query interfaces (Vita et al. 2013), and with
full intent that we improve links between the IEDB and other
knowledge repositories (Peters and Sette 2007).

Immediately following the release of these standards, we
conducted a review of the IEDB’s compliance to assess the
degree of compliance, to identify areas of non-compliance,
and simultaneously to explore how the FAIR principles might
be adjusted and fine-tuned to facilitate applications benefitting
the general community (Vita et al. 2018; Vita et al. 2017). As
result, we established a list of fields and terms to be added to
the IEDB, and redesigned the export file. Also, to further
integrate the IEDB data with BD2K/FAIR resources, we
added Internationalized Resource Identifiers (IRIs) to exports,
added provenance to data, and are standardizing data
locations.

Analysis of performed queries to optimize interface
designs

A key goal of the IEDB query interface design is that the queries
users want to perform most frequently are also the easiest to
perform. We periodically review the actual queries performed
to determine if the fields made most prominently available
should be updated to reflect any changes in user needs.
Specifically, we analyze all queries performed either directly
from the home page or using additional filter capabilities in the
results page or queries performed from the detailed search pages,
by tracking how many times each field is used. Our goal is to
ensure that 95% of all queries performed on the site can be
formulated via the home page search interface directly, rather
than requiring additional search fields, and that 99%of all queries
are possible when including the additional filter capabilities on
the results page. To ensure continued achievement of these goals,
we analyze the actual queries performed on a yearly basis iden-
tifying any areas requiring adjustment.

For example, reviewing results of a query analysis over 21
weeks and 46,400 queries, we found that 90% of queries were
possible on the home page and 96% of all queries were pos-
sible on the results-filter page. We next analyzed, in more
detail, home page usage, in terms of distribution of field usage
by section. The epitope and antigen sections were most used
(29% and 20%, respectively), followed by assay and host
(16% and 12%), and then MHC restriction and disease (7%
and 4%). In terms of specific fields, the most commonly used
field was structure type (peptidic, non-peptidic, etc.) with a
count of 21,047 uses. In 2nd place, we found source organism
(16,421), 3rd was linear sequence/value (16,008), and 4th was
host (15,875). Other commonly used fields were no B cell
assays (5th; count of 9275), epitope source antigen (6th;
8980), MHC class (7th; 8423), filter by epitope (8th; 7667),
no MHC assays (9th; 7508), disease (10th; 4895), and no T
cell assays (11th; 4313). These results were encouraging,
since they indicated that 98.6% of utilized fields are present
on the home page. They also indicated that additional work
would be required to ensure that 95% of all queries could be
executed on the home page, since only 90% of all queries were
possible from there. We next rectified this by moving addi-
tional fields onto the home page, such as the ability to search
for specific assay types. In doing this, we accomplished our
goal of allowing 95% of all queries performed on the site be
possible directly via the home page search interface.

Implementing the reference epitope reporting
functionality

A common user request was to summarize results available
rather than providing tables with many rows that report indi-
vidual experimental data points. To address this, we began
implementation of the “Reference Epitope” concept. The goal
of this function is to summarize experimental results automat-
ically using computational algorithms in order to report infor-
mation in a succinct manner. An initial version of such algo-
rithms was tested and recently released on the public website
(Fig. 7). The reference epitope starts with a textual summary
of the data for a given epitope, such as, “KPLLIIAEDVEGE
is a linear peptidic epitope (epitope ID 78188) studied as part
of 60 kDa chaperonin 2 (UniProt:P9WPE7) from
Mycobacterium tuberculosis. This epitope has been studied
for immune reactivity in 3 publication(s), tested in 18 MHC
ligand assays.” The words underlined in the example provide
live links that the user can use to directly access the informa-
tion. As intended, this presentation strategy provides a high-
level summary and immediately below, the user can view
tables that capture the most frequently requested information
available in the IEDB (such as MHC binding data, listing the
alleles for which data are available, and the number of positive
assays/total).
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We are in the process of generating similar views for B cell
assays, MHC restriction, protective/neutralization data, and
other categories for which relevant data are available. In our
vision, the development of the reference epitope represents an
important new functionality and uniquely exploits the value
afforded by our ontology work. We envision that these pages
summarizing the entirety of data available will also be a useful
link-in/link-out target for other resources (e.g., PubChem,
WikiData).

The IEDB Analysis Resource

The LJI team effort builds upon its very successful record of
accomplishment in making the IEDB Analysis Resource a
major resource for analyzing and predicting T and B cell epi-
topes (Dhanda et al. 2019; Kim et al. 2012; Zhang et al. 2008).
The general objectives in managing the Analysis Resource are
to maintain and enhance existing tools, to introduce new tools,
and to provide unbiased benchmark evaluations across all
publically available prediction methods.

As requests for new tools and upgrades to existing tools
began to be collected, we realized a distinct conflict between
making tools available to the community quickly versus
guaranteeing that what is made available will provide accurate
and stable results over time. Thus, a new LABS classification
was introduced in 2016. Tools under AR Labs are experimen-
tal and are considered to be beta versions, not quite ready for
production yet, for which we anticipate that new versions with

fundamental changes could be developed without advance
user consultation. This differentiates from CORE tools where
we will announce non-incremental updates in advance and
obtain feedback from the user community before
implementation.

The tools provided in the analysis resource fall into two
primary categories—prediction tools and analysis tools.
Prediction tools extrapolate beyond data held in the database
and can be used to predict epitopes in protein sequences or
predict properties of known epitopes, such as their MHC bind-
ing affinity. Analysis tools help extract and interpret data
contained in the database by identifying characteristics of
existing datasets.

Maintaining existing epitope analysis tools

Presently, four analysis tools have been implemented at the
CORE level. First, the Population Coverage tool (Bui et al.
2006) calculates the fraction of individuals predicted to have
the capacity to respond to a given set of T cell epitopes with
known MHC restrictions. This calculation is made on the
basis of HLA genotypic frequencies assuming non-linkage
disequilibrium between HLA loci. Second, the Epitope
Conservancy Analysis tool (Bui et al. 2007) calculates the
degree of conservancy of a peptide within a given set of pro-
tein sequences at adjustable levels of sequence identity. The
degree of conservation is defined as the fraction of protein
sequences containing the peptide at a given identity level.
Third, the Epitope Cluster Analysis tool (Dhanda et al.

Fig. 7 Example Reference Epitope page
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2018b) groups user-provided peptides into clusters based on
sequence identity. A cluster is defined as a group of sequences
that have a similarity greater than the minimum threshold
specified. As of March 2019, this tool will be upgraded to a
new version to address user requests for different modes of
clustering. Fourth, a web page describing Computational
Methods for Mapping Mimotopes to Protein Antigens.
Rather than providing a specific tool, this web page provides
information on how to search the IEDB for mimotopes and
how to utilize external, publicly available tools to map them to
proteins, including examples of a mimotope dataset and the
mapping results.

Over the years, we established robust procedures to ensure
tools remain functional. Our experience has allowed us to
learn of possible failure points and to implement procedures
that prevent issues from reoccurring. Specifically, all tools in
the IEDB-AR CORE are continuously monitored for avail-
ability and functionality by Zabbix, which probes if the tool
provides expected responses. In addition to this automated
monitoring, we continuously receive user feedback and bug
reports, which can identify problems that are not covered by
the automated monitoring and occur, for example, only with a
specific combination of user input. As problems are identified,
we follow industry standard software development practices
to address them: a ticket is filed with the problem description
and assigned to an IEDB tool developer. The problem will
then, if possible, be recreated in a test case, which is integrated
into our test suite to ensure that if the same problem reoccurs,
it will be detected before it gets to our production systems. The
tool code will be updated and tested to determine if the prob-
lem is fixed following our standard testing cascade.

Developing new tools

In addition to the four analysis tools described above, two epitope
analysis tools have recently been added which are classified as
LABS tools. The novel RATE (Restrictor Analysis Tool for
Epitopes) application (Paul et al. 2015) can infer HLA restriction
for a set of epitopes based on patterns of Tcell responses inHLA-
typed subjects. The RATE tool takes two data files, one contain-
ing the alleles expressed by the subjects and the other containing
the response to the peptides in these subjects. The tool calculates
the odds ratio of an HLA allele being associated with positive
responses for a given peptide and estimates its significance using
Fisher’s exact test. The ImmunomeBrowser was also recently
added under LABS. This tool enables visualization of the known
immune response to a specific antigen. Specifically, it provides
the immune reactivity in terms of response frequency (RF) and
the number of subjects tested/responded and/or number of inde-
pendent assays performed along the length of reference protein.
Based on a similar feature originally implemented in the results
page of the database section of the IEDB, this standalone version
extends usability to predicted epitopes and propriety epitopes or

non-IEDB data (Dhanda et al. 2018c). The standalone version
maps user provided peptide sets and associated response data to a
user-provided protein reference sequence. This now allows the
user to analyze and visualize immunodominant regions within
their own dataset.

Our approach is to couple all new tool releases with a peer-
reviewed journal publication detailing the rationale, back-
ground, and methodology applied for tool development as
well as provide examples of usage and validation of expected
outcomes. Such a publication serves not only to alert potential
users of its existence, but the peer review process also pro-
vides external input and review of our efforts and forces a
higher quality standard for the documentation.

New tools added to the IEDB-AR do not necessarily have
to be developed from scratch but can also be adopted from
external tool developers interested in hosting tools. For exam-
ple, the MHC-NP tool (Giguere et al. 2013) performed very
well in a benchmark of NP and presented peptides but was not
made available to the public so our team contacted the devel-
opers to determine if they were agreeable to hosting the tool
on the IEDB-AR. In cases like this, it cannot be expected that
the external tool developers will follow the IEDB coding
guidelines. Instead, we work with the external developer to
provide a Python-wrapper that encapsulates the tool, which
can then go through the same testing procedures described
above. The potential downside of this approach is that prob-
lems that are part of the external code inside of the wrapper
might not be fixable by our team. However, in practice, all
problems encountered can be detected and independently
fixed at the level of the wrapper code, or they can be fixed
with the help of the external developers.

Maintaining and updating existing T cell epitope
prediction tools

T cell epitope prediction tools are data-driven, meaning they
are based on extracting patterns from experimental data. As
more data become available over time, the tools can be
retrained with the new knowledge to improve the accuracy
of their predictions. This is particularly important for areas
where little data is available to start with. For example, few
improvements are expected at this point for prevalent HLA
class I molecules where large numbers of data points are avail-
able characterizing the binding specificity, while significant
gains are expected for e.g., HLA class II in general and
HLA-DQ and DP molecules in particular where binding data
are comparatively scarce. For both MHC class I and class II
binding prediction tools, retraining is performed annually by
(i) assembling the most current dataset from the IEDB, (ii) if
enough new data points are available, retraining the algo-
rithms based on this dataset, and (iii) updating the website to
make the new algorithms available.
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Incorporating elution data in epitope prediction

Recent technical advancements in MS have led to the
increased availability of large-scale datasets of peptides
identified as naturally processed and presented by MHC
molecules. These data now provide a valuable, comple-
mentary source of data in parallel to binding assays that
can be used to improve MHC ligand prediction, as they
provide an unbiased assessment of what peptides are
found on the cell surface. Thus, they can give insights
into the natural length distributions of presented peptides,
which is impacted by processes other than MHC binding
preference such as proteasomal cleavage, TAP transport,
and ERAP Trimming (Trolle et al. 2016). Elution data can
also reveal unconventional peptide-binding motifs. We
and others could subsequently show that these unconven-
tional motifs correspond to rare binding configurations
with the peptide bulging out of the binding grove between
anchors (Ebert et al. 2009) or being N-terminally (Pymm
et al. 2017) or C-terminally (McMurtrey et al. 2016;
Remesh et al. 2017) extended beyond the anchor position.

The advantages of elution data come with the funda-
mental disadvantage that detection of peptides by current
methods is, at best, semi-quantitative and heavily impact-
ed by factors such as intracellular protein expression and
turn-over levels. In contrast, MHC binding assays provide
quantitative affinities of defined peptides. We recently de-
veloped novel artificial neural network topology that al-
lows the training of a single neural network on both bind-
ing and ligand elution data for MHC class I molecules
simultaneously, thereby learning the commonalities and
differences of the two types of data and boosting the
overall predictive performance for epitope and MHC li-
gand identification (Jurtz et al. 2017).

Immunogenicity predictions beyond MHC ligand
binding and presentation

In a systematic comparison of immunogenic peptides known
to trigger T cell responses with MHC affinity-matched pep-
tides that did not (Calis et al. 2013), we found enrichment of
certain amino acids, such as tryptophans, in the immunogenic
peptides. This enrichment presumably reflects that certain
amino acid side chains have an enhanced likelihood of being
recognized by T cell receptors as non-self. We incorporated
this into a prediction tool that provides a score, independent of
MHC binding capacity, for how likely a peptide is to be im-
munogenic, which is now part of the IEDB toolset. We have
recently extended this strategy using more complex machine
learning approaches (such as neural networks), and on extend-
ing the same approaches to MHC class II restricted T cell
recognition (Dhanda et al. 2018a).

Integration of prediction steps into a single wizard

We found that many users can find it daunting to apply
prediction tools in real-life applications for their work,
especially if they do not have experience with bioinfor-
matics tools. The problem is not that the tools themselves
are difficult to run, but that users struggle to decide what
to do with the output and simply adding documentation
does not seem to overcome the problem. To address this,
we have implemented TepiTool (Paul et al. 2016), which
breaks the prediction process into small steps and, de-
pending on choices (e.g. MHC class I vs. class II), chang-
es what steps are necessary next. We have found that
users were more likely to complete a prediction task using
this tool compared with traditional prediction tools, where
many offered steps have to instead be performed outside
of the tool itself using custom scripts or advanced spread-
sheet manipulations. Given its popularity, we intend to
continue adding to the capabilities of TepiTool. In this
context, we will also make available the tools EpiSelect
(Perez et al. 2008), an algorithm that aims to select a
given number of epitopes in a set of viral strains so that
most strains are covered with the largest number of epi-
topes, and PopCover (Buggert et al. 2012), a method for
selecting peptides with optimal population and pathogen
coverage.

B cell epitope prediction tools

The performance of present B cell epitope predictions is
far behind that of T cell epitopes. Over the years, howev-
er, important technical advances have been made in pro-
ducing mAb from human B cells and in sequencing anti-
bodies, both of which are now becoming routine. Also the
ability to simultaneously screen antibodies for reactivity
against large-scale libraries promises to speed up epitope
discovery. Taken together, these developments lead to the
expectat ion that a much larger amount of well-
characterized human antibody data will become available
in the literature in the near future. This opens the possi-
bility to improve tools either by the IEDB team or by
outside scientists. Those tools need to be evaluated and,
if found useful, implemented in the IEDB.

Until such new tools become available, we continue to
maintain and update the present set of tools which comprise
several classic amino acid propensity scale-based tools for
which there previously was no web implementation available.
In addition, we have developed and implemented several nov-
el tools that represent state-of-the-art methods including,
BepiPred (Jespersen et al. 2017; Larsen et al. 2006),
DiscoTope (Haste Andersen et al. 2006; Kringelum et al.
2012), and ElliPro (Ponomarenko et al. 2008).
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Epitope prediction tools for specific BCR or TCR
receptor sequences

The recent advent of specialized sequencing technologies for
BCR/antibody and TCR sequences has greatly increased the
number of adaptive immune receptors for which the epitope is
known. The sequence of these receptors, especially the CDRs
that are the most variable and that are in direct proximity to the
antigen-binding site, is responsible for their epitope specifici-
ty. With increasing amounts of these data available, it will be
feasible to unravel the rules that determine the specificity of
these receptors, towards the ultimate goal of predicting, for a
given antibody or TCR, what epitope and antigen it can rec-
ognize. We fully expect that this vision is a decade or so away
from reality, but already tools are emerging that are taking
steps towards this goal (Glanville et al. 2017; Jespersen et al.
2019; Ponomarenko et al. 2011; Sela-Culang et al. 2014).

Specifically, we have shown in the past that for a set of
antibodies recognizing the same protein antigen, and for
which there is cross-blocking data available (meaning it is
known which antibodies do or do not bind in the same anti-
genic site), we can predict, with greatly increased accuracy,
what antigenic sites are recognized on the antigen and which
sets of antibodies recognize which site (Kim et al. 2009;
Klausen et al. 2015; Peters et al. 2006). This approach takes
full advantage of the fact that combining many weak predic-
tors can lead to strong predictive outcomes. While any indi-
vidual antibody:antigen recognition event can only be predict-
ed with low accuracy, combining predictions for groups of
antibodies and interrogating consistency with cross-blocking
data achieves this goal.

Other approaches have recently shown that for TCRs, there is
also a detectable complementarity of the CDR receptor se-
quences and the epitope recognized, allowing the target of a
TCR to be predicted from its sequence. Again, applying consen-
sus approaches that utilized data from donors and integrated
HLA restriction patterns showed the most promise to identify
epitopes (Glanville et al. 2017). Likewise, it has recently been
shown that simple force-field-based methods combined with
structural modeling of the TCR:p:MHC complex can be used
to identify the cognate target of a TCR (Greenbaum et al. 2007).

We anticipate that this field will rapidly advance and different
tools will emerge. We have so far implemented Lyra (Klausen
et al. 2015), a tool that predicts the structure of TCR or antibody
receptors based on their sequence. We are currently working on
assembling datasets for epitope-specific antibodies and TCRs to
analyze them for general patterns of complementarity with this
now vastly larger dataset compared with our previous work, and
to integrate them into an updated method of antibody- and TCR-
specific epitope prediction. Even if accuracy of these tools will
initially be low, providing them as a reference with curated
benchmark datasets and standardized performance evaluation
schemes will help advance the field.

Benchmarking activities to determine the accuracy
of prediction tools

Publicly available MHC class I and II binding predictions are
routinely benchmarked by the IEDB team (Andreatta et al.
2017; Jensen et al. 2018; Kim et al. 2014; Kim et al. 2009;
Peters et al. 2006; Trolle et al. 2015; Wang et al. 2008; Wang
et al. 2010; Zhang et al. 2009), along with antibody epitope
prediction tools (Kringelum et al. 2012; Ponomarenko and
Bourne 2007). The results of these benchmark analyses and
the accompanying datasets have proven highly valuable to the
community, as evidenced by over 1800 citations to their cor-
responding publications. New prediction methods are contin-
uously being developed by both the IEDB team and other
groups, which makes continuous update of the benchmark
results desirable. Such benchmarks inform tool developers
on which approaches lead to the best prediction tools, and tool
users can assess for themselves how individual tools perform.
We therefore plan to continuously update our evaluations of
the IEDB MHC binding prediction tools. The team will also
make new benchmark datasets available for use by the tool
development community. The evaluation process will also be
expanded to include the T cell processing prediction tools,
which were not previously evaluated.

For antibody prediction benchmarks, we previously
have worked on community standards to determine how
such a benchmark could be carried out (Greenbaum et al.
2007). In addition, we have assembled a carefully chosen
set of non-homologous PDB structures to evaluate the
expanding class of structure-based antibody prediction
tools (Ponomarenko and Bourne 2007). While previous
benchmarks have largely shown that existing antibody pre-
diction tools have overall low performance (Blythe and
Flower 2005), we are expecting that a number of new tools
will be developed that benefit from the increase of high-
quality data that is becoming available.

In addition to conducting performance benchmarks, we
have also implemented an automated benchmarking system
for prediction tools hosted inside and outside the IEDB, which
is run on new datasets that become available in the IEDB
before their release to the public. External developers are able
to register their tools in these benchmarks and as new datasets
become available, they are run through these tools immediate-
ly; allowing for side-by-side comparison of the predicted and
experimental results using tools hosted in the IEDB. Overall
performance metrics are reported and made available on a
weekly basis.We have thus far implemented such benchmarks
for MHC class I (Trolle et al. 2015) and MHC class II
(Andreatta et al. 2017) binding predictions and plan to expand
them to MHC ligand elution experiments (for both class I and
class II), as well as T cell and B cell epitope recognition data,
which will require additional consideration an input from tool
developers.
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Community Outreach

The true value of the IEDB is best measured by the extent
that it helps the user community of academic and applied
scientists in their work. In this respect, the outreach and
promotion efforts are crucial as they build awareness of the
IEDB and keep the community apprised as the program
evolves. Furthermore, the IEDB grows best when there is
constant input from the scientific community, in particular,
critical feedback on each of its key components, ranging
from suggestions on recuration, query and reporting, the
web portal interface, and the nature and utility of the tools
provided in the Analysis Resource. From public launch to
present day, the IEDB has been promoted in a variety of
channels familiar to the scientific community, and these
include publications in peer-reviewed journals and partici-
pation at conferences in the form of scientific presentations
and exhibit booths.

IEDB publications and meeting booths

As of December 2018, the IEDB team produced a total of 148
publications since program inception in 2003. Through pub-
lications of our work, we demonstrate that the various addi-
tions and revisions to components of the IEDB are actively
and positively presented to the research community. Unlike
advertisements, publications in peer-reviewed journals have
ensured that the work performed was of scientific interest
and met recognized quality standards in the immunology
and bioinformatics communities.

To advertise the IEDB to potential users and interact with
current users, we have utilized presentations and booths at
scientific meetings. Between January 2012 and December
2018, the IEDB staff delivered 118 talks and posters at scien-
tific meetings. This has been an important component of the
outreach efforts as it has provided an opportunity to discuss
the IEDB with prominent scientists and general users alike. In
addition to scientific presentations, the IEDB has also hosted
exhibit 29 booths at various meetings, selected to reach a wide
breadth of user communities, ranging from scientists with ex-
pertise in basic immunology (AAI), infectious diseases (ASM
Microbe), allergy (AAAAI), and autoimmune diseases
(FOCIS). In our experience, booths have provided an oppor-
tunity for a more hands-on, informal, and in-depth interaction
with prospective users. The booths allow staff to demonstrate
queries and the use of tools on a one-on-one basis, a clear
preference to some users. These interactions are also an alter-
native source of feedback. User comments are captured by
IEDB personnel and are subsequently considered to identify
new features and enhancements relevant to the user commu-
nity. If agreeable, contact information of booth visitors is cap-
tured to allow for further interactions.

Annual training/User Workshops

Since year 2012, the IEDB staff has prepared and run an
annual IEDB User Workshop with the goal of providing
hands-on training on searching for data in the IEDB and the
use of the epitope prediction and analysis tools in the IEDB-
AR. The program of this 2-day workshop is set up to explain
the data structure, curation process, and the various ways to
query the database on the first day, while the second day is
devoted to review of the epitope prediction and analysis tools
in the Analysis Resource. Both days include time for individ-
ual help. In 7 years of hosting this event, there have been 192
workshop participants and another 46 who participated in the
live webcast. Additionally, a total of 56 travel fellowships
were provided to facilitate participant attendance. Attendees
range from graduate students and postdocs to government
scientists and professors. We limit the number of on-site par-
ticipants so we can provide personalized attention and address
individual needs. Holding the workshops at free facilities also
helps to minimize costs. Feedback from participants has been
very positive and we have been able to gather a large number
of recommendations from them on how to improve the IEDB,
which is facilitated by multi-hour interactions at the work-
shops that are not normally available.

Providing engaging and accessible help to users

Assistance to IEDB users is offered in two ways: an online
help desk where users can ask for help with specific questions
and a knowledgebase with articles and tutorials guiding users
through a large collection of recurring help topics.

The IEDB help desk offers customized solutions to user
questions. Users can access the help desk in several ways,
including sending questions directly to help@iedb.org or from
Help Request buttons which are incorporated at the top and
bottom of each page on the database and analysis resource
websites.

The help desk is part of the IEDB Solutions Center, which
is hosted on Zendesk, a commercial web platform designed
for handling help requests and developing a knowledgebase
that users can access. For the contract period from 2012 to
2018, the IEDB received 1213 inquiries via the Solutions
Center from users worldwide. In 2018, the IEDB averaged
18 help requests per month, doubling the number of requests
received in 2012 (Fig. 8).

Upon submitting a help request, Zendesk provides an au-
tomated notice of receipt; however, the IEDB outreach team
defines self-directed, response time goals each year. For ex-
ample, in 2018, our goal was to have a qualified teammember
provide an initial response within one business day. Of the 224
total tickets received during 2018, initial responses were sent
to 90.2% of requests within eight business hours, 25% of
which were resolved outside of business hours. We also
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further aimed to resolve 85% of the general support requests
within five business days. Of the 144 general support tickets
received during 2018, resolution was achieved for 89.6% of
requests within five business days, 17.8% of which were re-
solved outside of business hours. Most tickets that required
more than two business days to resolve had insufficient infor-
mation provided by the user in the initial report, which meant
that further clarification was necessary for us to replicate the
user’s problem. In other cases, the help requests involved
standalone tools or one of the tool APIs that required input
from the bioinformatics IT staff. Although an efficient system
exists for reassigning support tickets, rerouting necessitates
additional time.

To put our help desk service into perspective, we utilized
the Zendesk reporting feature comparing our response and
satisfaction times with “industry standards.” Once a ticket is
solved, the user has the option of rating the IEDB’s response
as Good or Bad through the Zendesk platform, which also
tracks how quickly the ticket was resolved. For the last quarter
of 2018, the IEDB had a satisfaction rating of 94% and an
average first reply time of 4.66 h. The benchmark for compa-
nies of similar size was a 93% satisfaction rating and first reply
in 20.5 h. The IEDB lies within the benchmark satisfaction
rating and compares quite favorably in terms of response time
to other companies.

Establishing a knowledgebase with help links
and tutorials

The IEDB Solutions Center Forum (http://help.iedb.org) that
houses the knowledgebase can be accessed on the Help menu
under Support in the banner or the Solutions Center link at the
bottom of each page on themain website. It can also be accessed
via the help link at the bottom of each page in the IEDB-AR. All
documentation is placed in the Solutions Center, such as site
release notes, the Annual Compendia, and publication
announcements. There are also categories for frequently asked
questions (FAQ), data submission, and the use of the analysis

and prediction tools. A user can direct query the knowledgebase
to find these articles, or instead may access these via redirect
from numerous help links within the IEDB website, denoted
with a question mark icon. The knowledge base also links
users to webcast presentations taken from the annual User
Workshop which can be used as “How-to” instructional
references. All content of the knowledgebase is updated on an
ongoing basis as the content of the IEDB evolves over time.

Assessing the impact and general usage of the IEDB

We periodically perform overall usage analysis, taking advan-
tage of Google Analytics, which is a free web analytics service
to track and report website traffic. Here we present an analysis
of IEDB usage in recent years. As of July 2019, the main
website has received over 10,300 visits per month from ap-
proximately 5400 unique visitors, while the IEDB-AR has
received almost 10,400 visits per month from 4600 unique
visitors. Figure 9b a demonstrates how the usage measured
in median visits per month has increased since 2012 for both
the main IEDB website and the Analysis Resource. This rep-
resents an increase of 102% for the former and a 249% in-
crease for the latter. Based on interactions with IEDB tool
users at workshops and conferences, we assume that one rea-
son for the more rapid increase in usage of the IEDB-AR is
that the epitope prediction tools are used by a wider commu-
nity that includes researchers studying cancer and HIV, for
whom the current IEDB database has limited utility as refer-
ences in these respective domains are presently excluded from
curation based on NIAID funding priorities.

The community of users is also international. In 2018, the
geographic breakdown of users (measured by visits to the
main website) included Asia (49%), the Americas (29%; in-
cluding 22% USA), Europe (18%), Africa (3%), and Oceania
(1%). For the Analysis Resource, the geographic breakdown
included Asia (34%), Europe (31%), the Americas (29%; in-
cluding 21% USA), Africa (3%), and Oceania (2%). These
data illustrate the broad reach of the IEDB across the world.

During this same period of time, the main website received
46% of its traffic from organic searches, (i.e., visitors coming
as a result of using a search engine). In addition, 44% of the
traffic came from users directly accessing the website, and
10% came as a result of following a hyperlink from another
website. Of the users arriving at the IEDB via site referral,
approximately 23% of the referrals came from the links
established on PubMed and 14% came from the Analysis
Resource website. Similarly, in 2017, the IEDB-AR received
47% of its traffic from organic searches, 31% by referral from
another website (86% of which were from the IEDB main
website), and 22% from users going directly to the website.

The metrics described above measure overall usage, but do
not provide information regarding how the website is navigat-
ed. To address this, we have expanded our use of Google

0

5

10

15

20

25

2012 2013 2014 2015 2016 2017 2018

He
lp

 R
eq

ue
st

s (
m

on
th

ly
 a

vg
) 

Year 

Fig. 8 Average number of help requests to the IEDB Solutions Center per
month

72 Immunogenetics (2020) 72:57–76



Analytics and GoAccess. Google Analytics is implemented
on each web page and helps us to identify traffic trends, such
as direct links or contextual-based searches, both immediately
and after modification of a page. These tools also help us to
identify how many sites reference the IEDB, how well
indexed the IEDB is, and how quickly each page is loading.

Assessing the impact of the IEDB
through publications

Another systematic metric illustrating the impact of the
IEDB program on the scientific community is the number
of citations made by authors in peer-reviewed journals.
The citation analysis is conducted in the second quarter
since experience has shown that there is a lag before all
references of the preceding year are entered into PubMed,
Google Scholar, and the ISI Web of Knowledge, the three
sources used to find citations. In 2018, for instance, the
IEDB received 2215 citations, continuing our streak of
annual increases in received citations. We have also more
recently found that as the popularity of the IEDB grows,
there is often no actual citation provided but the IEDB is
simply mentioned in the body of a document. To capture
and monitor this type of informal citation, we introduced a
formal analysis of the number of times the IEDB is referred
to “in-line” as a resource (Fig. 9a). Using Publish or Perish,
a software program that retrieves citations across Crossref,
Google Scholar, Microsoft Academic, Scopus, and Web of
Science, we reanalyzed all citations to the IEDB 2012–
present and identified nearly 1500 in-line references to
the IEDB which would have been overlooked during initial
analysis since a specific IEDB-related publication was not
cited.

Throughout the identification of citations, it is important to
note that IEDB-authored articles citing other IEDB articles are
specifically excluded to avoid artificially inflating the count.

Internally, citations identified during the annual analysis are
further evaluated by subdividing them by publication year and
category, such as retrieval of specific T or B cell datasets, utili-
zation of specific tools, ontology development, or development
of predictive or analytical tools. Inspection of this subdivided
list allows for identification of trends, to highlight which areas
and types of activities are most impactful and best received.
Conversely, this analysis reveals areas where outreach could
be improved to enhance IEDB relevance and impact.

Conclusions

The primary focus of the IEDB initiative, which began in
2003, has been to ensure public accessibility to curated immu-
nological data and bioinformatics tools; an objective which is
achieved through continuous evolution of the behind-the-
scenes systems infrastructure, the internal data processing
tools, and established online web portals. Beyond basic exis-
tence, the IEDB strives to foster continued growth of the re-
source by iteratively updating its components, adding and
improving features to make it more valuable to its user com-
munity. Adopting this proactive, community-oriented ap-
proach has enabled the IEDB to become a widely recognized
and respected resource; evident through a user-base which has
more than doubled in size and an annual citation count which
has almost quadrupled since 2012. In order to maintain suc-
cessful operation, the IEDB will rely on the day-to-day prac-
tices and procedures which have been refined over the past 16
years and will retain our over-arching vision to improve the
acquisition, management, analysis, and dissemination of data
and knowledge across the immunology research.
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